\qquad

1. (10 points) When $y_{1}(x)$ and $y_{2}(x)$ form a basis of solutions of the following equation:

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=0
$$

show that
$y_{p}(x)=-y_{1}(x) \int \frac{y_{2}(x) r(x)}{W(x)} d x+y_{2}(x) \int \frac{y_{1}(x) r(x)}{W(x)} d x, \quad$ with $W(x)=y_{1}(x) y_{2}^{\prime}(x)-y_{2}(x) y_{1}^{\prime}(x)$,
is a particular solution for the following nonhomogeneous linear ODE:

$$
y^{\prime \prime}(x)+p(x) y^{\prime}(x)+q(x) y(x)=r(x)
$$

2. (23 points) Solve the following initial value problem:

$$
x^{3} y^{\prime \prime \prime}-2 x^{2} y^{\prime \prime}-17 x y^{\prime}-7 y=45 x^{2} \ln x-24 x^{2},(x>0), \quad y(1)=1, \quad y^{\prime}(1)=0, y^{\prime \prime}(1)=0 .
$$

