1. (10 points) Solve the following initial value problem by the power series method. Find the recurrence formula and find the first four nonzero terms in the series.

$$
3 y^{\prime \prime}-y^{\prime}+(x+1) y=1, \quad y(0)=0, y^{\prime}(0)=0 .
$$

2. (10 points) Compute the Fourier series of the following function:

$$
f(x+6)=f(x)= \begin{cases}0, & \text { if }-3<x<-1, \\ 1, & \text { if }-1<x<1, \\ 0, & \text { if } 1<x<3\end{cases}
$$

3. (15 points)
(a) (5 points) Represent $f(x)=e^{-x}, x>0$, by a Fourier cosine integral.
(b) (5 points) Represent $f(x)=e^{-x}, x>0$, by a Fourier sine integral.
(c) (5 points) Solve the following integral equation for the function $f(x)$

$$
\int_{0}^{\infty} f(x) \cos \omega x d x=e^{-\omega}, \quad \omega>0
$$

4. (15 points) Table 1 shows the result of applying the Runge-Kutta method to the following initial value problem

$$
y^{\prime}=1-x+4 y, \quad y(0)=1,
$$

from $x=0$ to $x=1$ with $h=0.2$. Fill in the blank and show your work for partial credit.

x_{i}	y_{i}
0.0	1.0000
0.2	2.5016
0.4	
0.6	12.9972
0.8	28.9808
1.0	64.4416

Table 1: Runge-Kutta Method

