Name:
 Dept:
 ID No:

1. (10 points) Solve the following initial value problem by the power series method. Find the recurrence formula and find the first four nonzero terms in the series.

3y'' - y' + (x+1)y = 1, y(0) = 0, y'(0) = 0.

2. (10 points) Compute the Fourier series of the following function:

$$f(x+6) = f(x) = \begin{cases} 0, & \text{if } -3 < x < -1, \\ 1, & \text{if } -1 < x < 1, \\ 0, & \text{if } 1 < x < 3. \end{cases}$$

3. (15 points)

- (a) (5 points) Represent $f(x) = e^{-x}$, x > 0, by a Fourier cosine integral.
- (b) (5 points) Represent $f(x) = e^{-x}$, x > 0, by a Fourier sine integral.
- (c) (5 points) Solve the following integral equation for the function f(x)

$$\int_0^\infty f(x) \, \cos \omega x \, dx = e^{-\omega}, \quad \omega > 0.$$

4. (15 points) Table 1 shows the result of applying the Runge-Kutta method to the following initial value problem

$$y' = 1 - x + 4y, \quad y(0) = 1,$$

from x = 0 to x = 1 with h = 0.2. Fill in the blank and show your work for partial credit.

x_i	y_i
0.0	1.0000
0.2	2.5016
0.4	
0.6	12.9972
0.8	28.9808
1.0	64.4416

Table 1: Runge-Kutta Method