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1. (20 points) Given a planar cubic Bézier curve with four control points b; = (z;,v;), (i = 0,1,2,3):
3

1=0

represent the following function
2
f&) =2'()y"(t) —2"(t)y'(t) = X fiBi(t), 0<t<1,
k=0

as a quadratic Bézier function by computing the three control coefficients fo, f1, fo of f(t).



2. (20 points) Let C(t), (0 <t < 1), be a cubic Bézier curve given by four control points:

w-[o] w=[8] w-3] =[]

Subdivide the curve C(t) at x-extreme points, y-extreme points and inflection points, and compute
the control points for each inflection-free x, y-monotone curve subsegment.



3. (20 points) Convert the bicubic Bézier patch defined by the following control points to a biquadratic
Bézier patch
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4. (20 points) Consider two piecewise cubic Bézier curves with control points by, for i =0,---,6. Let

e[ e8] e8] w1 ]

Find the control points bs and bg so that the piecewise curve is C3.



5. (20 points) Given a set of data points py and their corresponding parameter values (ug, vg):

—1 0 1 2 4
Po = 1 ) b1 = 0 ) P2 = 0 ) P3s = 1 ) P4 = 4 )
0 0 0 0 0

(Uo,Uo) == (O, 0), (Ul,Ul) == (O, ].), (UQ,UQ) == (1,0), (U37U3) = (17 ].), (U4,U4) == (05,05),

compute the least squares approximation using a bilinear Bézier surface patch with four control
points b;;, (1,7 =0,1).



