Efficient Offset Trimming for **Deformable** Planar Curves using a **Dynamic** Hierarchy of **Bounding Circular Arcs (BCA)**

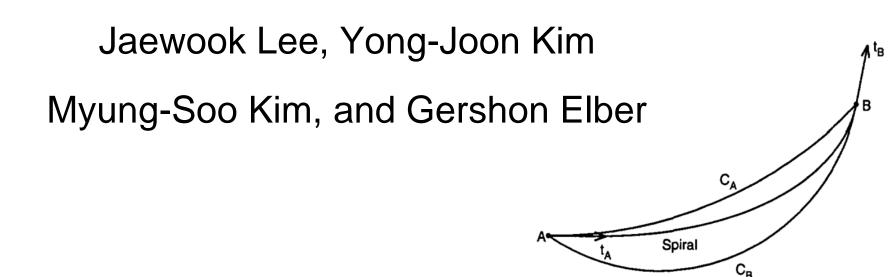
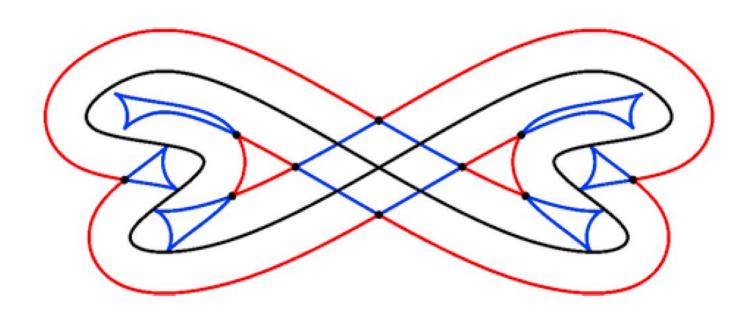


Fig. 1. Bounding circular arcs.

Offset Trimming for Planar Curves



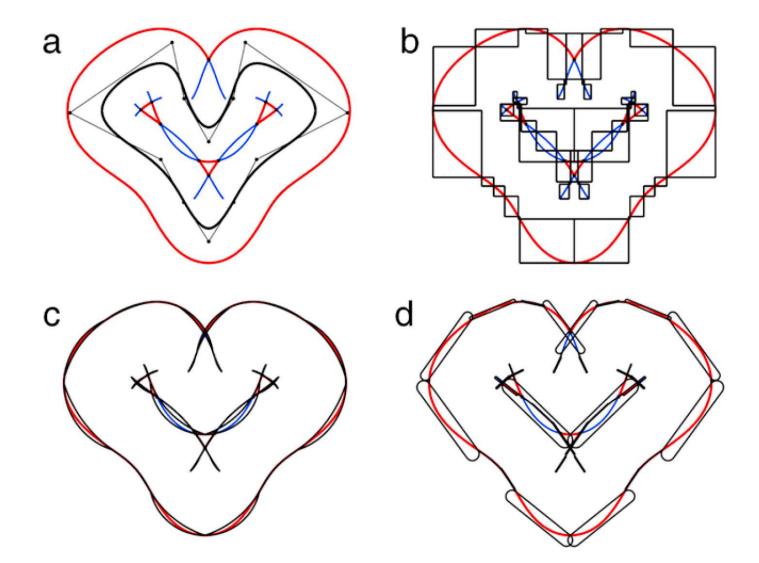
$$O_r(t) = C(t) + r \cdot N(t),$$

where N(t) is the unit normal of C(t).

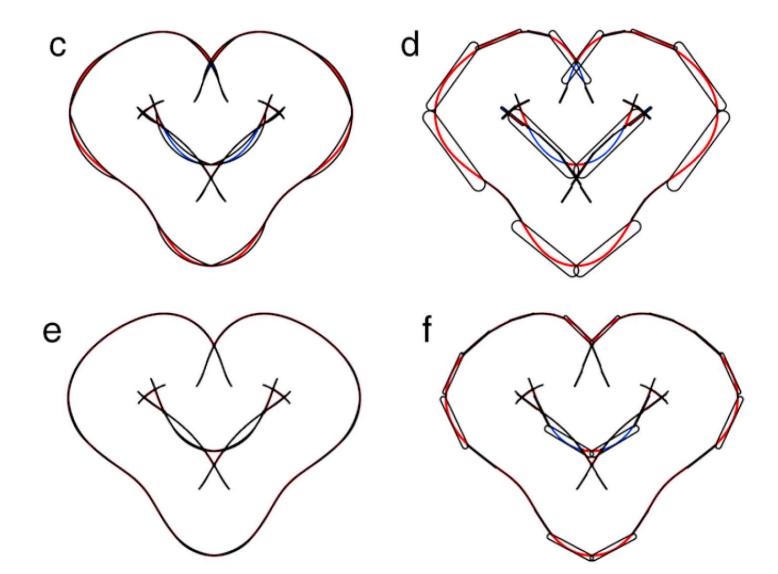
Previous Work (Offset Trimming for Static Planar Curves)

- Elber and Cohen (IJCGA, 1991)
- Maekawa and Patrikalakis (CAGD, 1993)
- Lee et al. (CAD, 1996)
- Seong et al.(CAD, 2006)
- Kim et al. (GMP2012; CAGD, 2012)

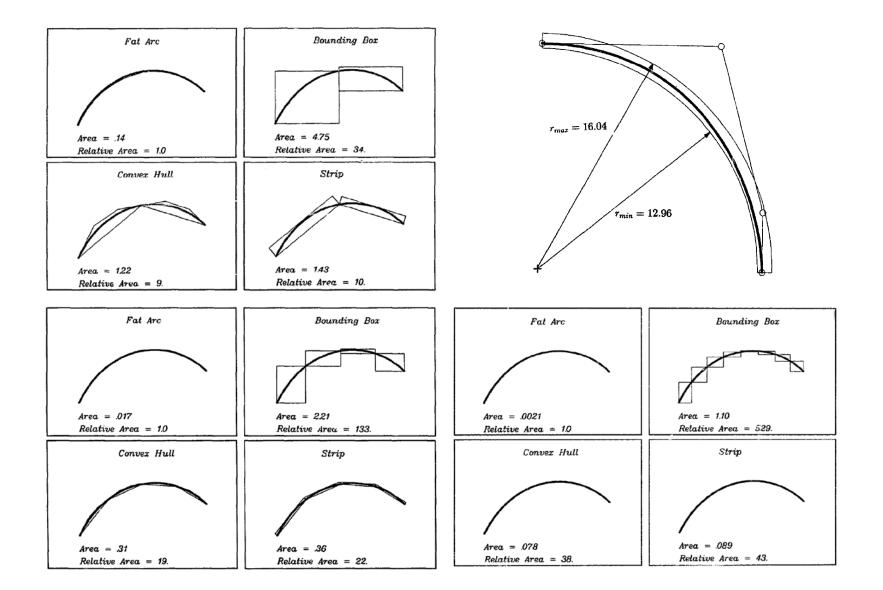
Offset Trimming using BVH



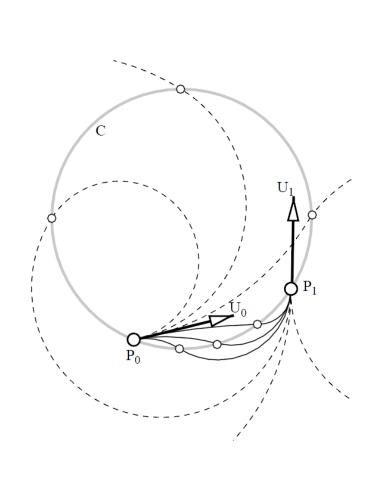
Offset Trimming using BVH

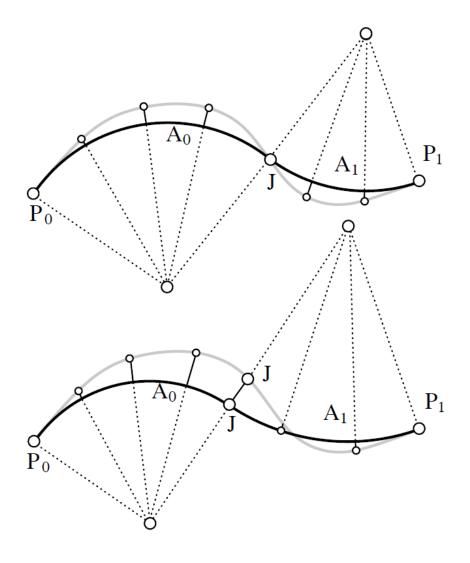


Fat Arc (Sederberg et al. CAGD'89)



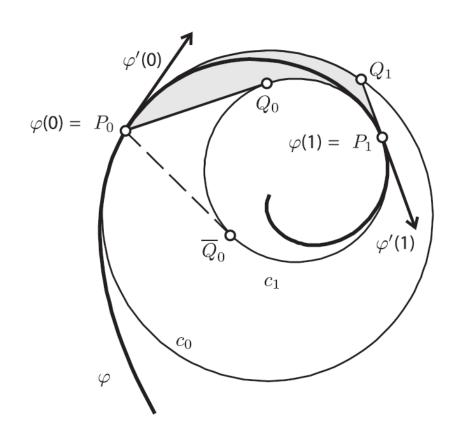
Sir et al. (CAD2006)

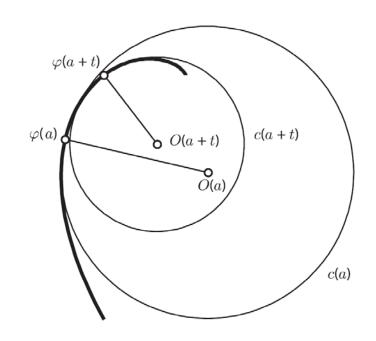


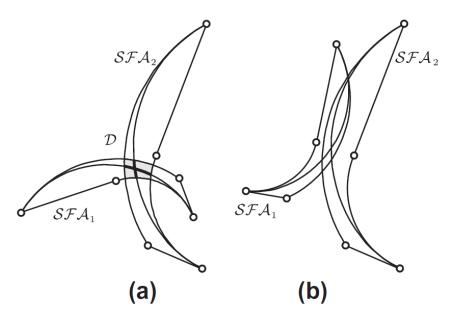


Spiral Fat Arc

Barton and Elber (GMOD2011)







Bounding Circular Arcs (Meek and Walton CAD'93, JCAM'95)

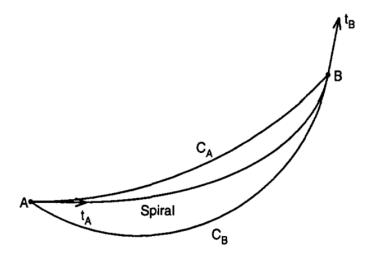
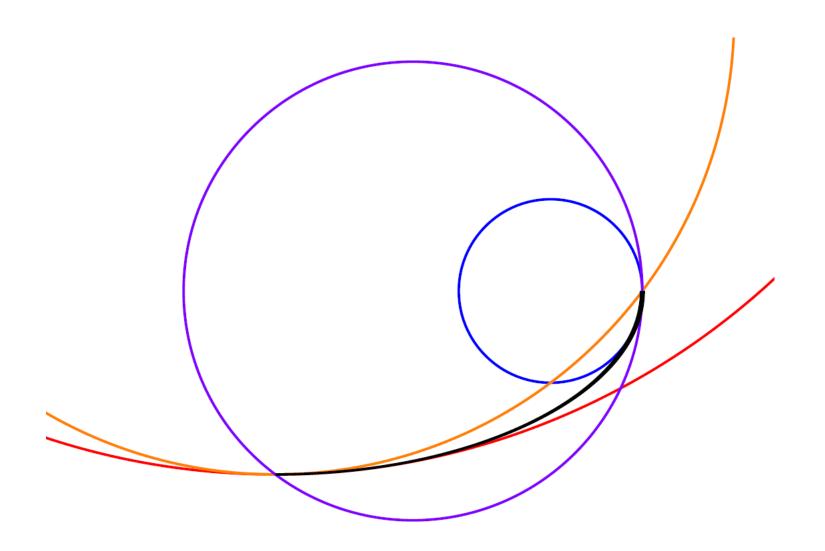


Fig. 1. Bounding circular arcs.

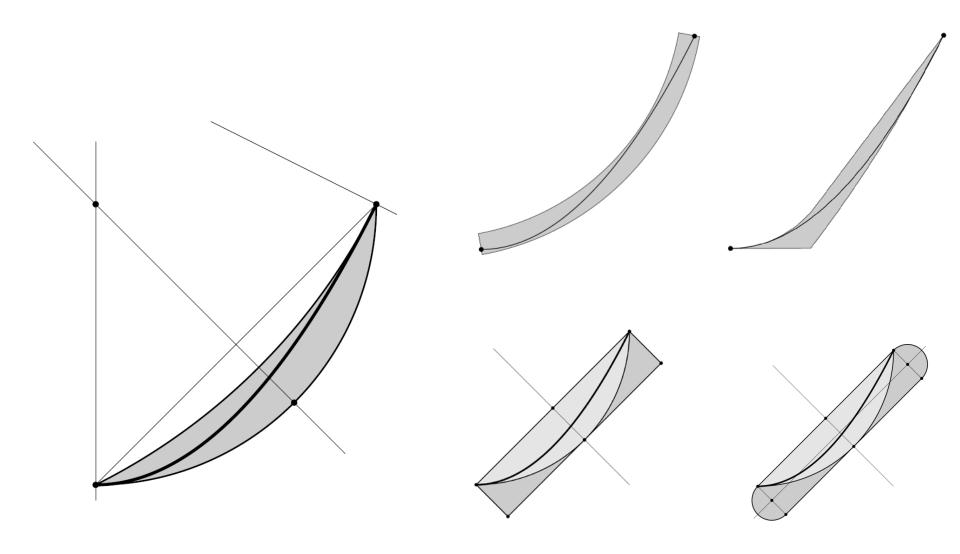
The spiral segment is said to satisfy the *enclosing condition* if the curvature of the spiral at A is less than or equal to the curvature of C_A and the curvature of the spiral at B is greater than or equal to the curvature of C_B (see Fig. 1).

Theorem 5. If a convex spiral segment of positive increasing curvature satisfies the enclosing condition, then the bounding circular arcs enclose a crescent-shaped region that includes the entire spiral segment.

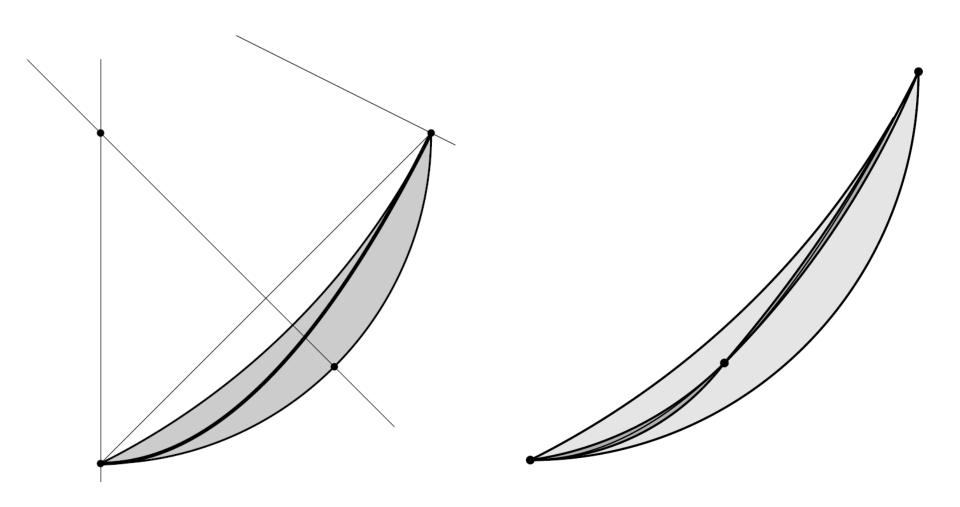
Bounding Circular Arcs



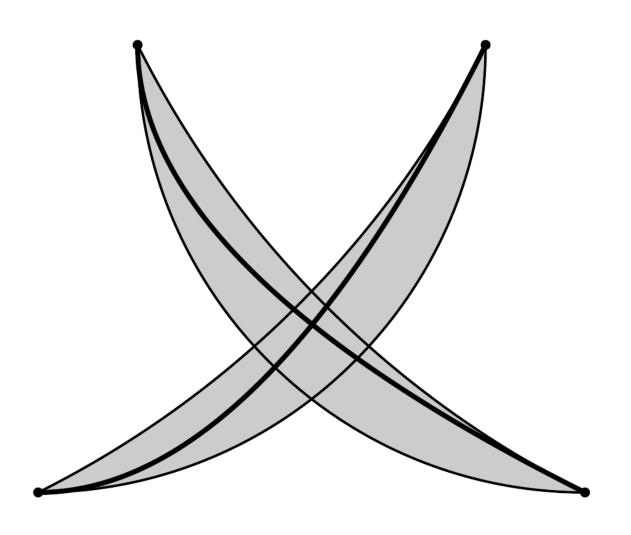
Comparison with Others



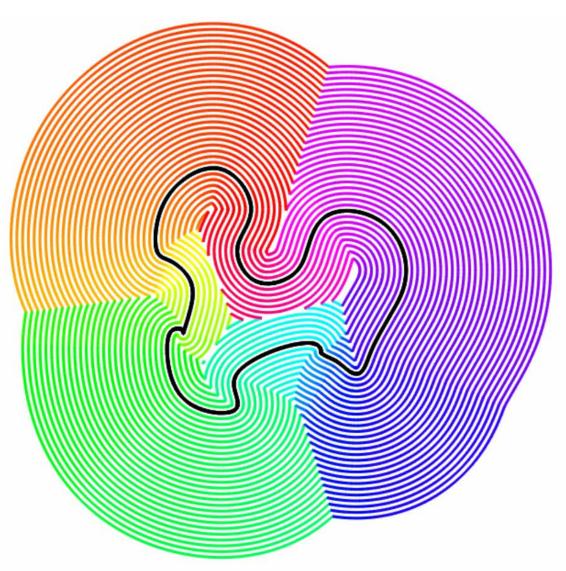
Cubic Convergence



Existence and Uniqueness

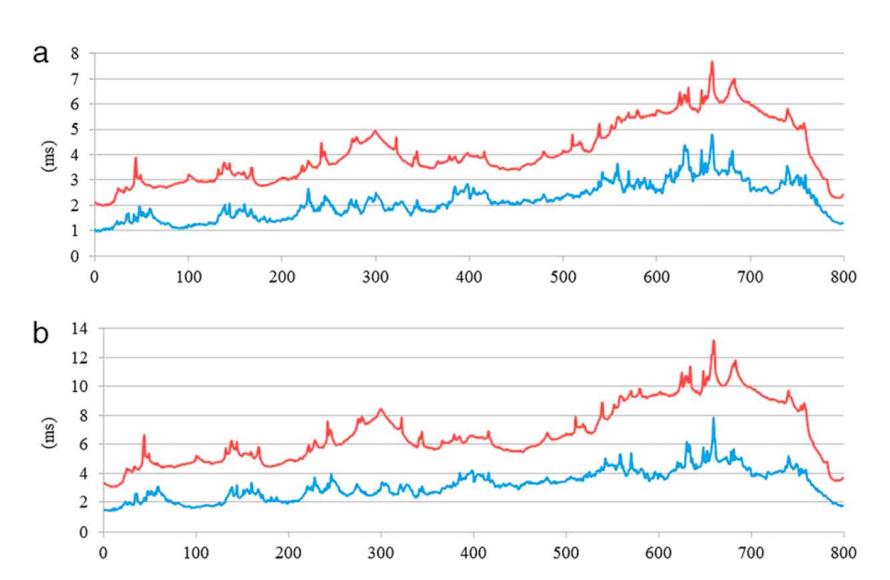


Experimental Results



Performance

(Comparison with Fat-Arc-based Approach)



Conclusions

- BCA as a Bounding Volume
- Efficient Construction for Spiral Curves
- Dynamic BVH
- Deformable Planar Curves
- Cubic Convergence