Bounding Volume Hierarchy

Myung-Soo Kim
Seoul National University
http://cse.snu.ac.kr/mskim
http://3map.snu.ac.kr

Bounding Volumes

Bounding Volume Hierarchy

Bounding Volume Hierarchy

BVH Construction for AABB

OBB Construction

BVH Complexity

Model	Triangles	Size of BVH	Mean and std	Comp.
	(M)	(MB)	of depth of leaves	time (min)
Hugo	0.02	2	16, 1.7	0.03
Bunny	0.07	8	17, 0.8	0.26
Dragon	0.8	108	21, 1.6	3
1M power plant	1.1	139	23,2.9	6
Turbine	1.7	220	22, 0.7	8
Lucy	28	4,811	37,3.4	34

Table 1: Benchmark Models: Model complexity, sizes of BVHs, mean and standard deviation(std) of depth of leaf nodes, and computation time to compute cache-oblivious layouts are shown.

Scene Graph

View Frustum Culling

Example of Hierarchical View Frustum Culling

When $A = \{0\}$,

A and $B + \mathbf{p}$ intersect

$$\Leftrightarrow A \cap (B + \mathbf{p}) \neq \emptyset$$

$$\Leftrightarrow$$
 0 = b + p (for some b \in B)

$$\Leftrightarrow \mathbf{p} = -\mathbf{b} \in -B = \{-\mathbf{b} \mid \mathbf{b} \in B\}$$

When $A = \{a\}$,

$$A \cap (B + p) \neq \emptyset \Leftrightarrow a = b + p$$

$$\Leftrightarrow \mathbf{p} = \mathbf{a} - \mathbf{b} \in \mathbf{a} - B = {\mathbf{a} - \mathbf{b} \mid \mathbf{b} \in B}$$

When $A = \{a\}$, $A \cap (B + p) \neq \emptyset \Leftrightarrow a = b + p$ $\Leftrightarrow p = a - b \in a - B = \{a - b \mid b \in B\}$

When A is a set of points,

$$A \cap (B + \mathbf{p}) \neq \emptyset$$

 \Leftrightarrow $\mathbf{a} = \mathbf{b} + \mathbf{p}$ (for some $\mathbf{a} \in A$ and $\mathbf{b} \in B$)

$$\Leftrightarrow$$
 p = **a** - **b** \in $A - B = \{$ **a** - **b** \mid **a** \in A , **b** \in $B\}$

Minkowski Sum/Difference

$$A + B = \{a + b \mid a \in A, b \in B\}$$

$$A - B = \{a - b \mid a \in A, b \in B\}$$

$$A \cap (B + p) \neq \emptyset$$

$$a = b + p$$

$$p = a - b$$

$$p \in A - B$$

Collision-Avoidance Motion Planning

View Frustum Intersection

View Frustum Intersection

Frustum/Box Intersection

Distance Queries

$$A - B = \{a - b \mid a \in A, b \in B\}$$

GJK Algorithm for Convex Obj.

