Chap /1. WorkTrg with B=Splme Cuwes
! +
11.2 Least Squares Approximation

For many applications, many data points are given and a cubic B-
spline curve is desired which approximates their shape. The most
popular method to find such an approximating curve is that of least
squares approzimation, much in the spirit of a similar method of Sec-
tion 5.4.

Suppose we want to approximate a data set using a cubic B-spline
curve with L polynomial segments. Recall from Section 10.1 that
a cubic with only simple domain knots has the relationship K =
L + 5, where K is the number of knots. Thus, the first step is to

construct a knot sequence ug, ... ,ux—1. We are given P data points
Po,--. ,PP_1, each p; being associated with a parameter value v;.!
We wish to find a cubic B-spline curve x(u) such that the distances
lpi — x(v;)|| are small. Figure 11.3 illustrates the geometry.

Ideally, we would have p; = x(v;); i =0,...,P—1. If our B-spline
curve x(u) is of the form

x(u) = doNg(u) + ... +dp_1 N3 _; (u),
we would like the following to hold:

doNg('l)o) + ...+ an133_1('UO) = Po

doN(vp-1) + ... +dnN}_i(vp-1) = PP-1.

This may be condensed into matrix form:

N§(vo) ... Np_(vo) Po
. do .
: = (11.1)
b dD'—l .
N§(vp-1) ... Np_,(vp-1) PP-1
Or, even shorter:
MD =P. (11.2)

Since we assume the number P of data points is larger than the num-
ber D of curve control points, this linear system is clearly overdeter-
mined. We attack it, just as in the Bézier case, by simply multiplying
both sides by MT:

MTMD = MTP. (11.3)



Our development lacked some details that are essential when im-
plementing “real life” examples. How many segments L should the
curve have? How should the knots u; and the parameter values v; be
chosen?

There are no universal answers to these problems. But you might
want to consider the following:

e Choose the parameters v; according to the chord length method
explained in Section 5.5.

e Select L ~ P/10.

e Choose the knots u; such that approximately ten v; fall in each
interval domain knot interval [u;, uit1]-

11.3 Shape Equations

A common measure for polygon shape is the use of second differ-
ences. These are of the form

AQd,; =d; —2d;41 + diyo.
A polygon is considered “nice” if the sum
|A%do|| + ... + |A%dp_3]|

is small.
The following example should give credibility to this concept.

EXAMPLE 11.1
Let a polygon be given by the 2D points

L)

and a second one by

BLPGLES PG

Both polygons are shown in Sketch 96; visually, the first one is
“rougher” than the second one.
We compute the second differences of the first polygon:

2, | O 24 _| 0 2, _| O
Ado_[_z],Ad1~{2],Ad2~[_2].

For the second polygon, we find

24 | O 23 | O 29. | O
Ado“[—o.s}’Adl";[—l}’Adz“[—o.s]'



The sum of the lengths of the first polygon’s difference vectors is six;
that of the second polygon is only two: the second one is smoother!
This confirms that second differences tell us something about the
shape of a polygon.
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Returning to the topic of least squares approximation, it seems rea-
sonable to add shape equations to the overdetermined system (11.2).
These would be of the form

do—2d; +dy =0

dp_3—2dp_2+dp-; =0.

With the addition of these equations, our overdetermined linear
system becomes even more overdetermined. However, this is not
detrimental at all—we still form the normal equations of the form
(11.3) and solve them for the control points. Figure 11.4 illustrates
the effect of the shape equations.

Figure 11.4.

The effect of shape equations. Top: without shape equations, and below: with
shape equations.



11.4 Cubic Spline Interpolation

The most popular way of constructing cubic spline curves is through
interpolation. This means that the number of data items (also called
interpolation constraints) equals that of the unknown control points.

The task at hand is to interpolate to P given data points

Po,...,pPp—1 With a cubic B-spline curve which has end knots of
multiplicity three:

Up = U3 = Uz, U3,...,UK—-4, UK-3=UK-2=UK-1-

The junction points of the curve will be paired to the given data
points; for example pg will correspond to ug, p1 will correspond to
usz, etc. Therefore, we will need P — 1 curve segments, and thus
K = P +4. A method for determining the knots based on the given
data can be found in Section 5.5.

Because of the relationship between the number of knots and con-
trol points, the interpolating curve has D = P + 2 control points, and
needs P + 2 data items to determine it. Example 11.2 should give
you a feeling for the number of control points and curve segments.

EXAMPLE 11.2

Suppose we have P = 5 data points, and we consider the knot se-
quence

0,0,0,1,2,3,4,4,4

with K = 5 + 4 = 9 knots, thus having five junction points®.
A control polygon for a cubic B-spline curve over this knot sequence
is given by the D = 7 control points
do, ... ,ds.

Thus, one needs seven interpolation constraints to determine the
curve. Sketch 97 shows a configuration like the one just described.

It

Sketch 97.
A cubic B-spline curve with four
cubic segments.



Typically, one “throws in” two more data items at the ends
of the curve, namely the derivatives

ts =%(uz) and t.=%x(ug_3).

Here, t, and t. stand for the start and end tangents of the curve.
These are called end conditions. The knots u; and ux_3 are the
first and last domain knots, and simple expressions for these deriva-
tives are given in (10.8) and (10.7). A good method for generating
these tangents is called Bessel tangents. These tangents are extracted
from the interpolating parabolas through the first and last three data
points. They are given by

205 + Az (Az + A3) Ay

v = = 11.4
R+ 8P T T AA; P AR, v AP (1Y)
te = =i PL-2
¢ Ax—s(BDx-_s+Ax_4) "
(Ag—5+ Ag_4)
_ _ 11.5
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(2Ax_4+ Ag_5)

+
Bt + Aoy

Now we have as many knowns as unknowns, namely D = P + 2.
Our interpolation conditions become

Po = x(uz)
ts = 5((UQ)
Pi—= X(Ua)

(11.6)

te = k(uK—S)
ppr-1 = x(uk-3).

However, as you might have noticed in Sketch 97, cubic spline in-
terpolation with triple end knots will result in
do=po and dp-;=pp-1.

This clearly eliminates two unknowns, and therefore, we can eliminate
two equations, and (11.6)-becomes

ts = 5((U2)
p1 = x(u3)
(11.7)
pr—2 = X(uk—_4)
te = X(ux-3),

for the P = D — 2 unknowns dy,... ,dp_,.



In theory, each data point yields an equation of the form
Pi = doNg(U2+i) S S dD—lN%~1(u2+i)-

But due to the local support property of B-spline curves, this reduces
to

Pi = diN} (uz1s) + dip1 Ny (uggi) + digaNipo(uzys).  (118)

This gives the system a tridiagonal structure.* The first and last
equation in the system, the end conditions, involve only the first and
last unknowns, respectively, in order to maintain this structure.

For the special case of equally spaced interior knots, we have

6p; = d; +4di1 + diyo
for each equation involving a data point.

EXAMPLE 11.4

Returning to our example, notice that the knots are equally spaced.
The end tangent equations are

ts = 3(d1 e d()) and te = 3(d6 e ds),

where dg and dg are known. Therefore, the linear system is

1 d; do + %ts
3/2 ?/2 1 d2 6[)1
1 41 d; | = 6p2
1 7/2 3/2 dy 6ps

1 ds dg — 3t

An example is illustrated in Figure 11.5.






