G. Farin

Corrections to Reflection Lines

The reflection writeup in the book is wrong, and what I presented in class is incomplete. Now here is the final word:

Let \mathbf{x} be a point on a surface, and let \mathbf{n} be its normal. Let a light line source be defined by a point \mathbf{p} and a vector \mathbf{v} . Denote by \mathbf{P} the plane through \mathbf{x} with normal vector \mathbf{v} . We compute two points: \mathbf{q} , the projection of the point $\mathbf{x} + \mathbf{n}$ into \mathbf{P} as well as \mathbf{r} , the intersection of \mathbf{L} with \mathbf{P} . See Figure 1.

We write \mathbf{r} as $\mathbf{r} = \mathbf{p} + t\mathbf{v}$ and get the condition

$$(\mathbf{p} + t\mathbf{v} - \mathbf{x})\mathbf{v} = 0,$$

thus obtaining

$$t = \frac{\mathbf{x}\mathbf{v} - \mathbf{p}\mathbf{v}}{\mathbf{v}\mathbf{v}}.$$

We write \mathbf{q} as $\mathbf{q} = \mathbf{x} + \mathbf{n} + s\mathbf{v}$ and obtain

$$(\mathbf{x} + \mathbf{n} + s\mathbf{v} - \mathbf{x})\mathbf{v} = 0,$$

thus obtaining (note two \mathbf{x} 's cancel):

$$s = \frac{-\mathbf{n}\mathbf{v}}{\mathbf{v}\mathbf{v}}.$$

Now we use the angle α formed by the vectors $\mathbf{q} - \mathbf{x}$ and $\mathbf{r} - \mathbf{x}$ to determine if the point \mathbf{x} reflects light or not.

Figure 1: The reflection line geometry.