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Figure 8.3.
A curve with its curvature plot.
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Figure 8.4.
An improved curve with its curvature plot.



Sketch 75.
A normal section.

b

Sketch 76.
An elliptic point.
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Sketch 77.
A saddle point.

8.3 Surface Curvatures

Defining the shape of surfaces is quite a bit harder than it was for
curves.

We will need one basic tool: the concept of normal curvature. Let
x(u, v) be a point on a surface and let n(u, v) be its normal. Any plane
P through x which contains n will intersect the surface in a curve, see
Sketch 75. This curve is called the normal section of x with respect
to P. It is planar by definition; we can compute its signed curvature
at x. This curvature xp is the normal curvature of the surface at
point x with respect to the plane P.

Now imagine rotating P around n. For each new position of P, we
will get a new normal section, and hence a new normal curvature. Of
all the normal curvatures at x, one will be the largest, called Kmax,
and one will be the smallest, called Kmin. These two curvatures are
called the principal curvatures at x. Depending on the sign of the
principal curvatures, we may distinguish three cases:

1. Both Kmin and Kmax are positive or both are negative. Then x
is called an elliptic point of the surface. Sketch 76 illustrates the
center of the osculating circle (8.5) for each extreme curvature. All
points on a sphere or on an ellipsoid are elliptic.

2. Kmin and Kmax are of opposite sign. Then x is called a hyper-
bolic point of the surface. Sketch 77 illustrates. Another term is
saddle point. All points on hyperboloids and bilinear patches are
hyperbolic.?

3. One of the principal curvatures is zero. Then x is called a parabolic
point. Sketch 78 illustrates. Cylinders or cones are examples for
this type.

Sketch 78.

A parabolic point.



These three cases are succinctly described by one quantity, namely
the product K of Kpin and Kmax:

K = Knin Kmax,

called Gaussian curvature. The sign of K determines which of
the three cases best describes the shape of the surface near the
point x.

The Gaussian curvature can be computed using the first and sec-
ond derivatives of the surface. We define

F — det [ xuxu xuxv :l

XuXy XpXy

and
S = det [ Whups 0, ] .

NXy .y NXyy

All quantities involved in F and S are easily computed. The two
determinants are called first and second fundamental matrices of
the surface at x.

The Gaussian curvature is then given by

S
K=Z. (8.9)

Let’s revisit the list from above:
1. An elliptic point corresponds to K > 0.
2. A hyperbolic point corresponds to K < 0.
3. A parabolic point corresponds to K = 0.3

Of course most surfaces are not composed entirely of one type of
Gaussian curvature.

More shape measures exist; we note two of them. The first one is
mean curvature M. Tt is defined by
1

M = ‘i[nmin + K:max]-

It can easily be computed like this:

M= [nx,,)x2 — 2[nX,, ] [XuX, ] + [0y, |x2
- e ,

The mean curvature is zero for surfaces that are called minimal
Such surfaces resemble the shape of soap bubbles.

The second curvature that is of practical use is absolute curvature
A. Tt is given by

A= |’imin| + |/{max|

and measures the curvature of a surface in the most reliable way from
an intuitive viewpoint.
A similar expression, sometimes called the RMS (root mean square)

curvature is defined as
e 2
R= K‘min < Kmax:
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