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Comparison of Three Bounding Regions with Cubic
Convergence to Planar Freeform Curves

Jaewook Lee · Yong-Joon Kim · Myung-Soo Kim · Gershon Elber

Abstract We compare the relative performance of bound-

ing regions generated by three different curve bound-

ing methods with cubic convergence to planar freeform

curves: spiral fat arcs (SFA) [4], bilens [17], and bound-

ing circular arcs (BCA) [21]. For quantitative compari-

son, we consider three different criteria: geometric com-

plexity (the number of circular arcs and line segments),

construction time, and numerical stability. The BCA

construction after one step refinement (producing four

circular arcs) is almost comparable to the other two

methods in geometric complexity: the spiral fat arcs

with two circular arcs and two line segments, and the

bilens with four circular arcs. In other comparison cri-

teria, the BCA approach is more efficient and stable

than the other two methods in producing a hierarchy of

bounding regions that approximate a family of freeform

planar curves within a given error bound.

Keywords Planar freeform curves · monotone spiral

curve · bounding circular arcs · dynamic BVH

1 Introduction

Bounding volume hierarchy (BVH) is one of the most

powerful spatial data structures for accelerating algo-

rithms in computer graphics and geometric modeling [1,
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7,8]. For the design of efficient geometric algorithms for

freeform NURBS surfaces, the Coons BVH construc-

tion (based on Coons patch approximation [6]) is highly

effective, often demonstrating interactive-speed perfor-

mance in computing minimum and Hausdorff distances

and convex hulls [12,14,15]. Coons patches approxi-

mate NURBS surfaces considerably more tightly and

thus have a higher approximation order than other reg-

ular shapes such as spheres and boxes.

Based on the concept of fat-arcs originally proposed

by Sederberg et al. [24], the G1-biarc approximation

has been used for the acceleration of geometric algo-

rithms for freeform planar curves, and produced many

fruitful results that are considerably more robust than

previous solutions for non-trivial problems such as me-

dial axis and Voronoi diagram construction and offset
curve approximation and trimming [2,3,11,13,25]. The

improved robustness is in some sense a direct conse-

quence of higher approximation order – the round-off

error accumulates slowly as the curve subdivision would

terminate in an early stage of geometric computation.

The cubic convergence of biarc approximation [21]

is the main factor in the improvement of computational

efficiency and robustness. There are other curve ap-

proximation schemes with cubic convergence to planar

freeform curves [4,17]. Thus it is important to compare

their relative performance. In the proposal of fat arcs,

Sederberg et al. [24] also made an extensive compari-

son against other conventional bounding regions (such

as convex hull and bounding boxes) in terms of bound-

ing area and construction speed. In many geometric ap-

plications, the thickness of the bounding region seems

more relevant than area – the thickness is directly re-

lated to the Hausdorff distance error. In this paper,

we measure the relative performance of different ap-

proximation methods in terms of computing speed and
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(a) (b)
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Fig. 1 (a) Bounding circular arcs, (b) spiral fat arcs, (c)
bilens, and (d) an overlap of three bounding regions.

(a) (b)

Fig. 2 (a) Bounding circular arcs for C(t) = (t, t2), 0 ≤ t ≤
1, (b) tighter BCAs after one step refinement by subdividing
at t = 1

2
.

numerical stability in bounding planar freeform curves

within a given error bound.

Fat arcs are often generated in the form of fat biarcs [20,

26] as the G1-biarc approximation has cubic conver-

gence to planar curves. Nevertheless, it is time-consuming

to measure the maximum deviation of biarcs from the

given curve and thus to determine the thickness of fat

arcs. In a recent work on trimming planar offset curves,

Lee et al. [19] showed that the bounding circular arcs

(BCA) of Meek and Walton [21] is considerably more

efficient to generate and measure the error bound than

fat arcs. In this paper, we compare the relative perfor-

mance of the BCA bounding region against spiral fat

arcs [4] (each constructed with two circular arcs and

two line segments) and bilens [17] (with two biarcs, i.e.,

four circular arcs), all of which are planar curve approx-

imation methods of cubic convergence.

Figure 1 shows an example of comparing three dif-

ferent bounding regions for the same curve, where the

BCA bounding region is about twice thicker than spi-

ral fat arcs and four times than bilens. It may sound

that the BCA scheme is a loser among the three meth-

ods under comparison. Nevertheless, thanks to the cu-

bic convergence rate, as long as the BCA construc-

tion is two times more efficient (in computing speed)

than the other two methods, the BCA construction

for two half curves would generate bounding regions

about four times thinner than spiral fat arcs and twice

than bilens. The two-BCA approach makes sense for

a fair comparison as two BCAs are represented with

four arcs, the same number as for the bilens with four

arcs. (Figure 2(b) illustrates the effect of a two-BCA

construction; note that the two smaller BCAs can be

constructed even without using the larger BCA for the

whole curve.) In fact, the fat biarcs are thinner than

BCA. On the other hand, BCA can be subdivided many

times in the cycle where only a single fat biarc subdi-

vision can be made. Thus the speed of construction is

very important in the selection of an optimal bounding

region.

Improving the numerical stability of each construc-

tion step is often more important than reducing the

computing time – instability often leads to unreliable

or even no solution at all. In the limiting case, bound-

ing regions will be generated by tiny circular arcs and

line segments meeting each other almost tangentially. In

this respect, the BCA construction is more stable than

the other two methods under comparison as it is based

on the intersection of lines (see Figure 2(a)). On the

other hand, spiral fat arcs are constructed by (i) com-

puting a tangent line from a curve endpoint (of lower

curvature) to the osculating circle at the other end-

point and (ii) intersecting the tangent line at an end-

point (of higher curvature) against the osculating circle

at the other endpoint. Moreover, the bilens construc-

tion is based on intersecting a certain circle (formed by

all possible joint locations for biarcs interpolating the

given G1 data at both endpoints [25]) with two osculat-

ing circles at both endpoints. In the degenerate case of

approximating an almost circular curve with bilens, one

may end up with intersecting almost identical circles all

the time, which can be highly unstable numerically.

The rest of this paper is organized as follows. In Sec-

tion 2, we briefly review related previous work. Section

3 presents elementary construction methods for three

bounding regions, each applied to a simple example

C(t) = (t, t2), 0 ≤ t ≤ 1, so that the readers may get

some intuitive understanding on the operation counts

and numerical stability involved in each method. Some

experimental results are reported in Section 4, and fi-

nally, Section 5 concludes the paper.

2 Related Work

For freeform curves and surfaces, the convex hulls of

their control polygons and polyhedra have been con-

ventionally used for the design of geometric algorithms.
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Sederberg et al. [24] pointed out the limitation of con-

vex hull as a bounding volume for freeform geometric

models and suggested fat arcs as a bounding region that

is considerably tighter than convex hulls.

It is quite amazing that the important concept of

fat arcs, originally proposed by Sederberg et al. [24] in

1989, has been around in the research area of geometric

modeling and processing, for more than 25 years. This

is even a longer history than some of the early devel-

opments of bounding volume hierarchies (mostly in the

mid 90s) such as sphere tree [9,22,23], BOXTREE [5],

AABB (Axis-Aligned Bounding Box) tree [27], OBB

(Oriented Bounding Box) tree [8], k-DOP (k-Discrete

Oriented Polytope) [16], SSV (Swept Sphere Volume)

tree [18], etc. Nevertheless, it is a relatively recent trend

that fat arcs are extensively used in the acceleration of

geometric algorithms for freeform planar curves [2,3,

10,13].

The concept of bounding circular arcs (BCA) also

has a relatively long history of 20 years. In 1995, Meek

and Walton [21] introduced the concept of BCA as a

handy tool for proving the cubic convergence of G1

biarc approximation of planar B-spline curves. To the

best of our knowledge, this bounding volume has never

been used for the purpose of accelerating geometric al-

gorithms until Lee et al. [19] first used BCA as a tool

for speeding up the offset trimming algorithm for planar

freeform curves. We believe that BCA has a great po-

tential in accelerating many other geometric algorithms

for planar curves, which is the main motivation of the

current work.

Barton and Elber [4] introduced spiral fat arcs (SFA)

for bounding planar freeform curves more tightly than

fat arcs. The inner boundary consists of a segment of

the osculating circle at the endpoint of maximum cur-

vature and a tangent line segment of the circle to the

other endpoint. The line segment interpolates the po-

sition but not the tangent direction of the curve at the

other endpoint. The outer boundary interpolates the

positions and tangent directions at both endpoints. The

construction starts with the tangent line at the end-

point of maximum curvature and the osculating cir-

cle at the other endpoint of minimum curvature, and

intersects them to get the junction point, where the

outer boundary has the position continuity, but no G1-

continuity in general.

The bilens recently developed by Kumosenko [17]

can resolve the G1-discontinuity of the spiral fat arcs

using contact circles at the endpoints and making them

smoothly connected with G1-continuity to the osculat-

ing circles at the other endpoints. The bilens construc-

tion generates the tightest bounding regions than any

other methods based on arcs and biarcs. Nevertheless,

the bilens construction takes more computing time than

others. Thus, we need to make detailed comparisons

among different curve approximation methods, which

is the main goal of this paper.

3 Construction Methods for Bounding Regions

For the construction of three different bounding regions

under comparison, in a preprocessing step, we need to

subdivide a planar freeform curve C(t) = (x(t), y(t)),

0 ≤ t ≤ 1, into x- and y-monotone spiral curve seg-

ments. This can be done by computing all solutions

of x′(t) = 0 (i.e., x-extremes), y′(t) = 0 (y-extremes),

x′(t)y′′(t) − x′′(t)y′(t) = 0 (inflections), and κ′(t) = 0

(curvature extremes), where κ(t) denotes the curvature

of C(t):

κ(t) =
x′(t)y′′(t)− x′′(t)y′(t)

(x′(t)2 + y′(t)2)
3/2

.

Thus, in the rest of this paper, we assume that C(t),

0 ≤ t ≤ 1, is a planar freeform curve which is monotone

with respect to coordinate axes, tangent angle (as being

an inflection-free curve), and curvature.

For the design of efficient geometric algorithms for

planar curves, we usually organize a simple global hier-

archy of bounding boxes. Each monotone spiral curve

segment C(t) is first contained in an axis-aligned bound-

ing box (AABB) that is determined by the two end

points C(0) and C(1). A family of such planar curves

can then be organized hierarchically in an AABB tree

which is constructed in a bottom-up fashion starting

with AABBs, each bounding one monotone spiral curve

C(t). Each leaf node of the AABB tree contains a sin-

gle curve C(t) which is then represented in a separate

bounding volume hierarchy (BVH) using each of the

bounding regions under comparison in this paper.

We review the construction for each bounding re-

gion in an elementary manner. The purpose of this pre-

sentation style is to make the operation counts and the

associated numerical stability clear as they have direct

consequences to the performance of each construction

algorithm. Geometric computations on circles are all

carried out by constructing points, lines and vectors

instead of algebraic manipulations. For the sake of ex-

plicit illustration of concrete examples of points, lines,

vectors, circles, and distances, we employ a simple ex-

ample: C(t) = (t, t2), 0 ≤ t ≤ 1, for explaining the

detailed construction steps of each bounding region.

Note that C(t) is a planar quadratic curve segment

which is monotone along x and y-directions and free of
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inflection and curvature extreme points on the interval

[0, 1]. The curvature function κ(t) is given as follows:

κ(t) =
2

(1 + 4t2)3/2
,

which is monotonically decreasing along the curve. The

osculating circle O of C(t) at the endpoint C(0) = (0, 0)

of maximum curvature has radius 1/κ(0) = 1
2 and cen-

ter (0, 12 ):

x2 +

(
y − 1

2

)2

=
1

4
.

As the curve C(t), 0 ≤ t ≤ 1, has the maximum curva-

ture at C(0), the whole curve segment is contained in

the exterior of the osculating circle:

t2 +

(
t2 − 1

2

)2

= t2 + t4 − t2 +
1

4
= t4 +

1

4
≥ 1

4
,

where the equality holds only at the curve endpoint

C(0). Similarly, the osculating circle Ô at the other end-

point C(1) has radius 1/κ(1) = 5
√
5

2 and center
(
−4, 72

)
,

and completely contains the curve C(t) in its interior.

3.1 Bounding circular arcs

Starting from the osculating circle O = Ō 1
2

with radius
1
2 at C(0), as we increase the radius of the contact circle

Ōr at C(0) from r = 1
2 to r = 1

2+∆r, the enlarged circle

Ō 1
2+∆r

will intersect the curve C(t) transversally at

C(
√

2∆r) (and tangentially at C(0)). When the radius

is increased up to r = 1
2 + ∆r = 1, the contact circle

Ō1 with the following implicit equation:

x2 + (y − 1)2 = 1,

will pass through the other endpoint C(1) and com-

pletely contains the whole curve C(t), 0 ≤ t ≤ 1, in its

interior:

t2 +
(
t2 − 1

)2
= t2 + t4 − 2t2 + 1 = t2(t2 − 1) + 1 ≤ 1,

where the equality holds only at the two curve end-

points C(0) and C(1).

The contact circle Ō1 is called the outer bounding

circle of C(t) (see Figure 3). As the circle is in tan-

gential contact with the curve C(t) at C(0), the circle

center (0, 1) is located on the normal line of C(t) at

C(0) = (0, 0) with an implicit equation: x = 0. More-

over, the center (0, 1) is also located on the bisector line:

x + y = 1, between two curve endpoints C(0) = (0, 0)

and C(1) = (1, 1). This is because the line segment

C(0)C(1) is a chord to the circle Ō1 and thus the cir-

cle center should be located on the bisector line of the

chord.

C(0)

C(1)

Fig. 3 Construction of inner and outer bounding circles.

Similarly, starting with the osculating circle Ô of

C(t) at the other endpoint C(1), we can reduce the ra-

dius of the contact circle while maintaining tangential

contact at C(1) until the circle passes through C(0).

The result is the inner bounding circle of C(t). The

center of the inner bounding circle can be constructed

by intersecting the bisector line: x + y = 1 with the

normal line: x+ 2y = 3 of C(t) at C(1) = (1, 1), which

produces (−1, 2). Consequently, the inner bounding cir-

cle is implicitly defined as

(x+ 1)2 + (y − 2)2 = 5.

Note that the curve C(t) is in the exterior of this circle:

(t+ 1)2 + (t2 − 2)2

= t2 + 2t+ 1 + t4 − 4t2 + 4

= t4 − 3t2 + 2t+ 5 = t(t− 1)2(t+ 2) + 5 ≥ 5,

where the equality holds only at the two endpoints C(0)

and C(1).

The distance between the two centers (−1, 2) and

(0, 1) of bounding circles is
√

2, which means that the

distance from the center (0, 1) (of the outer bounding

circle) to the inner bounding circle is
√

5−
√

2. Conse-

quently, the thickness of the BCA bounding region can

be computed as 1 +
√

2 −
√

5. Though the center and

two endpoints of a circular arc can determine the circu-

lar arc uniquely, we need to compute the circle radius

for the purpose of measuring the upper bound of the

curve approximation error. As to be discussed in the

following two subsections, the circle radius information

is also needed for the other two methods – the radius is

used in the construction of junction points that appear

in the middle of inner and outer boundaries of their

bounding regions.
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Fig. 4 Construction of spiral fat arcs.

c

z
C(1)

C(0) ip

Fig. 5 Construction of the intersection point i.

3.2 Spiral fat arcs

The construction of spiral fat arcs starts with the os-

culating circle O at the endpoint C(0) = (0, 0), where

the curvature is maximum. The osculating circle O has

its center z =
(
0, 12
)

and radius r = 1
2 . We can draw a

tangent line segment L from the other endpoint C(1) to

the osculating circle O (see Figure 4). Let d denote the

distance from C(1) = (1, 1) to the center z =
(
0, 12
)
:

d =

√
12 +

(
1− 1

2

)2
=
√
5
2 , then the tangent line seg-

ment L has its length: l =
√
d2 − r2 = 1.

The inner boundary of the spiral fat arcs consists

of a circular arc A that starts from C(0), moves along

the osculating circle O and ends at a tangential junc-

tion point j, where the line segment L has a tangential

contact with the osculating circle O. As shown in Fig-

ure 4, three points z, j, C(1) form a triangle, with a

right angle at j. When we draw an orthogonal line from

j to the footpoint f on the line segment connecting z

and C(1), the three points j, f , C(1) also form a right

triangle. The footpoint f and the junction point j can

be computed using the similarity relation between the

two triangles ∆(zjC(1)) and ∆(jfC(1)):

f = C(1) +
l2

d2
· (z− C(1))

= (1, 1) +
4

5

(
−1,−1

2

)
=

(
1

5
,

3

5

)
,

j = f +
lr

d2
· (z− C(1))⊥

=

(
1

5
,

3

5

)
+

2

5

(
1

2
,−1

)
=

(
2

5
,

1

5

)
.

where v⊥ denotes the rotation of a vector v by angle

90◦.

The outer boundary of the spiral fat arcs consists

of a tangent line segment T at C(0) = (0, 0), connected

through a transversal intersection point i to a circu-

lar arc Â lying on the osculating circle Ô at the other

endpoint C(1). The osculating circle Ô has its center

c =
(
−4, 72

)
and radius r̂ = 5

√
5

2 . As shown in Figure 5,

the construction of the intersection point i proceeds as

follows: (i) the center c of Ô is first projected to a point

p on the tangent line T , and (ii) the intersection point

i is reached by moving from p along the tangent direc-

tion C ′(0) = (1, 0) by a distance
√
r̂2 − d̂2, where d̂ is

the distance from c to p.

The projection to p can be computed by moving

from c along a displacement that is obtained by remov-

ing the tangential component along C ′(0) = (1, 0) from

the difference vector C(0)− c =
(
4,− 7

2

)
:

p = c + (C(0)− c)− 〈C(0)− c, C ′(0)〉
〈C ′(0), C ′(0)〉

C ′(0)

= (0, 0)− (4, 0) = (−4, 0).

Now, with the distance d̂ = 7
2 and the radius r̂ = 5

√
5

2 ,

we can compute the intersection point i by moving from

p along the direction C ′(0) = (1, 0) by the distance√
r̂2 − d̂2 =

√
19:

i = p +

√
r̂2 − d̂2
‖C ′(0)‖

· C ′(0)

= (−4, 0) +
√

19(1, 0) =
(√

19− 4, 0
)
.

It is a bit tricky to measure the thickness of an SFA

region. In the example of Figure 4, the thickness is given

as the distance from the intersection point i to the inner

osculating circle O. But, this is not always the case. In

some other examples, the thickness may also be realized

as the maximum deviation between the inner tangent

line L and the outer circular arc on the osculating circle

Ô. Nevertheless, the thickness will never occur between

the two osculating circular arcs, which greatly simplifies

the case analysis.

3.3 Bilens

There is one parameter family of biarcs that interpo-

late the G1-conditions (i.e., positions and tangent direc-

tions) of C(t) at both endpoints C(0) and C(1). Among
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all these biarcs, there are two special ones in the sense

that they bound the monotone spiral curve C(t) most

tightly from the inner and outer sides of the curve C(t).

We first consider the tightest biarc that bounds C(t)

from the inner side. Again we start with the osculating

circle O at the endpoint C(0). A circular arc A of O

that starts from C(0) should be connected smoothly at

a junction point j to another arc Ā on a circle Ō that

tangentially touches the curve C(t) at the other end-

point C(1). (Note that the contact circle Ō is different

from the osculating circle Ô of C(t) at C(1).) We need

to determine the locations of the junction point j and

the center z̄ of the tangent circle Ō.

Note that the center z̄ is located on the normal line:

x + 2y = 3 at C(1) = (1, 1) as we have C ′(1) = (1, 2).

The osculating circle O is contained in a larger circle

Ō with a tangential contact at the junction point j,

where their arcs A and Ā are smoothly connected with

G1-continuity. This means that the distance between

z̄ and j is the same as the radius of the contact circle

Ō. But the locations of z̄ and j are yet unknown. We

describe a simple geometric algorithm for computing

them (also see Figure 6).

The radius of Ō is the same as the distance between

z̄ and C(1), which is also the distance between z̄ and

j. The osculating circle O (contained inside Ō with a

tangential contact at j) has its center z =
(
0, 12
)

lo-

cated on the line segment connecting z̄ and j (as the

two circles have a tangential contact at j). Though the

location of j is unknown, the distance between z and

j is given as the radius 1
2 of the osculating circle O.

Now, using this distance information, we construct a

point z′ =
(

1−
√
5
5 , 1 +

√
5

10

)
on the line segment con-

necting z̄ and C(1) so that the distance between z′ and

C(1) is the same as the radius 1
2 of the osculating circle

O. (This can be done by moving from C(1) towards z̄

by the radius 1
2 .) Then the center z̄ of the contact cir-

cle Ō is located on the bisector line between z =
(
0, 12
)

and the new point z′ =
(

1−
√
5
5 , 1 +

√
5

10

)
. The location

can be computed as z̄ = (− 1+
√
5

2 , 7+
√
5

4 ) by intersect-

ing the bisector line: ax+ by = c, with the normal line:

x+ 2y = 3, at C(1) = (1, 1).

The outer bounding biarc can be constructed in a

similar way by computing the center c̄ of a tangent

circle at C(0) that touches the osculating circle Ô at

C(1) from inside. The osculating circle Ô has radius
5
√
5

2 and center c =
(
−4, 72

)
. Along the normal line:

x = 0, at C(0), we construct a new point c′ =
(

0, 5
√
5

2

)
which is located at distance 5

√
5

2 (= the radius of Ô)

from the endpoint C(0). By intersecting the normal line

x = 0 with the bisector line between c and c′, we can

z̄

z′

z
j

C(0)

C(1)

(a)

c′

c

c̄
z

C(0)

C(1)

j

(b)

Fig. 6 Construction of bilens: (a) inner bounding biarc, and
(b) outer bounding biarc.

compute the location of c̄, which is the center of the

tangent circle at C(0). The junction point is located on

the line connecting c and c̄.

The thickness for a bilens bounding region is al-

ways realized as the maximum deviation between the

two contact circular arcs other than those from the two

osculating circles [17]. Consequently, the thickness com-

putation can be done in a way similar to the BCA case.

4 Comparison of Relative Performance

4.1 Geometric complexity

When we subdivide a curve C(t) into two pieces, in all

three methods, the point of subdivision is a common

new endpoint to both the left and right subcurves. The

BCA method thus computes one curve point and four
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centers of bounding circles for both subcurves. On the

other hand, the bilens method constructs five points

and eight circle centers, and the spiral fat arcs method

generates five points, four circle centers, and four line

segments. In geometric complexity, the BCA approach

needs to store four points and four lines less than the

SFA and four points and four circles less than the bilens.

4.2 Construction timing

Each time a monotone spiral curve C(t) = (x(t), y(t))

is subdivided at the midpoint C( 1
2 ), we need to eval-

uate the midpoint location C( 1
2 ) =

(
x( 1

2 ), y( 1
2 )
)
, and

the normal line at the midpoint by computing C ′( 1
2 ) =(

x′( 1
2 ), y′( 1

2 )
)

and representing the normal line ax +

by + c = 0 using a = y′( 1
2 ), b = −x′( 1

2 ), and c =

x′( 1
2 )y( 1

2 )−x( 1
2 )y′( 1

2 ). This part is common for all three

different methods. For an efficient computation of C(ti)

and C ′(ti), at all recursive subdivision parameters ti =

i/2H , for i = 0, · · · , 2H , where H is the maximum level

of subdivision, we use precomputed basis function val-

ues Bdk(ti), for k = 0, · · · , d. Thus, for a cubic Bézier

curve, C(ti) and C ′(ti) can be computed using four and

three scalar-vector multiplications, respectively. This

means that one normal line can be constructed using

16 multiplications and some additional arithmetic op-

erations.

For the BCA construction, the normal line is first

intersected with the bisector line B0 between C(0) and

C( 1
2 ), and then with the bisector line B1 between C( 1

2 )

and C(1). Each bisector line Bj is also intersected with

the corresponding normal line at C(j), for j = 0, 1.

In summary, we can compute the four centers of four

bounding circles for the two subdivided curve segments,

by evaluating two bisector lines and four line-line inter-

sections. The thickness of each BCA bounding region

can be determined by computing the radii of inner and

outer bounding circles and the distance between their

centers.

On the other hand, each subdivision of the bilens

method computes one curvature, one vector normaliza-

tion (for computing the unit vector C ′( 1
2 )⊥/‖C ′( 1

2 )‖),
and one scalar-vector multiplication for constructing

the center of the osculating circle at the curve subdi-

vision point. After that, for the construction of four

contact circles (such as Ō), we need to compute four

auxiliary points (such as z′, each using a scalar-vector

multiplication), four bisector lines, four line-line inter-

sections, and four radii of contact circles (each radius as

the distance between the center and a point on the cir-

cle). In addition to these, the four junction points (such

as j) are generated by computing (i) four unit direction

vectors (each from the center of a contact circle toward

the junction point), and (ii) the four junction points

(each by adding to the center the result of a scalar-

vector multiplication). Moreover, two thickness compu-

tations are also needed for both the left and right bilens

bounding regions. Now, it is clear that the BCA subdi-

vision is more efficient than the bilens counterpart.

The SFA method also starts each subdivision by

constructing a new osculating circle. Two inner junction

points are then computed using two squared distances

(such as d2), two distances (such as l using square roots),

and four scalar-vector multiplications. Two outer junc-

tion points are also constructed using four vector nor-

malizations, two inner products, two square roots, and

four scalar-vector multiplications. Moreover, the thick-

ness of two new SFA regions should be decided, which

requires two point-to-circle projections and two point-

to-line projections.

4.3 Numerical stability

The BCA construction becomes unstable when the cur-

vature drops to zero, namely, when the curve becomes

flat to be almost like a line segment. In this case, the

other two methods also have serious problem in sta-

bility – it is difficult to deal with osculating circles of

almost infinite radius. The BCA approach may handle

the almost linear case by replacing the inner bound-

ing circle with the line connecting two endpoints and

the outer bounding circle with the circle containing all

control points of the curve C(t).

In the construction of bilens bounding regions, a

degenerate case is when the given curve C(t) has a con-

stant curvature, namely, when the curve is a circular

arc. In the almost-circular case, the two points z and z′

get closer to an almost identical location, which makes

the construction of their bisector line unstable. This

case will eventually occur to all curve locations as we

keep subdividing the given curve C(t) up to a certain

level. When the difference κ(1)− κ(0) between the two

extreme curvatures becomes smaller than a given toler-

ance ε, we switch to the BCA approach, which produces

more stable results.

The SFA method is quite stable even in the almost

circular case as the construction is mainly based on

moving points to well-defined directions. Nevertheless,

there will be tiny line segments generated as a result of

the degenerate SFA construction. These tiny pieces are

still a potential source of system failure and an obvious

source of degradation when the SFA tree is actually

used for some specific geometric computations. Thus,

we also need to switch to the BCA approach in the

degenerate case.
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5 Experimental Results

We have implemented the construction methods for three

different bounding regions in C++ on an Intel Core

i7-4770 3.4GHz PC with a 16GB main memory. The

comparison was made on eight planar B-spline curves

as shown in Figure 7. These are the same as the test

examples of Kim et al. [13], which are uniform cubic

B-spline curves defined in the normalized window of

[−1, 1]× [−1, 1]. In a preprocessing step, we have subdi-

vided each of them into cubic Bézier curves and further

into x- and y-monotone, inflection-free, and curvature

monotone spiral curve segments. The numbers of cubic

Bézier curves and monotone spiral pieces are reported

in the first two rows of Table 1. (Note that the numbers

are slightly different from those of Kim et al. [13], where

spiral curves are not segmented into x- and y-monotone

pieces.)

In this experiment, we have considered the construc-

tion of BVH trees based on three different bounding

regions: BCA, Bilens, and SFA. The leaf nodes of each

BVH tree approximate the original input curves within

Hausdorff distance error bounds (ε = 10−5, 10−8 and

10−10). The comparison results (computing time mea-

sured in ms and the number of circular arcs generated)

are reported in Table 1. The computing time reported

here includes none of the preprocessing time for the

monotone spiral segmentation.

The construction of a BVH tree is the result of

building various different components of the data struc-

ture, where the bounding regions form the major part,

but not all. The construction of all other common com-

ponents contributes almost equally to all three different
methods. Thus, the timing results reported in Table 1

can be interpreted as an amortized performance of the

bounding region generation together with all other con-

struction components. The high-precision cases (with

approximation errors ε = 10−8 and 10−10) report more

reliable relative timing performance among the three

different methods, where the BCA is about 1.5 times

faster than the Bilens, and the Bilens is about twice

faster than the SFA.

The number of circular arcs generated by each con-

struction method is a good indicator to the total num-

ber of bounding regions generated for the BVH tree,

but not to the amount of memory space for data stor-

age. The number of BCA or SFA bounding regions is

exactly the half of the number of circular arcs, whereas

the number of bilens bounding regions is exactly one

quarter of the number of circular arcs. The amount of

memory space is a bit more complicated to estimate.

The node size of each BVH tree is dependent on vari-

ous optimization criteria for a specific algorithm. Nev-

ertheless, a rough estimation of memory space can be

made by multiplying a certain weighting factor to the

number of circular arcs in each method.

6 Conclusions

We have examined and showed that the BCA bounding

region is an efficient and fairly stable way of generat-

ing a hierarchy of bounding regions for planar freeform

curves. To demonstrate the effectiveness of the BCA

tree, we have made comparison among three different

curve approximation methods (BCA, Bilens, SFA) with

cubic convergence to planar curves. The performance

improvement of BCA over the other two recent meth-

ods was reported in terms of geometric data complex-

ity, computational efficiency, and numerical stability, in

each of which the BCA tree has relative advantages.
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