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This paper presents an algorithm that approximates
(using polygons) the boundary of a general sweep
for an arbitrary 2D curved object (possibly with
holes). Based on set-theoretic properties of the general
sweep, our algorithm generates the polygonal sweep
boundary incrementally, where envelope approxima-
tions and union operations are repeatedly applied to
intermediate boundaries of the sweep and consecutive
instances of the moving object at sampled locations
of the motion. For approximation, each instance of
the object is polygonized along the motion, where the
object may experience dynamic shape transformation
with topological changes such as creating and/or de-
stroying internal holes. The incremental nature of the
proposed algorithm makes the boundary construction
of a general sweep useful for applications in inter-
active shape design, collision detection, and mechan-
ical part design. Our algorithm generates a precise
approximation of the boundary of a general sweep
with real-time performance in computing unsweeps,
Minkowski sums and differences, and constant radius
offsets. Some experimental results are also given in
this paper.
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The sweepoperation is useful for the generation of
a complex object by sweeping a simple object along
a trajectory curve. The simplest form of sweep is
linear extrusionwhere a 2D object moves along its
normal direction to generate a volume. Another sim-
ple sweep is therotational sweepwhere a 2D object
rotates about a fixed axis. A rotational sweep gen-
erates a volume bounded by a surface of revolution.
A general sweepis the most general form of sweep
where the generator (i.e., the moving object) changes
its size, orientation, and shape [9]. Figure 1 shows
an example of a general sweep where a 2D object
moves along a path in the plane while changing its
size and orientation. A simple form of the general
sweep isgeneralized cylinder, which has been ac-
tively used for applications in computer vision [2].
Early generalized cylinders assume that a 2D cross-
sectional curve moves in space while its containing
plane is kept orthogonal to the tangent direction of
the trajectory curve. Recently, some authors allow
generalized cylinders defined by more general spa-
tial motions [7]. General sweeps of solids are use-
ful in modeling the swept region of a numerically
controlled (NC) machining tool or that of a robot
following a path. However, it is non-trivial to con-
struct the boundary of a general sweep. Two of the
main reasons for this difficulty can be summarized as
follows: (a) there may be complex self-intersections
in the sweep boundary; and (b) the sweep surfaces
are usually algebraic surfaces of high degree that are
difficult to deal with (efficiently and robustly) in con-
temporary CAD systems. In this paper, based on a re-
peated application of boolean operations on simple
polygons, we suggest an efficient and robust algo-
rithm that precisely approximates (using polygons)
the boundary of a general sweep for an arbitrary 2D
curved moving object (possibly with holes).
The general sweep of a 3D solid has attracted con-
siderable research attention in various fields of en-
gineering. Wang and Wang [25] generate a scan-
rendered image of a 3D swept volume. Weld and
Leu [26] represent the sweep boundary of a poly-
hedron with ruled and developable surface patches.
Based on the B-spline motion of polyhedra, Jüttler
and Wagner [14] represent these boundary surfaces
as rational B-spline surfaces. Martin and Stephen-
son [19] suggest envelope theory as a theoretical
basis for computing swept volumes. Blackmore et
al. [5, 6] present a sweep-envelope differential equa-
tion that characterizes the boundary of a swept vol-
ume. Abdel-Malek and Yeh [1] use rank-deficiency
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Fig. 1a–c.A general sweep and its boundary curve:a an
object, changing its shape dynamically, moves along
a trajectory curve;b sampled instances of the moving ob-
ject: c the boundary curve of a general sweep

conditions to determine the interior and exterior
of a swept volume. Recently, Pottmann [21] inves-
tigates various important geometric properties of
general offset surfaces. Ilies and Shapiro [13] sug-
gest the unsweep as an effective tool for designing
mechanical parts that are collision-free from their
surrounding packages. In these previous approaches,
the sweep boundary is computed as a union of
envelope surface patches. Since the envelope sur-
faces usually have a very high degree and quite
often they have complex shapes (possibly with self-
intersections), it is nontrivial to deal with these
surfaces in constructing the boundary of a swept

volume. Thus previous algorithms restrict moving
objects to those having simple shapes and motions
only.
The general sweep of a 2D curved object provides
a handy design tool for modeling complex shapes
such as oriental characters. Ahn et al. [3] develop an
algorithm that approximates the boundary of a 2D
general sweep for a planar curved object. Their al-
gorithm is efficient and robust; however, redundant
edges are eliminated in the last step of the sweep
construction, which is inconvenient for an interactive
shape design. Figure 2 illustrates the major steps of
Ahn et al. [3] for constructing the boundary of a gen-
eral sweep. Figure 2a shows polygons approximat-
ing the moving object at sampled locations; Fig. 2b
shows the sweeps of polygon edges; Fig. 2c shows
edges remaining after the elimination of some re-
dundant edges; Fig. 2d shows the intersection points
among these remaining edges; Fig. 2e is an interme-
diate result of eliminating redundant edges based on
local conditions; Fig. 2f is the final result of eliminat-
ing all redundant edges based on global conditions;
and finally Fig. 2g shows the result of fitting cubic
Bézier curve segments to the polygonal approxima-
tion of the sweep boundary.
Kim et al. [15] represent the bristles of a brush stroke
using variable-radius offset curves. The variable-
radius offset is closely related to the general sweep
where a line segment (of variable length) moves
along a trajectory curve. Parida and Mudur [20]
sweep a line segment along a 2D spine curve and
design the outlines of Indian fonts and calligraphy.
Blackmore et al. [5] propose sweep differential equa-
tions and a boundary-flow method for computing the
boundary of a 2D general sweep. They consider sim-
ple polygons moving under linear deformation.
In this paper, we present an incremental algorithm
that computes the boundary of a general sweep for
an arbitrary 2D curved moving object (with holes).
Based on set-theoretic properties of the general
sweep, our algorithm generates the sweep bound-
ary incrementally as the motion proceeds; that is, we
repeatedly apply a union operation to an intermedi-
ate sweep boundary and a neighboring instance of
the object at each sampled location of the motion
trajectory. For approximation, we polygonize each
instance of the moving object with dynamic shape
change. Our algorithm is based on boolean opera-
tions on simple polygons, which can be implemented
robustly using line/line intersections and inclusion
tests for line segments with respect to simple poly-
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Fig. 2a–g.Major construction steps – Ahn et al. [3]

gons [11, 18, 22, 27]. The algorithms of Ahn et al. [3]
and Blackmore et al. [5] generate complex polygons
in intermediate steps; thus it is nontrivial to elimi-
nate redundant edges robustly. (In particular, when
the envelope curves have tangential and/or multiple
intersections clustered together, a correct arrange-
ment of envelope curves is very difficult to compute
robustly.) It is clear that our approach is simple
and leads to a robust implementation; nevertheless,
previous work has not taken this approach due to
efficiency considerations. In this paper, we propose
various computational shortcuts that greatly improve
the efficiency of our algorithm. The implemented
result gives real-time performance. Moreover, the
incremental nature of our algorithm makes the gen-
eral sweep very useful for applications in interactive
shape design, collision detection, and mechanical
part design.
Our algorithm solves some important problems in
geometric and solid modeling; e.g., we compute

unsweeps, Minkowski sums/differences, and con-
stant radius offsets using the general sweep. When
unions are replaced by intersections, we can con-
struct a dual of a sweep, called an unsweep. Ilies
and Shapiro [13] propose the unsweep as an effec-
tive computational tool for detecting the collision of
a moving mechanical part with its surrounding pack-
age. Figure 3 illustrates the design steps that remove
colliding parts from the original shape and redesign
a collision-free final shape. After designing an ini-
tial object and its surrounding package as shown in
Fig. 3a, we can test the object to see if it collides with
its surrounding package during the motion in Fig. 3b;
the swept area can be computed and tested to see if
there is an overlap with the package (see Fig. 3c).
However, the sweep test is not an effective way of
redesigning a collision-free object. Instead of sweep-
ing an object, the package can be unswept as shown
in Fig. 3d and e. After that, the unswept area is in-
tersected with the initial object so as to construct
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Fig. 3a–i. Application of the unsweep operation in the design of mechanical parts:a an initial shapeO1 and its sur-
rounding packageP; b rotational sweep ofO1 about a fixed axis;c the swept areaS1 overlaps the package;d unsweep
of the package;e unswept areaU; f collision-free parts:O1∩U; g a collision-free new shape;h the sweep of the new
shape;i the package contains a new sweep areaS2. (See Ilies and Shapiro [13].)
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a collision-free object (see Fig. 3f). To connect the
two separate components of Fig. 3f, new parts are
added within the unswept area of Fig. 3e. The fi-
nal shape shown in Fig. 3g is then guaranteed to be
collision-free with its package (see Fig. 3h and i).
Minkowski sums and differences (or decomposition)
are morphological operations for shape transforma-
tion such as dilation and erosion [10, 24]. They are
important in computing collision free paths/areas in
robot motion planning and swept areas/volumes in
mechanical part design [4, 10, 12, 13, 17, 24]. The
Minkowski sum of two planar objects is closely re-
lated to theconvolution curveof the boundary curves
of two input objects. (Given two planar curves,
their convolution curve is defined as the set of all
vector sums generated by all pairs of curve points
that have the same curve normal direction [4].) The
convolution curve is a superset of the boundary of
a Minkowski sum [4]. Lee et al. [16] compute the
boundary of a Minkowski sum based on convolu-
tion curve approximation, where redundant convo-
lution curves are later eliminated and the remaining
curves generate the boundary of a Minkowski sum.
(An illustrative example of Lee et al. [16] is given
in Fig. 24 of Sect. 5.) It is also possible to compute
the boundary of a Minkowski difference by reversing
the orientation of an operand curve in the convolu-
tion operation.
The boundaries of the Minkowski sum and differ-
ence are closely related to the translational sweep
and unsweep of a moving object with a fixed shape
and orientation. Our general sweep algorithm can be
applied to the computation of the Minkowski sum
and difference. We present algorithms for approxi-
mating the Minkowski operations. When construct-
ing the boundaries of Minkowski sums and differ-
ences, our method does not introduce any redundan-
cies in the intermediate steps of computation (see
Sect. 5).
Constant radius offset, an important special case of
the translational sweep, has been extensively used in
shape design and NC tool path generation [23]. In
general, when a circular disk moves along a given
path, its sweep generates two offset curves of the
path, one on each side of the path.
The rest of this paper is organized as follows. Sec-
tion 2 presents some preliminary material. In Sect. 3,
we show how to approximate the sweep-envelope
boundary of a moving object between two consec-
utive locations. In Sect. 4, we construct the bound-
ary of a general sweep using a sequence of unions

coupled with envelope approximation. Section 5
presents algorithms that solve some problems re-
lated to the general sweep: unsweeps, Minkowski
sums/differences, and constant radius offsets. Fi-
nally, Sect. 6 concludes this paper.

2 Preliminaries

In this section, we introduce basic notations and ter-
minology that are used in the rest of the paper. A
2D objectis defined as a closed set that includes its
boundary as well as interior points. Let∂A denote
the boundary of an objectA. We allow any num-
ber of holes in the objectA, thus∂A may consist
of many components: an exterior boundary and the
boundaries of holes. For notational convenience, the
exterior boundary and thei th hole boundary are rep-
resented as∂0A and∂i A, respectively:

∂A= {∂0A}∪ {∂i A}, 1≤ i ≤ the number of holes.

For the sake of simplicity, we exclude the follow-
ing types of moving objects from consideration: (1)
points, (2) open/closed curves, and (3) open sets.
That is, we consider regular objects only.
Special types of regular sets includenull objects
and infinite objects: the null objectOφ represents
an empty set of points; and an infinite objectO∞
contains points at infinity. These two special types
of regular objects are used for defining regularized
boolean operations. When regular polygonal objects
have boundary representation, the null object has no
vertex or edge, and an infinite object has a system-
defined special polygon as its exterior boundary.
Given two objectsA and B, boolean set opera-
tions are applied to both the interior and boundary
points of A andB. In many conventional CAD sys-
tems, simple objects are usually represented by their
boundaries [8]. To extract the boundary from the re-
sult of boolean set operations, we defineboolean
boundary operations:

(∂A)c≡ ∂(Ac) (1)

A
∂∪ B≡ ∂(A∪ B)

A
∂∩ B≡ ∂(A∩ B)

A
∂− B≡ ∂(A− B),

whereAc is the complement ofA, and(∂·)c, ∪∂, ∩∂ ,
and−∂ denote the boolean boundary operations. An
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important procedure for implementing each boolean
boundary operation is the elimination of redundant
boundary segments (of the input objects) that belong
to the interior of the resulting object. Boolean bound-
ary operations need to be regularized to ensure that
the results are also regular. Moreover, we need to
deal with some special cases; e.g., (a) the intersection
of two disjoint objectsA and B must be a null ob-
ject: A∩ B= Oφ; (b) the complement of a bounded
nonempty objectA with holes is a set of regular ob-
jects, where one component must be an infinite ob-
ject; and (c) the difference of an infinite objectO∞
and a bounded regular objectA is another infinite ob-
ject,O∞− A= O∞.
The result of a set operation may result in irregular
objects. For example, when two objects have contact
along their boundaries, their intersection contains
some disconnected curves. In this case, each curve
must be reduced to a null object by regularization.
Compared with sweep operations, these boolean op-
erations are relatively easy to implement in a robust
way [11, 18, 22, 27]. Based on the robustness of these
boolean operations, we propose a robust algorithm
that constructs the boundary of a general sweep.
Regardless of representation schemes for input and
output objects, boolean operations are useful for con-
structing a new object from existing ones [9]. Selec-
tively combining some operations, a piece of an ob-
ject can be added to or subtracted from other objects,
and a hole can be created or destroyed. Some well-
defined sequences of boolean operations generate
even more complex and interesting shapes. The gen-
eral sweep is one of these operations based on union
operations sequentially applied to each instance of
a moving object.

3 Envelope approximation

In this section, we consider how to approximate
the sweep-envelope boundary of a moving object.
For a simple approximation of the swept volume,
a sequence of unions may be applied to densely sam-
pled instances of a moving object along its motion
trajectory. This approach generates a rough sweep
boundary. As shown in Figs. 4b and 5b, such a sweep
boundary has many jagged edges and redundant
holes depending on the sampling density. To gen-
erate a smooth boundary curve, a large number of
unions are required, which would make the algo-
rithm inefficient. Moreover, when a moving object is

a

b

c

Fig. 4a–c.Sweeping a convex object:a the moving object
is a pentagon;b a sweep boundary construction without
envelope approximation;c a sweep boundary construc-
tion with envelope approximation
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Fig. 5a–c.Sweeping a star-shaped object:a the moving
object is a 30-star;b a sweep boundary construction with-
out envelope approximation;c a sweep boundary con-
struction with envelope approximation

nonconvex or star-shaped, a jagged sweep boundary
is unavoidable (see Fig. 5b). To improve the pre-
cision of approximation and the efficiency of algo-
rithm, we propose an envelope-based technique that
approximates the sweep between two consecutive
instances of a moving object by polygons. Our enve-
lope approximation is based on line sweeps. That is,
after polygonizing a moving object, we approximate
its envelope boundary using the union of the sweeps
of polygon edges. This simple approach provides an
efficient construction of a smoother boundary of the
general sweep. The boundaries of Figs. 4c and 5c
are constructed with envelope approximation. Note
that they are much less jagged than those of Figs. 4b
and 5b.
Given an objectA, its boundary∂A can be repre-
sented as a union of closed boundary curves∂0A=
CA,0(u) and∂i A= CA,i (u) (each parameterized by
u, for 0≤ u≤ 1):

∂A= {CA,0(u)}∪ {CA,i (u)}, (2)

wherei enumerates the number of holes ofA. Note
that the boundary of an object is oriented in such
a way that the object interior is to the left of the
advancing direction of the boundary curve; i.e., the
exterior boundary is oriented counterclockwise, and
each hole boundary is oriented clockwise. By sam-
pling points{pk} along the boundary curve∂A, the
object A is approximated by a polygonAp. When
the boundary curve is polygonized, it is represented
by a list of oriented line segments{lk}, wherelk =
(pk, pk+1).
Let Aj and Aj+1 be two consecutive instances of
a moving objectA, and l j,k = (pj,k, pj,k+1) and
l j+1,k= (pj+1,k, pj+1,k+1) be the correspondingkth
line segments ofAp

j andAp
j+1, respectively. For ap-

proximation, we define an area that is swept froml j,k
to l j+1,k (see the first and third columns of Fig. 6): (a)
if l j,k andl j+1,k do not intersect, they define a trian-
gle or a quadrangle (which is not necessarily convex)
(see Fig. 6a–d); (b) if they intersect, they define
one or two triangles (see Fig. 6e–g); and (c) if they
are collinear, their sweep generates a line segment
that has no contribution to the envelope computation
since a line segment is not a regular object. Con-
sequently, each line sweep is approximated by one
or two simple polygons. Figure 6 shows some ex-
amples of line sweeps, where intermediate lines are
generated by linear interpolation (as shown in the
second column). The case of Fig. 6d needs some ex-
planation. Note that a linear interpolation generates
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a

b

c

d

e

f

g

Fig. 6a–g.A line sweep is approximated by:a a quadrangle;b a triangle;c a quadrangle;d a quadrangle;e two triangles;
f a triangle;g a triangle
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a b

1 2 3 4 5 6

c

e

d

Fig. 7a–e.Line sweeps wherel j,k andl j+1,k do not intersect:a Ap
j and Ap

j+1; b Ap
j ∪ Ap

j+1; c eachL j,k is a quadrangle;d
the boundary of a translational sweep based on envelope approximation;e sequential steps in envelope approximation (gray
area is thek-th line sweepL j,k)

short line segments in the middle of the interpola-
tion. Thus, when the object does not shrink an edge
quite dramatically, the linear interpolation does not
approximate the motion of a line segment appro-
priately. Thus we approximate the line sweep as
a rectangle rather than two triangles.
Ahn et al. [3] approximate each line sweep by
the convex hull of two line segments, whereas our
method allows nonconvex line sweeps. Figure 7c
shows an example where each line sweep is a quad-
rangle; thus there is no difference between the two
methods in this case. Figure 8c shows an example
where each line sweep is composed of two triangles.

Note that, in the case of Fig. 8, our approach of using
nonconvex line sweeps produces a better approxima-
tion than the convex-hull-based approach of Ahn et
al. [3].
Let L j,k denote a line sweep froml j,k to l j+1,k, and
letL j denote the union of all these line sweeps:

L j =
⋃

1≤ j≤n

L j,k, (3)

wheren is the number of line segments in the poly-
gon Ap. We define anapproximate sweep operation
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a b

1 2 3 4 5 6

c

e

d

Fig. 8a–e.Line sweeps wherel j,k andl j+1,k intersect:a Ap
j andAp

j+1; b Ap
j ∪ Ap

j+1; c eachL j,k is a pair of triangles;d the
boundary of a rotational sweep based on envelope approximation;e sequential steps in envelope approximation (gray areais
thek-th line sweepL j,k)

∨ on Ap
j andAp

j+1 as

Ap
j ∨ Ap

j+1= Ap
j ∪ Ap

j+1∪L j . (4)

Let ∨∂ denote the boundary of the∨ operation.
Figures 9 and 10 illustrate how our approxima-
tion method works. Note that, in these examples,
Ap

j ∪L j is the same asAp
j ∨ Ap

j+1 (i.e., there is no
need to makeAp

j+1 a union.)
When a moving object is convex, as is the case of
Fig. 10, many line sweeps make no contribution to
the final sweep envelope. For example, (a)L j,1 is re-

dundant since it is included in the interior ofAp
j+1,

and (b) L j,8 is redundant sinceL j,9 and L j,10 are
closer to the final envelope boundary. After eliminat-
ing all redundant line sweeps, Fig. 11 shows that two
line sweeps{L j,10, L j,22} are sufficient for generat-
ing the same result as that of Fig. 10.
Consider a convex moving objectA under a trans-
lation. In Fig. 12a, the first instanceAj translates to
the second instanceAj+1 by a displacementv. The
swept area is the same as the convex hull ofAj and
Aj+1 (see Fig. 12b). Its boundary is the union of en-
velope lineseu andel and some boundary curves of
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Fig. 9a–e. An approximate sweep operation on two consecutive instances of a 12-star-shaped concave moving object:
a Ap

j and Ap
j+1; b Ap

j ∪ Ap
j+1; c {L j,k}; d Ap

j ∨ Ap
j+1; e sequential steps in computing

(
Ap

j ∪ Ap
j+1

)∪ (⋃k L j,k
)
, where

1≤ k≤ 24. Gray areain each subfigure of indexk represents thek-th line sweepL j,k
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Fig. 10a–e.An approximate sweep operation on two consecutive instances of a convex moving object:a Ap
j and Ap

j+1; b
Ap

j ∪ Ap
j+1; c {L j,k}; d Ap

j ∨ Ap
j+1; esequential steps in computing

(
Ap

j ∪ Ap
j+1

)∪ (⋃k L j,k
)
, where 1≤ k≤ 24.Gray area

in each subfigure of indexk represents thek-th line sweepL j,k
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a b

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

c

e

d

Fig. 11a–e.Fast approximation of sweep-envelopes:a Ap
j and Ap

j+1; b Ap
j ∪ Ap

j+1; c {L j,k∗}; d Ap
j ∨ Ap

j+1; e sequential
steps in computing

(
Ap

j ∪ Ap
j+1

)∪ (⋃k∗ L j,k∗
)
, wherek∗ ∈ {10,22}. Gray areain each subfigure of indexk represents the

k-th line sweepL j,k
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a

v

el

eu

b

c d

Fig. 12a–d.A translational sweep of a convex moving object along a fixed directionv: a two instances of the moving object
and envelope lineseu andel ; b the exact boundary of a sweep;c line sweeps;d an approximate boundary of the sweep

Aj and Aj+1. Note thateu andel are line segments
parallel tov. Moreover,eu andel are defined by the
extreme points ofAj and Aj+1 in the directions or-
thogonal to that ofv. In Fig. 12c, we approximate
the envelope edgesej,k, applying this technique to
polygonal approximationsAp

j andAp
j+1.

When an object moves with rotation and shape
change, the selection of appropriate envelope edges
ej,k becomes more difficult (see Figs. 13 and 14). In
Fig. 13, we form a union of all line sweeps to gen-
erate the swept area, whereas Fig. 14 shows that two
line sweepsL j,10 andL j,22 are sufficient for gener-
ating the same result as that of Fig. 13. Thus, we do
not need to consider the setL j of all line sweeps.
A reduced setL∗j of line sweeps is sufficient for the
construction of the sweep envelope:

L∗j =
⋃
k∗

L j,k∗ ,

Ap
j ∨ Ap

j+1= Ap
j ∪ Ap

j+1∪L∗j ,

where thek∗th line sweeps are those that may po-
tentially contribute to the sweep envelope. In other
words,L∗j does not include redundant line sweeps

that can easily be excluded, considering the local
configuration of adjacent line sweeps.
In Figs. 13 and 15, most line sweeps belong to the
case of Fig. 6a. This is also the case in most practical
examples (though the pure rotation of Fig. 8 is an ex-
ception). Assume that three consecutive line sweeps
L j,k−1, L j,k, andL j,k+1 are of the type of Fig. 6a.
Then L j,k−1 and L j,k share an edge(pj,k, pj+1,k).
Moreover, this edge(pj,k, pj+1,k) is redundant if
each side of(pj,k, pj+1,k) belongs to eitherL j,k−1 or
L j,k. (That is to say, the edge(pj,k, pj+1,k) is redun-
dant if it is oriented oppositely inL j,k−1 and L j,k;
see Ahn et al. [3].) A similar argument applies to the
line sweepsL j,k and L j,k+1 and their shared edge
(pj,k+1, pj+1,k+1). This technique applies to non-
convex as well as convex moving objects. The detec-
tion of other redundancies is more complex, and we
skip the details here.
Using a much reduced set improves the efficiency
of our algorithm significantly. Given two convex
objects with the same number of vertices, the set
L∗j usually contains two line sweeps. As shown in
Figs. 15 and 16, there may be more than two line
sweeps contributing to the sweep envelope, in partic-
ular, when the sampling is taken relatively sparsely
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Fig. 13a–e.An approximate sweep operation on two consecutive instances of a convex moving object with rotation and shape
change:a Ap

j and Ap
j+1 intersect at two points;b Ap

j ∪ Ap
j+1; c {L j,k}; d Ap

j ∨ Ap
j+1; e sequential steps in computing(

Ap
j ∪ Ap

j+1

)∪ (⋃k L j,k
)
, where 1≤ k≤ 24.Gray areain each subfigure of indexk represents thek-th line sweepL j,k
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Fig. 14a–e.Fast approximation of sweep-envelopes:a Ap
j andAp

j+1; b Ap
j ∪ Ap

j+1; c {L j,k∗}; d Ap
j ∨ Ap

j+1; esequential steps
in computing

(
Ap

j ∪ Ap
j+1

)∪ (⋃k∗ L j,k∗
)
, wherek∗ ∈ {12, 22}. Gray areain each subfigure of indexk represents thek-th

line sweepL j,k
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Fig. 15a–e.Approximate sweep operation on two consecutive instances of a convex moving object with shape change:
a Ap

j and Ap
j+1 intersect at four points;b Ap

j ∪ Ap
j+1; c {L j,k}; d Ap

j ∨ Ap
j+1; e sequential steps in computing(

Ap
j ∪ Ap

j+1

)∪ (⋃k L j,k
)
, where 1≤ k≤ 24.Gray areain each subfigure of indexk represents thek-th line sweepL j,k
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Fig. 16a–e.Fast approximation of sweep-envelopes:a Ap
j and Ap

j+1; b Ap
j ∪ Ap

j+1; c {L j,k∗}; d Ap
j ∨ Ap

j+1; e sequential
steps in computing

(
Ap

j ∪ Ap
j+1

)∪ (⋃k∗ L j,k∗
)
, wherek∗ ∈ {3,10, 15, 22}. Gray areain each subfigure of indexk represents

thek-th line sweepL j,k
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Fig. 17a–e.An example of approximate unsweep operation on two instances of a 12-star-shaped concave object:a Ap
j and

Ap
j+1; b Ap

j ∩ Ap
j+1; c {L j,k}; d Ap

j ∧ Ap
j+1; e sequential steps in computing

(
Ap

j ∩ Ap
j+1

)∩ (⋂k
(
L j,k

)c), where 1≤ k≤
24.Gray areain each subfigure of indexk represents thek-th line sweepL j,k
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Fig. 18a–e.An example of approximate unsweep operation on two instances of a convex object:a Ap
j and Ap

j+1; b
Ap

j ∩ Ap
j+1; c {L j,k}; d Ap

j ∧ Ap
j+1; e sequential steps in computing

(
Ap

j ∩ Ap
j+1

)∩ (⋂k
(
L j,k

)c), where 1≤k≤ 24. Gray
area in each subfigure of indexk represents thek-th line sweepL j,kL j,k
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or the moving object changes its shape quite dra-
matically. Even in this case, our algorithm detects
contributing line sweeps correctly. Figure 16e shows
thatL∗j = {L j,3, L j,10, L j,15, L j,22}.
Now, we define anapproximate unsweep operation
∧ on Ap

j andAp
j+1 as

Ap
j ∧ Ap

j+1= Ap
j ∩ Ap

j+1∩
(
L j
)c (5)

=
(

Ap
j ∩ Ap

j+1

)
−L j .

Let ∧∂ denote the boundary of the∧ operation.
Figures 17 and 18 show two unsweeps: one for
a nonconvex object and the other for a convex ob-
ject. In particular, Fig. 17b and d are the results of
Ap

j ∩ Ap
j+1 and Ap

j ∧ Ap
j+1, respectively. Note that

Fig. 17b and d are different sinceAp
j ∧ Ap

j+1 is ob-
tained by subtracting some line sweepsL j,k from
Ap

j ∩ Ap
j+1.

4 General sweep boundary

In this section, we define the general sweep as an
infinite union, and we introduce an algorithm that ap-
proximates the boundary of a general sweep.
A planar rigid motionM(t) at timet is represented as
a 3×3 homogeneous matrix

M(t)=
[

R(t) v(t)
0 1

]
,

where R(t) is a 2×2 rotation matrix andv(t) is
a translation vector[vx(t) vy(t)]T . In a general
sweep, arbitrary shape transformation can be applied
to the moving object. As in Fig. 19, the moving ob-
ject can change its shape dynamically with possible
topological changes as well (i.e., while creating and
destroying holes). Therefore, the shape transforma-
tion F(t) is nonlinear in general.
Given a rigid motionM(t) and a shape transforma-
tion F(t), the objectA at timet is represented as

A(t)= M(t) · F(t) · A. (6)

Moreover,∂A(t) represents the boundary ofA at
time t. A general sweep produces a new object:

S= S(A,M, F)=
⋃

t

M(t) · F(t) · A=
⋃

t

A(t), (7)

where
⋃

t means an infinite union of the moving
object. S(t1) =⋃t0≤t≤t1 A(t) represents a partially

Fig. 19a–c.General sweep:a the moving object changes
its shape from a circle to a torus;b sampled instances of
the moving object;c the boundary curve of the general
sweep

swept object from an initial timet0 up to the current
time t1. By the definition of boolean boundary opera-
tions given in (1), the boundary of a general sweep is
defined as

∂S= ∂S(A,M, F)= ∂
(⋃

t

A(t)

)
=

∂⋃
t

A(t). (8)

In theory, S and∂S are the exact swept object and
its boundary, respectively. However, in practice, it
is nontrivial to compute the geometric objects de-
fined by (6)–(8). As explained in the introduc-
tion, the sweep-envelope curves are high-degree



J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep 229

Fig. 20.Incrementally generating the boundary of a general sweep
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algebraic curves, and they may have complex self-
intersections. Thus we need approximation; in par-
ticular, polygonal approximation makes the bound-
ary construction considerably easier.
Given an initial timet0, a final timete, and the num-
ber of discrete time intervalsn, a discrete time do-
main is defined asD= {t j |t j = t0+ j∆t}, where 0≤
j ≤ n and∆t = (te− t0)/n. From this point of view,
(7) and (8) can be discretized, and we can compute an
approximate polygonal sweepSp and its polygonal
boundary∂Sp as follows:

Sp= Sp(Ap,M, F) =
⋃
t∈D

Ap(t)=
⋃

0≤ j≤n

Ap
j , (9)

∂Sp= ∂Sp(Ap,M, F) =
∂⋃

t∈D

Ap(t)=
∂⋃

0≤ j≤n

Ap
j ,

where Ap
j is a polygonal approximation ofAj =

A(t j ).
Equation (9) generates a jagged swept area and its
shape is dependent on the sampling density (see
Figs. 4 and 5). To generate a smoother boundary, we
need to use an envelope approximation method as
described in Sect. 3. Using the line sweepL j of (3)
and the approximate sweep operation of (4) for two
consecutive instancesAj andAj+1, we can approx-
imate the general sweep as

Sp(t0)= Sp
0 = Ap

0, (10)

Sp(t j+1)= Sp
j+1= Sp

j ∪
(

Ap
j ∨ Ap

j+1

)
(11)

= Sp
j ∪ Ap

j+1∪L j .

Equation (10) is an initialization step and (11) de-
scribes an induction step. Thus, our algorithm has
a sequential nature. Equation (11) implies that the
current sweepSp

j is incremented toSp
j+1 by adding

the union Ap
j+1∪L j to Sp

j . Figure 20 shows the
procedure of incrementally generating the boundary
of a general sweep. The algorithm does not com-
pute the envelope curve algebraically. Consecutive
instances of a moving object are connected with
straight line segments (instead of smooth envelope
curve segments).

5 Sweep-related problems

In this section, we present algorithms that can
solve problems related to the sweep: unsweeps,

Minkowski sums and differences, and constant ra-
dius offsets.

5.1 Unsweep

The unsweep is a geometric operation that defines
an area belonging to “every” instance of a mov-
ing object. In contrast, a sweep operation defines an
area belonging to at least one instance of the mov-
ing object (see (7)). Figures 21 and 22 illustrate
the difference between sweep and unsweep. Sweep
generates a area larger than that of the moving ob-
ject, whereas unsweep generates a smaller area. The
unsweep operation may result in an empty area as
shown in Fig. 22d. Ilies and Shapiro [13] introduce
the unsweep operation. They consider moving ob-
jects with a fixed shape. As a set-theoretic dual of the
sweep, the unsweep plays an important role in the de-
sign of mechanical parts.
Given a rigid motionM(t) and a shape transforma-
tion F(t), the unsweep of an objectA is defined as
follows:

U =U(A,M, F)=
⋂

t

M(t) · F(t) · A

=
⋂

t

A(t). (12)

Similarly to the sweep operation, we can construct
an unsweep using an envelope approximation of (5).
Approximation of an unsweep boundary is given by
the following induction step:

U p(t0)=U p
0 = Ap

0, (13)

U p(t j+1)=U p
j+1=U p

j ∩
(

Ap
j ∧ Ap

j+1

)
=U p

j ∩ Ap
j+1∩

(
L j
)c
.

5.2 The Minkowski sum

We describe an algorithm for computing the bound-
ary of a Minkowski sum based on the relationship
between the sweep and the Minkowski sum. The
Minkowski sum of two objectsA andB is defined as

A⊕ B= {a+b | a∈ A, b∈ B}.
It is easy to check that the Minkowski sum is commu-
tative:A⊕ B= B⊕ A.
The boundary of a Minkowski sum is closely related
to the translational sweep of an object with a fixed
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Fig. 21a–d.Sweep and unsweep:a a moving object;b the object moves along a circle;c the sweep;d the unsweep
Fig. 22a–d.Sweep and unsweep:a a moving object;b the object moves along a circle;c the sweep;d an empty unsweep

shape and orientation. Assume thatA is fixed, and
B moves around the boundary ofA, while the origin
OB of B traces along the boundary ofA. (We may as-
sume that the originOB is located in the interior of
the objectB.) Let SB denote the swept area ofB gen-
erated by this motion. Then the areaSB includes the
difference ofA⊕ B andA:

SB ⊃ ((A⊕ B)− A) .

Moreover, we can represent the Minkowski sum by
a union of two sets:

A⊕ B= A∪SB. (14)

Let CA =⋃i≥0 CA,i be the boundary curves of an
objectA, andSB be the swept area ofB tracing along
CA (see (2)). The translational sweepSB is computed

as

SB,i = S(B,MA,i , I)=
⋃

t

MA,i (t) · I · B

=
⋃

t

MA,i (t) · B,

SB =
⋃
i≥0

SB,i , (15)

where the identity mapI means that there is no shape
change, and eachMA,i (t) is a homogeneous mo-
tion matrix representing the translation along each
boundary curveCA,i (t):

MA,i (t)=
[

I CA,i (t)
0 1

]
.
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Fig. 23a–g.Construction steps for the boundary of a Minkowski sum:a two objectsA and B; b B moves along the exterior
boundaryCA,0 of A; c ∂SB,0; d B moves along the hole boundaryCA,1 of A; e∂SB,1; f A∪∂SB,0∪∂SB,1; andg ∂(A⊕ B)
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Fig. 24a–d.Computing the boundary of a Minkowski sum based on a convolution curve approximation:a convolution curves
of two objects of Fig. 23a;b polygonal approximations of some convolution curves except some obviously redundant seg-
ments;c a polygonal approximation of the boundary of a Minkowski sum;d a refinement of the result (c) using spline
curves

Fig. 25a,b.The Minkowski sumB⊕ A for the objects of Fig. 23a:a sweepingA around the boundary ofB; b ∂(B⊕ A)
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The Minkowski sum of (14) can be reformulated
with (15):

A⊕ B= A∪SB = A∪
⋃

i≥0

SB,i

 . (16)

Now, we can represent the boundary of a Minkowski
sum as

∂ (A⊕ B)= A
∂∪ SB = A

∂∪
 ∂⋃

i≥0

SB,i

 . (17)

Thus, we can approximate the boundary of a Min-
kowski sum following a construction scheme similar
to that of (7)–(11):

∂(A⊕ B)' ∂ (Ap⊕ Bp)= Ap ∂∪ Sp
B, (18)

whereSp
B is a polygonal approximation ofSB. Fig-

ure 23a shows the construction steps for the bound-
ary of a Minkowski sum. Figure 23 a shows two input
objects: a flower-shaped objectA and a Y-shaped ob-
ject B. For boundary curvesCA,0 and CA,1 of the
object A, Fig. 23c and e show the corresponding
sweepsSB,0 and SB,1, respectively. The boundary
∂(A⊕ B) of Fig. 23g is constructed by computing
A∪∂SB,0∪∂SB,1 (see Fig. 23f).
In contrast to our algorithm, Lee et al. [16] compute
the boundary of a Minkowski sum based on a con-
volution curve approximation, where redundant con-
volution curves are later eliminated and the remain-
ing curves generate the boundary of a Minkowski
sum. For the objects shown in Fig. 23a, Fig. 24 il-
lustrates how the algorithm of Lee et al. [16] works.
In particular, Fig. 24b and c show how the redundant
loops are eliminated from the convolution curves
of Fig. 24a.
By the commutativity of the Minkowski sum, we can
sweep the objectA around the objectB:

B⊕ A= B∪SA= B∪
⋃

j≥0

SA, j

 .
In this case, the exact and approximate boundaries of
a Minkowski sum are given as

∂ (B⊕ A)= B
∂∪ SA, (19)

∂
(
Bp⊕ Ap)= Bp ∂∪ Sp

A. (20)

Note that (17) and (19) represent the same bound-
aries of a Minkowski sum:

∂(A⊕ B)= A
∂∪ SB = B

∂∪ SA = ∂(B⊕ A).

In (18) and (20), however, the corresponding ap-
proximate boundaries of a Minkowski sum are not
exactly the same; nevertheless, they have similar
shapes when reasonable samplings and polygoniza-
tions are used:

∂(Ap⊕ Bp)= Ap ∂∪ Sp
B ' Bp ∂∪ Sp

A
= ∂(Bp⊕ Ap). (21)

For the objects of Fig. 23a, Fig. 25a shows the re-
sult of sweepingA around the boundary ofB. By
the commutativity of the Minkowski sum, Figs. 23g
and 25b must be the same boundary curves.
When we make a union of two alternative approx-
imations of a Minkowski sum, we get a smoother
boundary of the Minkowski sum. Figures 26 and 27
illustrate how this approach works. The Minkowski
sums of Fig. 26c and e look similar, though they
result from the two different sweep sequences of
Fig. 26b and d, respectively. When we overlap
Fig. 26c and e, their difference can be observed in
Fig. 26f. Figure 26g is the union of Fig. 26c and e,
and it is less jagged than Fig. 26c and e. Figure 27
is generated with the same objects as Fig. 26, but
with sparser samplings. Figure 27f shows that the
two boundaries of Fig. 27c and e are very different.
However, the boundary of Fig. 27g is significantly
less jagged than those of Fig. 27c and e. In Figs. 26
and 27, we make a union of each instance of a mov-
ing object without envelope approximation so as to
show the effectiveness of our approach. This tech-
nique can be applied to other boundary construction
problems as well (e.g., for interactive sweeping and
offsetting).

5.3 Minkowski difference

The Minkowski difference is closely related to the
unsweep with no shape change. As the inverse of
the Minkowski sum, the Minkowski difference is de-
fined as follows [24]:

A	 B= (Ac⊕ B
)c
.



J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep 235

Fig. 26a–g.Constructing the boundary of a Minkowski sum using a blending method for a dense sampling:a two objects
A and B; b B sweeps along the boundary ofA; c a rough polygonal approximation∂Sp

B ' ∂(A⊕ B); d A sweeps along
the boundary ofB; e a rough polygonal approximation∂Sp

A ' ∂(A⊕ B); f ∂Sp
B and∂Sp

A; g a blending∂Sp
B and∂Sp

A as an
approximation of∂(A⊕ B)
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Fig. 27a–g.Constructing the boundary of a Minkowski sum using a blending method for a sparse sampling:a two objects
A and B; b B sweeps along the boundary ofA; c a rough polygonal approximation∂Sp

B ' ∂(A⊕ B); d A sweeps along
the boundary ofB; e a rough polygonal approximation∂Sp

A ' ∂(A⊕ B); f ∂Sp
B and ∂Sp

A; g the union∂Sp
B∪∂Sp

A as an
approximation of∂(A⊕ B)
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Fig. 28a–g.The boundary of a Minkowski difference:a objectsA and B; b B sweeps along the exterior boundaryCA,0;
c ∂SB,0 is the sweep boundary ofb; d B sweeps along the hole boundaryCA,1; e ∂SB,1 is the sweep boundary ofd; f(

Ac∪∂SB,0∪∂SB,1

)c
; g ∂(A	 B)
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Fig. 29.Examples of offset curves

Let SB denote the sweep ofB around the boundary of
A. By complementing both sides of (15), we obtain
the unsweep ofBc around the boundary ofA:

UBc = (SB)
c=

⋃
i≥0

SB,i

c

. (22)

From (16) and (22), the Minkowski difference can be
reformulated as

A	 B= (Ac∪SB
)c

= A∩ (SB)
c

= A∩UBc

= A∩
⋂

i≥0

UBc,i

 , (23)

whereUBc,i represents the unsweep ofBc around
the i th boundary curve ofA. The boundary of
a Minkowski difference is given as

∂(A	 B)= A
∂∩UBc = A

∂∩
 ∂⋂

i≥0

UBc,i

 . (24)

We approximate the boundary of a Minkowski dif-
ference and those of (7)–(11) similarly.

∂(A	 B)' ∂ (Ap	 Bp)= Ap ∂∩U p
Bc,

whereU p
Bc is a polygonal approximation ofUBc. Fig-

ure 28 shows the steps for constructing the bound-
ary of a Minkowski difference. In Fig. 28f, the gray
area represents the complement of the objectA of
Fig. 28a. Note that the Minkowski difference is not
commutative. Hence, in contrast to the case of con-
structing a Minkowski sum, we cannot use the tech-
nique of taking the union of two alternative represen-
tations to improve the quality of approximation.

5.4 Constant radius offset

The constant radius offset is a special case of the gen-
eral sweep and the Minkowski sum. Given a curve
C, we offset the curveC by sweeping a circular disc
Dr of a fixed radiusr along the trajectory curveC.
The offset boundary of the trajectory curveC is rep-
resented as

∂S= ∂S(Dr ,MC, I), (25)

where MC is the translation along the trajectory
curve C, and the identity mapI means no shape
change.
When the discDr moves around the boundary of an
objectA, the offset boundary is given as

∂S= ∂S(Dr ,M∂A, I), (26)
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whereM∂A is the translation along the boundary of
A. Figure 29 shows the examples of offset curves
generated for various radiir .

6 Conclusion

In this paper, we presented an algorithm that com-
putes an approximate polygonal boundary of the
general sweep for an arbitrary 2D curved object with
holes. We define a general sweep as an infinite union
of the moving object and generate the sweep bound-
ary in an incremental manner. Compared with pre-
vious algorithms, our approximation algorithm has
many advantages.

• It is easy to implement the algorithm robustly
since it is based on boolean operations on simple
polygons.
• Envelope approximation is easy and relatively

precise since it is based on line sweeps (which
may be nonconvex).
• Incremental sweep construction makes the algo-

rithm useful for interactive shape design, colli-
sion detection, and mechanical part design.
• The unsweep can be implemented in the same

way as the sweep operation by replacing unions
with intersections.
• Utilizing various computational shortcuts, the

implemented algorithm demonstrates real-time
performance for moving objects with reason-
able shape complexity and topological changes as
well.

The 3D extension of our algorithm requires a ro-
bust implementation of boolean operations on sim-
ple polyhedra. Since we start with simple polyhedra,
their union and difference are much easier to imple-
ment than the construction of the boundary of a 3D
swept volume from a set of sweep-envelope surfaces
(approximated by complex polyhedra) which may
have complex self-intersections. The 3D extension is
an immediate goal of our future research.
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