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This paper presents an algorithm that approximates|
(using polygons) the boundary of a general sweep
for an arbitrary 2D curved object (possibly with
holes). Based on set-theoretic properties of the general
sweep, our algorithm generates the polygonal sweep
boundary incrementally, where envelope approxima-
tions and union operations are repeatedly applied to|
intermediate boundaries of the sweep and consecutive
instances of the moving object at sampled locations
of the motion. For approximation, each instance of
the object is polygonized along the motion, where the
object may experience dynamic shape transformation
with topological changes such as creating /andde-
stroying internal holes. The incremental nature of the
proposed algorithm makes the boundary construction
of a general sweep useful for applications in inter-
active shape design, collision detection, and mechan-
ical part design. Our algorithm generates a precise
approximation of the boundary of a general sweep
with real-time performance in computing unsweeps,
Minkowski sums and differences, and constant radius
offsets. Some experimental results are also given in
this paper.
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1 Introduction

The sweepoperation is useful for the generation of
a complex object by sweeping a simple object along
a trajectory curve. The simplest form of sweep is
linear extrusionwhere a 2D object moves along its
normal direction to generate a volume. Another sim-
ple sweep is theotational sweepvhere a 2D object
rotates about a fixed axis. A rotational sweep gen-
erates a volume bounded by a surface of revolution.
A general sweeps the most general form of sweep
where the generator (i.e., the moving object) changes
its size, orientation, and shape [9]. Figure 1 shows
an example of a general sweep where a 2D object
moves along a path in the plane while changing its
size and orientation. A simple form of the general
sweep isgeneralized cylinderwhich has been ac-
tively used for applications in computer vision [2].
Early generalized cylinders assume that a 2D cross-
sectional curve moves in space while its containing
plane is kept orthogonal to the tangent direction of
the trajectory curve. Recently, some authors allow
generalized cylinders defined by more general spa-
tial motions [7]. General sweeps of solids are use-
ful in modeling the swept region of a numerically
controlled (NC) machining tool or that of a robot
following a path. However, it is non-trivial to con-
struct the boundary of a general sweep. Two of the
main reasons for this difficulty can be summarized as
follows: (a) there may be complex self-intersections
in the sweep boundary; and (b) the sweep surfaces
are usually algebraic surfaces of high degree that are
difficult to deal with (efficiently and robustly) in con-
temporary CAD systems. In this paper, based on are-
peated application of boolean operations on simple
polygons, we suggest an efficient and robust algo-
rithm that precisely approximates (using polygons)
the boundary of a general sweep for an arbitrary 2D
curved moving object (possibly with holes).

The general sweep of a 3D solid has attracted con-
siderable research attention in various fields of en-
gineering. Wang and Wang [25] generate a scan-
rendered image of a 3D swept volume. Weld and
Leu [26] represent the sweep boundary of a poly-
hedron with ruled and developable surface patches.
Based on the B-spline motion of polyhedra, Juttler
and Wagner [14] represent these boundary surfaces
as rational B-spline surfaces. Martin and Stephen-
son [19] suggest envelope theory as a theoretical
basis for computing swept volumes. Blackmore et
al. [5, 6] present a sweep-envelope differential equa-
tion that characterizes the boundary of a swept vol-
ume. Abdel-Malek and Yeh [1] use rank-deficiency

The Visual Computer (2000) 16:208-240
© Springer-Verlag 2000



J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep 209

volume. Thus previous algorithms restrict moving
objects to those having simple shapes and motions
only.

The general sweep of a 2D curved object provides
a handy design tool for modeling complex shapes
such as oriental characters. Ahn et al. [3] develop an
algorithm that approximates the boundary of a 2D
general sweep for a planar curved object. Their al-
gorithm is efficient and robust; however, redundant
edges are eliminated in the last step of the sweep

a construction, which is inconvenient for an interactive
ey shape design. Figure 2 illustrates the major steps of
SR “%‘}%‘J‘\ Ahn et al. [3] for constructing the boundary of a gen-
(\‘ M~ eral sweep. Figure 2a shows polygons approximat-

ing the moving object at sampled locations; Fig. 2b
shows the sweeps of polygon edges; Fig. 2c shows
edges remaining after the elimination of some re-
dundant edges; Fig. 2d shows the intersection points
among these remaining edges; Fig. 2e is an interme-
diate result of eliminating redundant edges based on
b local conditions; Fig. 2f is the final result of eliminat-
ing all redundant edges based on global conditions;
and finally Fig. 2g shows the result of fitting cubic
Bézier curve segments to the polygonal approxima-
tion of the sweep boundary.
Kim et al. [15] represent the bristles of a brush stroke
using variable-radius offset curves. The variable-
radius offset is closely related to the general sweep
where a line segment (of variable length) moves
along a trajectory curve. Parida and Mudur [20]
C sweep a line segment along a 2D spine curve and
Fig. 1a—c.A general sweep and its boundary curaean design the outlines of Indian fonts a_nd callllgraphy.
object, changing its shape dynamically, moves along Blackmore etal. [S] propose sweep differential equa-
a trajectory curveb sampled instances of the moving oj-  tions and a boundary-flow method for computing the
ject:c the boundary curve of a general sweep boundary of a 2D general sweep. They consider sim-
ple polygons moving under linear deformation.
In this paper, we present an incremental algorithm
that computes the boundary of a general sweep for
conditions to determine the interior and exterioran arbitrary 2D curved moving object (with holes).
of a swept volume. Recently, Pottmann [21] invesBased on set-theoretic properties of the general
tigates various important geometric properties okweep, our algorithm generates the sweep bound-
general offset surfaces. llies and Shapiro [13] sugary incrementally as the motion proceeds; that is, we
gest the unsweep as an effective tool for designingepeatedly apply a union operation to an intermedi-
mechanical parts that are collision-free from theirate sweep boundary and a neighboring instance of
surrounding packages. In these previous approachdhe object at each sampled location of the motion
the sweep boundary is computed as a union dfrajectory. For approximation, we polygonize each
envelope surface patches. Since the envelope sunstance of the moving object with dynamic shape
faces usually have a very high degree and quitehange. Our algorithm is based on boolean opera-
often they have complex shapes (possibly with selftions on simple polygons, which can be implemented
intersections), it is nontrivial to deal with these robustly using lingline intersections and inclusion
surfaces in constructing the boundary of a sweptests for line segments with respect to simple poly-
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Fig. 2a—g.Major construction steps — Ahn et al. [3]

gons[11,18,22,27]. The algorithms of Ahn et al. [3Junsweeps, Minkowski sumjdifferences, and con-
and Blackmore et al. [5] generate complex polygonstant radius offsets using the general sweep. When
in intermediate steps; thus it is nontrivial to elimi- unions are replaced by intersections, we can con-
nate redundant edges robustly. (In particular, whestruct a dual of a sweep, called an unsweep. llies
the envelope curves have tangential grdnultiple  and Shapiro [13] propose the unsweep as an effec-
intersections clustered together, a correct arrang¢ive computational tool for detecting the collision of
ment of envelope curves is very difficult to computea moving mechanical part with its surrounding pack-
robustly.) It is clear that our approach is simpleage. Figure 3 illustrates the design steps that remove
and leads to a robust implementation; neverthelessplliding parts from the original shape and redesign
previous work has not taken this approach due t@a collision-free final shape. After designing an ini-
efficiency considerations. In this paper, we proposéial object and its surrounding package as shown in
various computational shortcuts that greatly improvd-ig. 3a, we can test the object to see if it collides with
the efficiency of our algorithm. The implementedits surrounding package during the motion in Fig. 3b;
result gives real-time performance. Moreover, thehe swept area can be computed and tested to see if
incremental nature of our algorithm makes the genthere is an overlap with the package (see Fig. 3c).
eral sweep very useful for applications in interactiveHowever, the sweep test is not an effective way of
shape design, collision detection, and mechanicakdesigning a collision-free object. Instead of sweep-
part design. ing an object, the package can be unswept as shown
Our algorithm solves some important problems inin Fig. 3d and e. After that, the unswept area is in-
geometric and solid modeling; e.g., we computdersected with the initial object so as to construct
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Fig. 3a—i. Application of the unsweep operation in the design of mechanical ma#s:initial shapeO; and its sur-
rounding packag®; b rotational sweep 00, about a fixed axis; the swept are&, overlaps the packagd;unsweep
of the packagee unswept ared); f collision-free partsO; NU; g a collision-free new shapé; the sweep of the new
shapej the package contains a new sweep &gdSee llies and Shapiro [13].)
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a collision-free object (see Fig. 3f). To connect thecoupled with envelope approximation. Section 5
two separate components of Fig. 3f, new parts arpresents algorithms that solve some problems re-
added within the unswept area of Fig. 3e. The fidated to the general sweep: unsweeps, Minkowski
nal shape shown in Fig. 3g is then guaranteed to beumgdifferences, and constant radius offsets. Fi-
collision-free with its package (see Fig. 3handi).  nally, Sect. 6 concludes this paper.

Minkowski sums and differences (or decomposition)

are morphological operations for shape transforma; . .

tion such as dilation and erosion [10, 24]. They are2 Preliminaries

important in computing collision free patfereas in . . . . .
robot motion planning and swept argaslumes in In this section, we introduce basic notations and ter-

mechanical part design [4, 10, 12,13, 17, 24]. Thdninology that are used in the rest of the paper. A
Minkowski sum of two planar objects is closely re- 2D obijectis defined as a closed set that includes its

lated to theconvolution curvef the boundary curves Poundary as well as interior points. LeA denote
of two input objects. (Given two planar curves, € boundary of an objech. We allow any num-
their convolution curve is defined as the set of allP€r Of holes in the objec, thus A may consist
vector sums generated by all pairs of curve pointQf Many components: an exterior boundary and the

that have the same curve normal direction [4].) Th oundaries of holes. For notational convenience, the
convolution curve is a superset of the boundary Olexterlorcl?oundarydahd théh hole bl()gndary are rep-

a Minkowski sum [4]. Lee et al. [16] compute the '¢S€nted adoAandg; A, respectively:

boundary of a Minkowski sum based on convolu-gA = {9pA} U {9; A}, 1<i <the number of holes
tion curve approximation, where redundant convo-

lution curves are later eliminated and the remainin(j:Or the sake of simplicity, we exclude the follow-

- - ng types of moving objects from consideration: (1)
curves generate the boundary of a Minkowski sum_ =
(An illustrative example of Lee et al. [16] is given points, (2) opeyiclosed curves, and (3) open sets.

in Fig. 24 of Sect. 5.) It is also possible to computeThat is, we consider regular objects only.

. T .~ “Special types of reqular sets inclua@ll objects
the boundary of a Minkowski difference by reversmgarﬁ)d infinit):apobjects t%e null objectOy reprejsents

the orientation of an operand curve in the convolu-, o 229 :
tion operation. an empty set of points; and an infinite objeat,

The boundaries of the Minkowski sum and differ- SONtaINS points at infinity. These two special types
g regular objects are used for defining regularized

ence are closely related to the translational swee bolean operations. When reaular polvaonal obiects
and unsweep of a moving object with a fixed shap P : 9 Polyg J

and orientation. Our general sweep algorithm can pa2ve boundary representation, the null object has no
applied to the computation of the Minkowski Sumvertex or edge, and an infinite object has a system-
and difference. We present algorithms for approxi—def'ned special polygon as its exterior boundary.

mating the Minkowski operations. When construct—,?(;\r/1esna;[\é\'(;1 O?ijeegttsﬁb?);? tﬁe ?n(?[(e)lrieoarnar?(eitb(())ﬂirdaa-lr
ing the boundaries of Minkowski sums and differ- bp y

ences, our method does not introduce any redundage-ori?stsS(i):n'algJ Izngb?éé?srgfenﬁscl?;}};eg;;gzle%ég Eﬁr}eir
cies in the intermediate steps of computation (se oundaries [8]. To extract the boundary from the re-

Sect. 5). :
Constant radius offset, an important special case QE;B ncg‘atr);glpe;r;tiﬂsoperanons, we defipeolean

the translational sweep, has been extensively used
shape design and NC tool path generation [23]. '”(aA)C = 3(A% 1)
general, when a circular disk moves along a given

path, its sweep generates two offset curves of they ; g — 9(AUB)

path, one on each side of the path. [

The rest of this paper is organized as follows. Sec—Ar‘% B=03(ANB)

tion 2 presents some preliminary material. In Sect. 3,

we show how to approximate the sweep-envelope — B = j(A— B),

boundary of a moving object between two consec-

utive locations. In Sect. 4, we construct the boundwhereAC is the complement of\, and(3-)¢, U?, N?,

ary of a general sweep using a sequence of uniorend—? denote the boolean boundary operations. An
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important procedure for implementing each boolea?

boundary operation is the elimination of redundan
boundary segments (of the input objects) that belon
to the interior of the resulting object. Boolean bound;

ary operations need to be regularized to ensure that
the results are also regular. Moreover, we need to
dealwith some special cases; e.g., (a) the intersection

of two disjoint objectsA and B must be a null ob-
ject: AN B = Oy; (b) the complement of a bounded
nonempty objecA with holes is a set of regular ob-
jects, where one component must be an infinite ol
ject; and (c) the difference of an infinite obje0t,
and a bounded regular obje&is another infinite ob-
ject,0x — A= Oy.

The result of a set operation may result in irregulaf

objects. For example, when two objects have conta
along their boundaries, their intersection contain
some disconnected curves. In this case, each cur

must be reduced to a null object by regularization|

Compared with sweep operations, these boolean o
erations are relatively easy to implement in a robus
way [11, 18, 22, 27]. Based on the robustness of thes

boolean operations, we propose a robust algorithm

that constructs the boundary of a general sweep.
Regardless of representation schemes for input ar
output objects, boolean operations are useful for cor
structing a new object from existing ones [9]. Selec
tively combining some operations, a piece of an ob
ject can be added to or subtracted from other object
and a hole can be created or destroyed. Some we
defined sequences of boolean operations genera
even more complex and interesting shapes. The ge
eral sweep is one of these operations based on uni
operations sequentially applied to each instance
a moving object.

3 Envelope approximation

In this section, we consider how to approximate

the sweep-envelope boundary of a moving object.

For a simple approximation of the swept volume
a sequence of unions may be applied to densely sar
pled instances of a moving object along its motion
trajectory. This approach generates a rough swese
boundary. As shown in Figs. 4b and 5b, such a swee
boundary has many jagged edges and redunda
holes depending on the sampling density. To gen
erate a smooth boundary curve, a large number (

unions are required, which would make the algot
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rithm inefficient. Moreover, when a moving object is

c

Fig. 4a—c.Sweeping a convex objeathe moving object
is a pentagonb a sweep boundary construction withod
envelope approximatiorg a sweep boundary construct
tion with envelope approximation




214 J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep

C

Fig. 5a—c. Sweeping a star-shaped objeatthe moving

object is a 30-stalh a sweep boundary construction with-

out envelope approximatiorg a sweep boundary con
struction with envelope approximation

nonconvex or star-shaped, a jagged sweep boundary
is unavoidable (see Fig. 5b). To improve the pre-
cision of approximation and the efficiency of algo-
rithm, we propose an envelope-based technique that
approximates the sweep between two consecutive
instances of a moving object by polygons. Our enve-
lope approximation is based on line sweeps. That is,
after polygonizing a moving object, we approximate
its envelope boundary using the union of the sweeps
of polygon edges. This simple approach provides an
efficient construction of a smoother boundary of the
general sweep. The boundaries of Figs. 4c and 5c
are constructed with envelope approximation. Note
that they are much less jagged than those of Figs. 4b
and 5b.

Given an objectA, its boundaryd A can be repre-
sented as a union of closed boundary cudgs =
Cao(u) andd; A= Cai(u) (each parameterized by
u,forO<ux<l):

dA={Cpao(W}U{Cai(w}, (2

wherei enumerates the number of holesAfNote
that the boundary of an object is oriented in such
a way that the object interior is to the left of the
advancing direction of the boundary curve; i.e., the
exterior boundary is oriented counterclockwise, and
each hole boundary is oriented clockwise. By sam-
pling points{ px} along the boundary cun&A, the
object A is approximated by a polygoAP. When
the boundary curve is polygonized, it is represented
by a list of oriented line segmentk}, wherely =

(Pk» Pk+1)-

Let Aj and Aj1 be two consecutive instances of
a moving objectA, andljk = (pjk, Pjk+1) and
lj+1.k = (Pj+1ks Pj+1.k+1) be the correspondirigh

line segments oA} and A7, ;, respectively. For ap-
proximation, we define an area that is swept figm
tolj1 1k (seethe firstand third columns of Fig. 6): (a)

if Ij,kx andlj 1k do not intersect, they define a trian-
gle or a quadrangle (which is not necessarily convex)
(see Fig. 6a—d); (b) if they intersect, they define
one or two triangles (see Fig. 6e—q); and (c) if they
are collinear, their sweep generates a line segment
that has no contribution to the envelope computation
since a line segment is not a regular object. Con-
sequently, each line sweep is approximated by one
or two simple polygons. Figure 6 shows some ex-
amples of line sweeps, where intermediate lines are
generated by linear interpolation (as shown in the
second column). The case of Fig. 6d needs some ex-
planation. Note that a linear interpolation generates
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Fig. 7a—e Line sweeps wherf  andl j 11 k do not intersecta AP and AP ;b APUAP ; ceachL j i is a quadrangled
the boundary of a translational sweep based on envelope apbroxirrﬁs{sequentllal stfeps in envelope approximatigray
areais thek-th line sweep. j k)

short line segments in the middle of the interpola-Note that, in the case of Fig. 8, our approach of using
tion. Thus, when the object does not shrink an edgaonconvex line sweeps produces a better approxima-
quite dramatically, the linear interpolation does nottion than the convex-hull-based approach of Ahn et
approximate the motion of a line segment approal. [3].

priately. Thus we approximate the line sweep adet Ly denote a line sweep froly to |1k, and
arectangle rather than two triangles. let.£; denote the union of all these line sweeps:

Ahn et al. [3] approximate each line sweep by

the convex hull of two line segments, whereas our

method allows nonconvex line sweeps. Figure 7¢i = U Lik. (3)
shows an example where each line sweep is a quad-  1=i=n

rangle; thus there is no difference between the two

methods in this case. Figure 8c shows an examplheren is the number of line segments in the poly-
where each line sweep is composed of two trianglegjon AP. We define arapproximate sweep operation
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Fig. 8a—e Line sweeps wherl  and j 1y intersecta AP and AP ;b .
boundary of a rotational sweep based on envelope apbroximétsﬂquer{tial s{eps in envelope approximatigray areais

thek-th line sweep. j k)

O

v @@

APUAP |; ceachL |y is a pair of trianglesd the

P

p
vonAjandAj,, as

p P _ AP p .
APV AP =APUAP UL @)

Let v? denote the boundary of the operation.

dundant since it is included in the interior &f’ ,,
and (b)Lj g is redundant sincé& g andLj 10 are
closer to the final envelope boundary. After eliminat-
ing all redundant line sweeps, Fig. 11 shows that two
line sweepgL j 10, Lj 22} are sufficient for generat-

Figures 9 and 10 illustrate how our approxima-ing the same result as that of Fig. 10.
tion method works. Note that, in these examplesConsider a convex moving objeét under a trans-
APU £; is the same a&P v AFH (i.e., there is no lation. In Fig. 12a, the first instand®; translates to

need to make\" ; a union.)

the second instancgj; by a displacement. The

When a moving object is convex, as is the case ofwept area is the same as the convex huhpaind
Fig. 10, many line sweeps make no contribution toAj; (see Fig. 12b). Its boundary is the union of en-

the final sweep envelope. For example l(g) is re-

velope lines, andg and some boundary curves of
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Fig. 9a—e. An approximate sweep operation on two consecutive instances of a 12-star-shaped concave moving| object:

p p . P,aP . Y P, AP . ; ; on P AP )
aA; and Ajél, b Aé- UA, 1 cfLjih d ATVAF 5 esequential steps in computlr(g\j UAj+1)U(Uk L k), where
1<k < 24. Gray areain each subfigure of indek represents thie-th line sweed. j k
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Flg 10a-e.An approximate Sweep operation on two consecutive instances of a convex moving abjgcand AP b
Al J+ ;c{Ljx:d APV AP - esequential stepsin computuﬁ@pu AJpH) (UkLj.k), where 1< k < 24. Gr&y area
in each subflgure of mdéxrepresents thie-th line swee. j k
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Fig. 11a—e.Fast approximation of sweep-envelopasAf andAP ;b APU AJPH; c{Ljk);d Ajpv AP ;e sequential
steps in computingAJpU A1p+1) U (U Lj k<), wherek* € {10, 5} Gra)/ areain each subfigure of indeic represents the
k-th line sweefl_ j k
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Fig. 12a—d.A translational sweep of a convex moving object along a fixed direeti@ntwo instances of the moving objec
and envelope lineg, andg; b the exact boundary of a sweepline sweepsd an approximate boundary of the sweep

—

Aj andAj;1. Note thate, andg are line segments that can easily be excluded, considering the local
parallel tov. Moreover,e, andg are defined by the configuration of adjacent line sweeps.

extreme points ofA; and Aj 1 in the directions or- In Figs. 13 and 15, most line sweeps belong to the
thogonal to that oV. In Fig. 12c, we approximate case of Fig. 6a. This is also the case in most practical
the envelope edges k, applying this technique to examples (though the pure rotation of Fig. 8 is an ex-
polygonal approximationA}O andApH. ception). Assume that three consecutive line sweeps
When an object moves with rotation and shapé j k-1, Ljk, andLj k.1 are of the type of Fig. 6a.
change, the selection of appropriate envelope edgd$enL k-1 andLjk share an edgepj k. Pj+1,k)-

ej kx becomes more difficult (see Figs. 13 and 14). InMoreover, this edgépjk, pj+1,k) is redundant if
Fig. 13, we form a union of all line sweeps to gen-each side ofpj k, pj+1,k) belongsto eithek j k1 or
erate the swept area, whereas Fig. 14 shows that two; .. (That is to say, the edd®j k., pj+1,k) is redun-
line sweepd. j 10 andL j 2, are sufficient for gener- dant if it is oriented oppositely i j k-1 and L k;
ating the same result as that of Fig. 13. Thus, we dsee Ahn et al. [3].) A similar argument applies to the
not need to consider the s&t; of all line sweeps. line sweepd.jx andL ki1 and their shared edge
A reduced set’? of line sweeps is sufficient for the (pjk+1, Pj+1.k+1)- This technique applies to non-

construction of the sweep envelope: convex as well as convex moving objects. The detec-
tion of other redundancies is more complex, and we

L£F = U L skip the details here.
J = LI Using a much reduced set improves the efficiency

Do D D, Ap . of our algorithm significantly. Given two convex
Aj VAj+1= Aj UAj+1U°Cj’ objects with the same number of vertices, the set
L* usually contains two line sweeps. As shown in
where thek*th line sweeps are those that may po-Figs. 15 and 16, there may be more than two line
tentially contribute to the sweep envelope. In othesweeps contributing to the sweep envelope, in partic-
WOFdS,JfT does not include redundant line sweepaular, when the sampling is taken relatively sparsely
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i J e sequential steps in computing
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Fig. 15a—e A%prommate sweep operation on two consecutlve mstances of a convex moving object with shape c

a AP and A

p p
(APLAP )

intersect at four pointsh A v A
UJ(UK Lj k), where 1<k < 24. Gray arealn each su

¢ ciljkh d A vA 11 € sequential steps in computing
i)flgure of mddxrepresents thie-th line sweeflL j
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Fig. 16a—e.Fast approximation of sweep-envelopes;?\jp andAP ;b APU AJP+1; c{Lj} d APvAP ;e sequential
steps in computing‘;AJP U AJP+1) U (U Lj k), wherek*e {3, 10',35, 22). JGray areain each subfighre of inderepresents
thek-th line sweed. j k
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Fig. 17a—e.An example of approximate unsweep operation on two instances of a 12-star-shaped concava él?]and
AT, b APmAJPH; c{Ljkh d APAAP :esequential steps in computir(ngpﬂ AJP+1) NNk (Ljk)°), where 1=k <
24, éray afeain bach subfigure of indelrepresents thk-th line sweed. j k
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or the moving object changes its shape quite dr3

matically. Even in this case, our algorithm detects

contributing line sweeps correctly. Figure 16e show
thateﬁ’i‘ ={Lj3, Lj10 Lj1s Lj22}

Now, we define arapproximate unsweep operation
AonAPandAP , as

}O+1: }11“("@')C

— p p .
= (APNAL,) - ;.

AP A A APNA (5)

Let A? denote the boundary of the operation.

Figures 17 and 18 show two unsweeps: one fg
a nonconvex object and the other for a convex oh
ject. Inpparticular, Fig. 17b and d are the results o

APN AT, and A7 A AP, respectively. Note that

Fig. 17b and d are different sino®’ A AP, ; is ob-
tained by subtracting some line swedpgk from

p p

4 General sweep boundary

In this section, we define the general sweep as g
infinite union, and we introduce an algorithm that ap+
proximates the boundary of a general sweep.

A planar rigid motionM(t) at timet is represented as
a 3x 3 homogeneous matrix

M) = [Ré” V(lt)] ,

where R(t) is a 2x 2 rotation matrix andv(t) is
a translation vectonfvy(t) vy(t)]T. In a general
sweep, arbitrary shape transformation can be applie

a 2D general sweep

s

U

=

f

C

Fig. 19a—c.General sweepa the moving object changeg

its shape from a circle to a torus;sampled instances of

the moving objectg the boundary curve of the generg
d sweep

to the moving object. As in Fig. 19, the moving ob-

ject can change its shape dynamically with possible
topological changes as well (i.e., while creating and _ R
destroying holes). Therefore, the shape transformgwept object from an initial tim& up to the current

tion F(t) is nonlinear in general.
Given a rigid motionM(t) and a shape transforma-
tion F(t), the objectA at timet is represented as

A(t) = M) - F(t) - A. (6)

Moreover, dA(t) represents the boundary & at
timet. A general sweep produces a new object:

S=SA M F) = JMb Fb-A=[JAwD, (7)
t t

where [ J; means an infinite union of the moving
object. S(t1) = Utoftft1 A(t) represents a partially

timet;. By the definition of boolean boundary opera-
tions givenin (1), the boundary of a general sweep is
defined as

ad
3S=9SA, M, F) =9 (U A(t)) =JAn. ®
t t

In theory, S and S are the exact swept object and
its boundary, respectively. However, in practice, it
is nontrivial to compute the geometric objects de-
fined by (6)-(8). As explained in the introduc-
tion, the sweep-envelope curves are high-degree



J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep 229

i ﬁ
1 9

2 10

. c@
3 11

A

4 12

5 13

6 14

7 15

8 16

Fig. 20.Incrementally generating the boundary of a general sweep
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algebraic curves, and they may have complex selfMinkowski sums and differences, and constant ra-

intersections. Thus we need approximation; in paredius offsets.

ticular, polygonal approximation makes the bound-

ary construction considerably easier. 5.1 Unsweep

Given an initial timetg, a final timete, and the num-

ber of discrete time intervals, a discrete time do- The unsweep is a geometric operation that defines

mainis defined ab = {tj|tj =to+ jAt}, whereO<  an area belonging to “every” instance of a mov-

j <nandAt = (te—to)/n. From this point of view, ing object. In contrast, a sweep operation defines an

(7) and (8) can be discretized, and we can compute adrea belonging to at least one instance of the mov-

approximate polygonal swee§® and its polygonal ing object (see (7)). Figures 21 and 22 illustrate

boundarySP as follows: the difference between sweep and unsweep. Sweep

D generates a area larger than that of the moving ob-

SP=sPAP, M, F)=| JAP( = [ ] AP, (9 ject whereas unsweep generates a smaller area. The

teD 0<j=n unsweep operation may result in an empty area as
3 P) shown in Fig. 22d. llies and Shapiro [13] introduce
3SP = aSP(AP, M, F) :U AP(t) = U AP, the unsweep operation. They consider moving ob-
D 0<j<n jects with a fixed shape. As a set-theoretic dual of the
T sweep, the unsweep plays an important role in the de-
where A}O is a polygonal approximation ofj =  signof mechanical parts.
Atj). Given a rigid motionM(t) and a shape transforma-

Equation (9) generates a jagged swept area and #@n F(t), the unsweep of an objeét is defined as
shape is dependent on the sampling density (seellows:

Figs. 4 and 5). To generate a smoother boundary,
need to use an envelope approximation method as — U(A. M. F) = ﬂ M®-F@O- A
described in Sect. 3. Using the line sweépof (3) t
and the approximate sweep operation of (4) for two = ﬂ At). (12)
consecutive instances; and Aj1, we can approx- t

imate the general sweep as - .
Similarly to the sweep operation, we can construct

SP(tg) = Sﬁ’ = Ag (10) anunsweep using an envelope approximation of (5).
Approximation of an unsweep boundary is given by
oy_aP P P, AP o ;
SP(tj+1) =S, =S U (Aj v Aj+1> (11)  the following induction step:
_aP AP .
=S UA UL UP(tg) = UJ = AP, (13)

Equation (10) is an initialization step and (11) de-yp((; ;) =UP . =UPn (AP/\ AP )
scribes an induction step. Thus, our algorithm has I+ I A
a sequential nature. Equation (11) implies that the = Ujpﬂ AP, N (L))"

o . +1
current swee|c§5jp is incremented t& ; by adding :

the union A? , UL; to S. Figure 20 shows the _ _
procedure of incrementally generating the boundar)$'2 The Minkowski sum
of a general sweep. The algorithm does not com;
pute the envelope curve algebraically. Consecutiv
instances of a moving object are connected wit

straight line segments (instead of smooth envelop

curve segments).

e describe an algorithm for computing the bound-
ry of a Minkowski sum based on the relationship
etween the sweep and the Minkowski sum. The
inkowski sum of two object#\ andB is defined as

A@oB={a+blaec A be B}.
5 Sweep-related problems Itis easy to check that the Minkowski sum is commu-
tative:A@B=B® A.

In this section, we present algorithms that canThe boundary of a Minkowski sum is closely related
solve problems related to the sweep: unsweep$) the translational sweep of an object with a fixed
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@ P

21a 21d

22a 22d
Fig. 21a—d.Sweep and unsweep:a moving objectb the object moves along a circlethe sweepd the unsweep
Fig. 22a—d.Sweep and unsweep:a moving objectp the object moves along a circlethe sweepd an empty unsweep

shape and orientation. Assume thais fixed, and as
B moves around the boundary Af while the origin
Og of Btraces along the boundary &f (We may as-
sume that the origifDg is located in the interior of
the objectB.) Let Sg denote the swept area Bfgen-
erated by this motion. Then the araincludes the =[JMaiv-B,
difference ofA@ B andA: t

Sei =SB, Mai, h=(JMaith-1-B
t

Ss=|JSsi. (15)
SO (A®B)—A). i~0

Moreover, we can represent the Minkowski sum bywhere the identity map means that there is no shape

a union of two sets: change, and eacMa(t) is a homogeneous mo-
tion matrix representing the translation along each
A®B=AUSs. (14) boundary curv€  ; (t):

Let Ca = J;~oCa,i be the boundary curves of an
objectA, andSg be the swept area &tracing along Mai(t) = I Cai(D)
Ca (see (2)). The translational swe8§pis computed ARV =10 1 :
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Fig. 23a—g.Construction steps for the boundary of a Minkowski santwo objectsA and B; b B moves along the exterior
boundaryCa o of A; ¢ 3Sg,o; d B moves along the hole boundaBp 1 of A; e 9Sg 1; f AU?Sg gU?Sg 1; andg d(A® B)
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Fig. 24a—d.Computing the boundary of a Minkowski sum based on a convolution curve approximationvolution curves
of two objects of Fig. 23ab polygonal approximations of some convolution curves except some obviously redundant seg-
ments;c a polygonal approximation of the boundary of a Minkowski suima refinement of the result) using spline
curves
Fig. 25a,b.The Minkowski sumB @ A for the objects of Fig. 23a sweepingA around the boundary d&; b 3(B® A)
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The Minkowski sum of (14) can be reformulated Note that (17) and (19) represent the same bound-
with (15): aries of a Minkowski sum:

3 3
A®B=AUSs = AU USBl ) (16) (AGB =AUS=BUSA=03(Ba A).

et

= _ In (18) and (20), however, the corresponding ap-
Now, we can represent the boundary of a Minkowskproximate boundaries of a Minkowski sum are not

sumas exactly the same; nevertheless, they have similar
9 shapes when reasonable samplings and polygoniza-
9 9 tions are used:
d(ABB =AUSs=AU || Ssi]- (17) :
i>0

3 9
, _AAP®BP)=APUSE~BPUS]
Thus, we can approximate the boundary of a Min- — 3(BP@ AP 21)
kowski sum following a construction scheme similar - )-

to thatof (7)—(11): For the objects of Fig. 23a, Fig. 25a shows the re-

3 sult of sweepingA around the boundary dB. By
~ PoBP)= AP U SP
AA®B) =0 (AP®BP) = APU S, 18)  the commutativity of the Minkowski sum, Figs. 23g

wheresg is a polygonal approximation @s. Fig- and 25b must be the same boundary curves.

ure 23a shows the construction steps for the bound¥/nen we :cnake_akunloE_ of two alternative apprﬁx-
ary of a Minkowski sum. Figure 23 a shows two input'Mations of a Minkowski sum, we get a smoother
objects: a flower-shaped obje&ind a Y-shaped ob- 2oundary of the Minkowski sum. Figures 26 and 27
ject B. For boundary curve€a o andCpa 1 of the illustrate hc_)w this approach WOI‘_kS: The Minkowski

object A, Fig. 23c and e show the correspondingSUms Of Fig. 26¢ and e look similar, though they
sweepsSs o and Sg 1, respectively. The boundary re_sult from the two dlﬁergnt sweep sequences of
3(A® B) of Fig. 239 is constructed by computing F19- 26D and d, respectively. When we overlap
AUBSB,0U833,1 (see Fig. 23f). Fig. 26¢ and e, their difference can be observed in

In contrast to our algorithm, Lee et al. [16] compute™9: 26f. Figure 26g is the union of Fig. 26c and e,
the boundary of a Minkowski sum based on a con@nd it is less jagged than Fig. 26¢ and e. Figure 27
volution curve approximation, where redundant Con_ls_%enerated with tlhe sarl;l_e objezc7tfs "ﬁ‘ Fig. hZG, ﬁUt
volution curves are later eliminated and the remain?''t bsparéer_ samfp '.”952' lgurgz S owsd_tﬁat the
ing curves generate the boundary of a Minkowsk{W© boundaries of Fig. 27c and e are very different.

sum. For the objects shown in Fig. 23a, Fig. 24 il- fowever, the boundary of Fig. 27g is significantly

lustrates how the algorithm of Lee et al. [16] works. €SS jagged thakn those of Ff'g' ZEC. ande. In flgs. 26
In particular, Fig. 24b and ¢ show how the redundanfNd 27, we make a union of each instance of a mov-
loops are eliminated from the convolution curvesNd Object without envelope approximation so as to

of Fig. 24a. show the effectiveness of our approach. This tech-
By the commutativity of the Minkowski sum, we can Midue can be applied to other boundary construction

sweep the objec around the objeds: proble_ms as well (e.g., for interactive sweeping and
offsetting).

B&OA=BUSA=BU| | JSa;
) 5.3 Minkowski difference

In this case, the exact and approximate boundaries of _ oo ,
a Minkowski sum are given as The Minkowski difference is closely related to the

unsweep with no shape change. As the inverse of
3 the Minkowski sum, the Minkowski difference is de-
I(B®A) =BU S, (19)  fined as follows [24]:

3 (BP@ AP) = BpSSK. (20) ASB=(A°®B)".
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Fig. 26a—g.Constructing the boundary of a Minkowski sum using a blending method for a dense samapivmobjects
A and B; b B sweeps along the boundary & c a rougph polygonal approximatioasg ~ 3J(A® B); d A sweeps along
the boundary oB; e a rough polygonal approximatiodS, ~ d(A® B); f asg and aSh; ga bIendingaSE and BSK as an
approximation ob(A® B)
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Fig. 27a—g.Constructing the boundary of a Minkowski sum using a blending method for a sparse saragiigobjects
Aand B; b B sweeps along the boundary #f ¢ a rough polygonal approximatiodSh ~ 3(A® B); d A sweeBs along
the boundary ofB; e a rough polygonal approximatioasp ~3(A® B); f asg and dS,; g the unionasguaSA as an
approximation ob(A® B)
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237

O
-

Fig. 28a—g.The boundary of a Minkowski difference: objects A and B; b B sweeps along the exterior bounda®w o;
C 0Sp g is the swegp boundary df, d B sweeps along the hole bounda®y 1; e 9Sg 1 is the sweep boundary af; f
(A°U%Sg 0U%88.1) g a(AG B)
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Fig. 29.Examples of offset curves

From (16) and (22), the Minkowski difference can be
reformulated as

AeB=(AUSs)"

= AN(S)°
= ANUge

=An| (Ve | . (23)
i>0

whereUge; represents the unsweep Bf around
the ith boundary curve ofA. The boundary of
a Minkowski difference is given as

d 9 9
IAOB)=ANUg = AN ﬂuBc,i . (24)
i>0

We approximate the boundary of a Minkowski dif-
ference and those of (7)—(11) similarly.

d
dAeB) ~d(APEBP)=APN UL,

whereU EC is a polygonal approximation &fge. Fig-

ure 28 shows the steps for constructing the bound-
ary of a Minkowski difference. In Fig. 28f, the gray
area represents the complement of the obfedf

Fig. 28a. Note that the Minkowski difference is not
commutative. Hence, in contrast to the case of con-
structing a Minkowski sum, we cannot use the tech-
nique of taking the union of two alternative represen-
tations to improve the quality of approximation.

5.4 Constant radius offset

The constantradius offsetis a special case of the gen-
eral sweep and the Minkowski sum. Given a curve
C, we offset the curv€ by sweeping a circular disc

D, of a fixed radiug along the trajectory curve.

The offset boundary of the trajectory cur@ds rep-

Let S denote the sweep & around the boundary of resented as

A. By complementing both sides of (15), we obtain

the unsweep oB€ around the boundary @:

Cc
Uge = (Se)° = USB,i) : (22)

i>0

9S=3S(Dr, Mc, 1), (25)

where Mc¢ is the translation along the trajectory
curve C, and the identity mag means no shape
change.

When the disd,; moves around the boundary of an
objectA, the offset boundary is given as

0S= aS(Dr’ M8A7 I)’ (26)



J.-H. Lee et al.: Polygonal boundary approximation for a 2D general sweep

whereMja is the translation along the boundary of 2.
A. Figure 29 shows the examples of offset curves
generated for various radii '

6 Conclusion

In this paper, we presented an algorithm that com
putes an approximate polygonal boundary of the
general sweep for an arbitrary 2D curved object withs,
holes. We define a general sweep as an infinite union
of the moving object and generate the sweep bound-
ary in an incremental manner. Compared with pre-
vious algorithms, our approximation algorithm has'
many advantages.

e It is easy to implement the algorithm robustly &
since it is based on boolean operations on simple
polygons. 9.

e Envelope approximation is easy and relatively

precise since it is based on line sweeps (which

may be nonconvex).
e Incremental sweep construction makes the algo-

rithm useful for interactive shape design, colli- 11.

sion detection, and mechanical part design.

way as the sweep operation by replacing unions
with intersections.

e Utilizing various computational shortcuts, the 13.

implemented algorithm demonstrates real-time
performance for moving objects with reason-
able shape complexity and topological changes as
well.

The 3D extension of our algorithm requires a ro-1s.

bust implementation of boolean operations on sim-

ple polyhedra. Since we start with simple polyhedra16
their union and difference are much easier to imple-
ment than the construction of the boundary of a 3D

swept volume from a set of sweep-envelope surfaces.

(approximated by complex polyhedra) which may

have complex self-intersections. The 3D extension i$8-

an immediate goal of our future research.
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