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Abstract 

The bisector surface of two rational surfaces in R3 is non-rational, 

in general. However, in some special cases, the bisector surfaces 

can have rational parameterization. This paper classifies some of 
these special cases that are related to constructive solid geometry 

(CSG). We consider the bisector surfaces between points, lines, 
planes, spheres, cylinders, cones, and tori. Many cases are shown 

to yield rational bisector surfaces, while several other cases are still 

left as open questions. 
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1 Introduction 

Given a solid object, its medial surface or skeleton is defined as 

the set of interior points which have minimum distance from at 

least two different points (called foot points) on the boundary of 

the solid. Medial surfaces have many important applications in en- 

gineering, in particular, for finite element mesh generation [ 11, 121. 
(See Sherbrooke et al. [ 121 for a detailed survey.) 

Several recent results [l , 2, 5, 6, 7, 8, lo] show that bisectors 

for some special pairs of rational curves and surfaces do indeed 
have closed-form rational representations. Considering the level of 

difficulty in computing the medial surface between two free-form 

solids, it is clear that closed-form solutions to some special bisector 
cases have significant contribution to the general skeleton problem. 

While the general bisector surface between two general CSG ob- 

jects is highly complex, the bisectors for some special pairs of CSG 

primitives have closed-form rational representation. These rational 

bisectors need to be numerically stitched together with adjacent bi- 

sectors (which may not be rational) so as to generate the bisector 
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of two CSG objects. While this is a non-trivial task that involves 

the computation of the intersection curves among bisector surfaces, 

this stitching task becomes much simpler with the introduction of 

closed-form rational bisectors. 

Consider bisectors in R3. Depending on the locations of foot 
points (i.e., on the vertices, edges, and faces of the boundary), each 

point of the medial surface belongs to one of the following bisec- 
tor surfaces: point-point, point-curve, point-surface, curve-curve, 

curve-surface, and surface-surface bisectors. The point-point bi- 

sector is always a plane, and hence rational. Given a point and a 

rational space curve, the point-curve bisector is a rational ruled sur- 

face [2]. Moreover, given two rational space curves, their bisector 

is a rational surface [2], except for the degenerate case where the 
two curves are coplanar. The bisector of a point and a rational sur- 

face is also rational [4]. However, the bisectors between a rational 

curve and a rational surface and between two rational surfaces are 

non-rational, in general. 

The bisector of two algebraic surfaces is algebraic [8]. For- 

mulated as a simultaneous system of non-linear polynomial equa- 
tions, the bisector surface can be computed (or numerically approx- 

imated) based on the dimensionality paradigm [8]. However, it is a 

quite expensive computational procedure. Dutta and Hoffmann [ 1 ] 
consider some special cases where the bisectors of CSG primitives 

(i.e., plane, sphere, cylinder, cone, and torus) are given as quadrics 

(thus, representable as rational surfaces). Many of these cases as- 
sume special configuration of two input surfaces 5’1 and SZ : 

When & is a plane and SZ is a torus, the plane Si is perpen- 

dicular to the axis of SZ . 

When S’1 is a sphere and SZ is a cylinder, cone, or torus, the 
center of .‘!?I is located on the axis of Sz. 

When S1 and & are cylinders, cones, tori (but not simultane- 

ously cylinders), they share the same axis. 

When S1 and .Sz are cylinders, they have the same radius or 

they are parallel. 

In the first three cases, due to the symmetry of configuration, the 

bisector problem can be reduced to that of lines and circles in the 

plane. The planar bisectors are conic curves. By rotating these 

conic curves about the common axis of the two input surfaces, we 

can obtain quadratic surfaces of revolution. The case of two parallel 
cylinders can be reduced to the bisector of two circles, which is an 
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ellipse or hyperbola. The bisector surface is then obtained as an 
elliptic or hyperbolic cylinder. Finally, the case of two cylinders 

of equal radius is reduced to the bisector of their axes, which is a 
hyperbolic paraboloid. 

In this paper, we add1 several more special cases to the results 

of Dutta and Hoffmann [I]. We show that the bisector surfaces 

are rational (but not necessarily quadric) for the following input 

surfaces Sr and SZ: 

When Sr is a sphere and Ss is a CSG primitive, the bisector 

problem is reduced to that of the center of Sr and the offset 

surface of Sz (by the radius of Sr ), which produces a rational 

bisector surface [4]. 

When Sr and Sa are either tori or cylinders, in general po- 

sition, but of equal radius, the bisector problem i,s reduced 

to that of bisectors between circles and lines in R3, which is 

known to yield rational bisectors [2]. Moreover, if these two 
reduced curves are coplanar, the bisector surface is a.n elliptic, 

hyperbolic, or paralbolic cylinder and hence is rational. 

When Sr and Sz are circular cones sharing the salme apex, 

we show that the bisector is a rational conical surface with the 

same apex. 

When Sr is a plane and SZ is either a cone or a cylinder in 
general position, we show that the bisector is a rational conical 

surface. 

We first consider the Ibisectors of points and curves on the unit 

sphere S2. This result will then be employed in constructing var- 

ious rational conical bisector surfaces. Furthermore, based on the 

recent result of Elber and Kim [4] on the bisector of a sphere and 
a surface with rational offsets, we classify various special cases 

where the bisector surface of two CSG primitives is a rational sur- 
face. We present simple and direct methods that construct rational 

parameterization of these: bisector surfaces. 

Farouki and Johnstone [5, 61 consider the bisector problem for 
planar rational curves. Given a point and a rational curve in the 

plane, the bisector curve i.s rational [5]. However, in general, the bi- 
sector of two polynomial or rational curves in the plane is algebraic, 

but not rational [6]. Farouki and Ramamurthy [7] develop an algo- 
rithm that approximates the bisector curve using curve segments 

within an arbitrary error bound. (See Ramamurthy [IO] for oiher 

related results.) Elber an’d Kim [3] transform the bisector problem 
for two planar rational curves Cr (t) and Cz (r) in the sy-plane into 

a zero-set finding problem for an algebraic equation F(t, IP) = 0 in 

the tr-plane. The degree of F(t, r) is significantly lower than that 

of the bisector curve in the xy-plane. In Section 2, we show that a 

similar technique can be applied to the spherical bisector problem 
for two rational curves Cr (t) and Cz (r) on the unit sphere. 

This paper is organized as follows. In Section 2, we consider 

the bisector problem on the unit sphere. Section 3 presents some 
special cases where the b:isector of two CSG primitives can be rep- 

resented as a rational surface. The results of this paper are: summa- 

rized in Section 4. Finally, in Section 5, we conclude the paper. The 

implementation of the presented approach as well as all the figures 
of this paper were created with the aid of tools implemented ar; part 

of the IRIT [9] solid modeling system, developed at the Technion.. 
Israel. 

2 Bisectors on the Sphere 

Given two points P and Q on the unit sphere S2, their spherical 

(geodesic) distance p( P, Q) on S2 is the same as the angle be- 

tween P and Q: p(P, Q) = arccos (P, Q), where (P, Q) is the 

inner product of P and Q, considered as two unit vectors. Conse- 

quently, for three points P, Q, R on the unit sphere S2, we have 

p(P,Q)=p(P,R)ifandonlyif(P,Q)=(P,R). 

Let Q and C(t) be a point and a rational curve, respectively, 

on the unit sphere S2. Their spherical bisector curve f?(t) E: S2 

satisfies the following three constraints (see Figure 1 (a)): 

(B(t), Q> = P(t), C(t)) 1 (1) 

p(t) - c(t), c’(t)) = 0, (2) 

(~tt),~tt)) = 1. (3) 

Equation (1) constrains the bisector curve to be at equal spherical 

distance from Q and C(t). Equation (2) implies that each bisec- 

tor point is contained in the normal plane of C(t). Finally, Equa- 
tion (3) guarantees that the bisector curve is contained in the unit 

sphere. Unfortunately, Equation (3) is quadratic in B(t); thus, it is 

non-trivial to solve the above three equations to get a closed-form 
representation for the three unknown x, y, z-coordinates of 8(t). 

In order to resolve the above problem, we replace Equation (3) 

with the following linear equation: 

P(t), E3) = 1, (4) 

where Es = (0, 0,l). That is, Equation (4) constrains the bi.sec- 
tor curve to the plane Z = 1. Equations (l), (2). and (4) now 

form a set of three linear equations in three unknowns, the x, ~4, z- 

coordinates of B(t). The solution of these three equations yields 
a rational curve on the plane Z = 1, a curve denoted E(t). By 

normalizing this curve, we get a bisector curve on the unit sphere: 

B(t) = ~(t)/ll~(t)ll E S2. Because of the square root function in 

the denominator, the bisector curve f?(t) is non-rational, in general. 

In some applications (such as the one to be discussed in $Sec- 

tion 3), the rational curve ‘fi(t) can be used instead of the exact 

bisector curve B(t). Given a rational curve, C(t) E S2, one 
can define a rational conical surface with its apex at the origin: 

S(t, w) = w * C(t). Let L be a line passing through the apex 

(i.e., the origin). The bisector surface between S( t, u) and L can be 

represented as another rational conical surface (with its apex at the 
origin) which is defined by the rational curve B(t). Thus, the ratio- 

nal curve a(t) is sufficient for this application. Figure l(b) shows 

B(t) and B(t) computed using the approach presented above. Fig- 

ure 1 (c) shows the bisector curve B(t) on the unit sphere S2. Note 

that if B(t) is a spherical bisector, so is -ET(t), i.e., the antipodal 

curve of B(t). 
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(a> 0) 

Figure 1: (a) A point P and a curve C(t) (in dark gray) on the unit sphere, (b) the rational bisector, a(t), on the plane 2 = 1 is shown in 
black along with its central projection onto S2, and (c) the spherical bisector. Note that, for each bisector point, its antipodal point is also a 
bisector point. 

Given two regular rational curves Ci (t) and C2 (r) on the sphere 

S2 (i.e., ](C;(t)(( # 0 and (ICi(r)(( # 0), their bisector curve 
B(t(r)) E S2 must satisfy the following three conditions in addi- 
tion to the constraint of being on the unit sphere: IlB(t(r))ll” = 1 

(see Figure 2): 

(a(t(r)), G(t) - Cz(r)) = 0, (5) 
(B(t(r)) - G(t),G(t)) = 0, (6) 

(B(t(r)) - Cz(r),G(r)) = 0. (7) 

Equations (S)-(7) are linear in f?(t(r)); thus, there is a unique 
solution if and only if the three vectors Cr (t) - Cz (r), C; (t), 

and C:(r) are linearly independent [2]. However, this is not the 
case when the points in curves Ci (t) and Cz(r) are foot points 
of a bisector point B(t(r)) on the sphere S2. Consider the set 
of points (on the sphere S2) which are at a spherical distance PO 

from B(t(r)), where PO = p(C,(t), B(t(r))) = p(Cz(r), B(t(r))). 
This set generates a circle C on the sphere S2 with its center at 
cos(po)B(t(r)) E R3 and radius sin(po). The tangent vectors 

C;(t) and C;(r) are also tangent to the circle C; thus, they are 
contained in the plane P of the circle C. Moreover, the difference 
vector Ci (t) - C2 (r) is also contained in the same plane P. This 

means that the three vectors Ci (t) - Ca (r), C; (t), and Ci (r) are 
coplanar and linearly dependent. 

On the other hand, if the three vectors Cr (t) - Cz(r), C:(t), 
and Ci (r) are coplanar, they determine a plane P and a circle C = 
‘P n S2. It is easy to check that the radial line passing through the 
origin and the center of C intersects the sphere, S2, in two points, 
each of which is a bisector point with its foot points at Ci (t) and 
CZ (r). Consequently, the following condition classifies all (t, r)- 

pairs that generate bisector points: 

a(r,t)= / ““%gj+ 1 =O. (8) 

Since we assume that the two input curves Cr (t) and Cz(r) are 
regular, the above condition is a necessary and sufficient condition 
for the (t, r)-pair to generate a bisector point. Figure 2 shows two 
examples of spherical bisectors. 

3 Bisectors of CSG Primitives 

Dutta and Hoffmann [l] classify some special cases where the 
bisector surface of two CSG primitives can be represented as a 
quadric and hence is a rational surface. In this section, we add 
several more special cases which can be represented as rational, 
but not necessarily quadric, surfaces. Moreover, we present simple 
methods for constructing rational parameterization of these bisector 
surfaces. 

3.1 Bisectors of Points, Lines, and Planes 

The bisectors of points, lines, and planes are mostly quite straight- 
forward to compute. The bisector of two points or two planes is a 
plane. The bisector of two lines is a hyperbolic paraboloid if the 
lines are skew; a plane if the lines are parallel; and two planes if 
the lines intersect [ 1, 21. The bisector of a point and a plane is a 
paraboloid of revolution [l, 41. The bisector of a point and a line 
is a parabolic cylinder. It is clear that these bisector surfaces are 
all rational surfaces. Elber and Kim [2] present a simple method 
for constructing rational parameterization of these quadric bisector 
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(4 (b) 

Figure 2: Two examples of spherical curve-curve bisector on S2 : (a) the bisectors of two circles, Ci (t), on S2, and (b) the bisectors of an 
arc, Cl (t), and a circle, Cz(t). Given arc and circles are shown in dark gray and bisectors are shown in black. 

surfaces. The line-plane is the only non-trivial case left for consid- 

eration among these simple primitives. We will consider the line- 
plane bisector in Section 3.3 as a special case of line-cone bisector 

where the cone degeneraltes to a plane. 

3.2 Bisector of a (Cone and a Line 

Consider the bisector of .a cone and a line through its apex. Without 

loss of generality, we may assume that the apex of the cone is at 
the origin. Thus, this bisector problem can be formulated in terms 

of the radial lines emanating from the origin. The angle between 
two radial lines may seme as the distance measure between the two 

lines. The bisector surface is then a conical surface with its apex at 
the origin. 

The bisector problem can be reduced to a similar problem on the 

sphere. The cone and the line are reduced to a circle and is point on 

the sphere, S2, (or two circles and two points if antipodal points are 
considered identical), which are obtained by intersecting the cone 

and the line with the sphere. The spherical bisector of a point and 
a curve on S2 was already considered in Section 2. The bisector 

curve can be computed and represented as a rational curve B(U) on 

the plane 2 = 1. Hence, the bisector surface of a cone and a line 
through its apex can be represented as a rational surface: 

qu, w) = 2) *E(u). (9) 

3.3 Bisector of a Plane and a Line 

We may assume that the plane is the zy-plane and the line intersects 
the plane at the origin. The plane may be considered as a cone 
with its apex at the origin and its spanning angle r/2. ‘Thus, the 

line-plane bisector is rational. Figure 3(a) shows an example of a 
line-plane bisector. 

3.4 Bisectors of a Sphere and a CSG Primitive 

The bisector of a point P E R3 and a rational surface S( U, U) is al.. 
ways rational [4]. Moreover, if S(u, u) has a rational offset surface, 

the bisector of a sphere and the surface S(U, w) is also rational [4]. 

When we offset the sphere (inward) and the surface S(U, U) by the 

radius of the sphere, the sphere-surface bisector problem is reduced 
to a point-surface bisector problem. Since all CSG primitives are 

closed under the offset operation, the bisector of a sphere and a CSG 

primitive is always rational. Figure 4 shows several examples of 

sphere-cone, sphere-cylinder, sphere-sphere, and sphere-plane bi- 
sectors, each computed via the reduction to a point-surface bisector 

problem. Figure 5 shows two examples of sphere-torus bisectors. 

Other types of bisector problems can also be reduced to a point- 

surface bisector. The sphere-line bisector can be reduced to a point- 

cylinder bisector, via an offset by the radius of the sphere. Since the 

point-cylinder bisector is rational, the sphere-line bisector is also 

rational. Figure 3(b) shows an example of line-sphere bisector. The 

sphere-plane bisector is also rational since it can be reduced to a 

point-plane bisector. 

3.5 Bisector of a Cylinder and a Plane 

We can apply a similar reduction scheme to the construction of a 

cylinder-plane bisector. The cylinder is shrunk to its axis by off- 

setting the cylinder (inward) by its radius. At the same time, the 
plane is offset to a (parallel) plane by the same offset radius. The 

bisector is then constructed as a line-plane bisector which is known 

to be rational by Section 3.3. Figure 6(a) shows an example of a 

cylinder-plane bisector. 

162 



(a) (b) 

Figure 3: (a) The rational bisector (in black) of a plane (in gray) and a line (in dark gray), and (b) the rational bisector (in black) of a sphere 
(in gray) and a line (in dark gray). 

3.6 Bisector of a Cone and a Plane 

The bisector of a cone and a plane is rather more complex. We as- 

sume that the plane is the zy-plane. Moreover, let P = (pz , py , pz) 
be the apex of the cone, v = (u%, wy, ut) be the direction of the 

axis of the cone, and cx be the spanning angle of the cone. We can 

gradually offset both the rcy-plane and the cone until the apex of an 

offset cone is contained in the offset plane. Let r denote the corre- 

sponding offset radius. The apex of the cone then moves along the 

axis of the cone (or along the direction p) by distance of (r/ sin cr). 

When we measure the motion of the apex along the normal of the 

plane, we get a vertical distance of 

( g&c (O,O, 1,) = &w, 
Thus, we have the following relation: 

or 
Pz 

r=iq&. (11) 

We may consider the offset plane as a circular cone with its apex at 

the same position as that of the offset cone. The cone-plane bisector 

problem, where the cone’s apex is contained in the plane, can then 

be further reduced to the bisector problem of two cones sharing the 

same apex. This problem is discussed below. 

3.7 Bisector of Two Circular Cones 

We consider the bisector of two cones sharing the same apex. Ap- 

plying the transformation technique of Section 2, the bisector prob- 

lem is reduced to that of two circles on 5”. We further offset both 

circles on the sphere until the smaller one vanishes to a point. In 

other words, the spherical bisector of two circles is reduced to that 

of a point and an offset circle, which is known to have a rational 

representation on the plane Z = 1. Therefore, the bisector of two 

circular cones sharing an apex is rational. Figure 6(b) shows an 

example of cone-plane bisector. 

4 Summary of Result 

Table 1 summarizes the various special cases where we can repre- 

sent the bisector of two CSG primitives as a rational surface. Many 

of these cases can be reduced to simpler cases. The remarks below 

further enumerate the items in Table 1: 

(1) If the line is parallel to the cylinder, the bisector is an elliptic 

or a hyperbolic cylinder [ 11. 

(2) If the line passes through the apex of the cone, the bisector is 

a rational conical surface with the same apex. 

(3) If the line is coincident with the axis of the torus, the ratio- 

nal bisector is a surface of revolution with a parabolic cross 

section. 

(4) A rational surface, via a reduction to a plane-line bisector. 

If the line is parallel to the plane, the bisector is a parabolic 

cylinder. Otherwise, the bisector is an elliptic cone [l]. 

(5) A paraboloid of revolution [l], via a reduction to a plane-point 

bisector. 

(6) A rational surface, via a reduction to a cone-line bisector. 

(7) If the plane is perpendicular to the axis of the torus, the ratio- 

nal bisector is a surface of revolution with a parabolic cross 

section [ 11. 
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4. \ 
(4 (b) 

(4 

Figure 4: (a) shows the rational bisector (in black) of a cone and a sphere, (b) shows the rational bisector of a cylinder and a sphere, (c) shows 
the rational bisector of two spheres, and finally, (d) shows the rational bisector of a plane and a sphere. 

Table 1: A summary of special cases where the bisectors of CSG primitives can be represented as rational surfaces. 
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(4 (b) 

Figure 5: Two examples of rational bisector (in black) of a sphere (in gray) and a torus (in dark gray). 

(4 (b) 

Figure 6: (a) shows a rational bisector of a cylinder and a plane, while in (b) a rational bisector of a cone and a plane is shown. 

(8) It is reducible to a cylinder-line bisector (see the case (1)). If 

the two cylinders are of equal radius, the problem is reducible 

to the line-line bisector. In this case, the bisector is a hyper- 

bolic paraboloid if the axes are skew; a plane if the axes are 

parallel; and two planes if the axes intersect [ 1, 21. 

(9) A rational surface, via a reduction to a cylinder-point bisec- 

tor 131. 

(10) If the axes are the same, the bisector consists of two cones [ 11. 

(11) If the axes are the same, the rational bisector is a surface of 

revolution with a parabolic cross section [I J. Alternatively, 

when the radius of the cylinder is the same as the minor radius 

of the torus, it is reducible to a circle-line bisector, which has 

a rational bisector [2]. 

(12) A rational surface, via a reduction to a sphere-point bisec- 

tor [33. 

(13) A rational surface, via a reduction to a cone-point bisector [3]. 

(14) A rational surface, via a reduction to a torus-point bisector [3]. 

(15) If two circular cones share the same apex, the problem can 

be reduced to a point-circle bisector on the sphere; thus the 

bisector is a rational conical surface with the same apex. 

(16) If the axes are the same, the bisector consists of two surfaces 

of revolution, each obtained by rotating a parabola about the 

common axis [l]. Note that the axis of rotation is neither 

identical nor perpendicular to the axis of symmetry of the 

parabola. 

(17) When the two tori have the same minor radius, the problem 

can be reduced to a circle-circle bisector. If the two circles 

are coplanar, the rational bisector is an elliptic or a parabolic 

cylinder. If the two circles are not coplanar, the bisector is also 
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a rational surface [2]. Alternatively, when the two tori have 

the same axis, the rational bisector is a surface of revolution 
with either an elliptic or a hyperbolic cross section [ 11. 

5 Conclusion 

In this paper, we have classified some special cases where the bisec- 

tor surface of two CSG primitives can be represented as a rational 

surface in R3. Dutta and Hoffmann [ 1 J have already shown that 

many of these special bisectors are quadrics; thus, they can be rep- 

resented as rational surfaces. 

Herein, we have shown that some other cases are als,o rational, 

while not necessarily being quadrics. Our approach transforms each 

bisector problem to a simpler problem, i.e., either to a problem on 

the sphere or to that for simpler geometric primitives. A.s a result, 

we could add a few more special cases (of rational bis#ectors) to 

the result of Dutta and Hoffmann [I]. We also presented simple 

methods for constructing rational parameterization of several spe- 

cial bisector surfaces of CSG primitives. 
Finally, it should be n.oted that the reductions to simpler config- 

urations might eliminate: some potential bisectors since t:he reduc- 

tions based on offsets are dependent on surface orientation. Given 
two varieties, the reductions to simpler configurations might detect 

only subsets of the bisectors. Thus both inward and oultward off- 

sets must be considered for constructing complete bisectors. For 

example, two spheres with the same radius have a planar bisector 
between them. While this plane is typically the desired bisector, 

it is not the only solution. Figure 7 shows all potential bisectors 

of two spheres of the same radius. The inward reductio:n of these 

two spheres to two points would obviously yield the planar bisec- 
tor. The reduction of one sphere to a point, while the other sphere 

is offset outward to a larger sphere, yields an ellipsoid. 
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