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The following notes give brief descriptions of the video segments that make up

the accompanying video proceedings. As in previous years, the videos use images

to enhance our understanding of geometric ideas. In some cases this involves the

illustration of algorithms in action. In others, we see applications of geometric

algorithms in other disciplines. As the field matures, we see the videos serving as

valuable adjuncts in each of these functions.

The seven video segments were selected by a video program committee meeting

in Vancouver on February 28th, 1997. The segments were judged based on their

clarity, quality, and contribution to the field. Some accepted videos have been

revised to reflect the comments of the committee.

We thank the members of the Video Program Committee for their help in eval-

uating the entries. The members of the committee were Alain Fournier (Univer-

sity of British Columbia), Mark Keil (University of Saskatchewan), David Salesin

(University of Washington), Thomas C. Shermer (Simon Fraser University), and

Jack Snoeyink (University of British Columbia). We thank the Computer Science

Department at the University of British Columbia for providing support in the cre-

ation of the final video.
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Abstract

Given a point and a rational curve in the plane, their bi-
sector curve is rational [3]. However, the bisector of two
rational curves in the plane is not rational, in general [4].
Given a point and a rational space curve, the bisector sur-
face is a rational ruled surface. Moreover, given two rational
space curves, the bisector surface is rational (except for the
degenerate case in which the two curves are coplanar). The
last two cases are demonstrated in this video.
Key Words: Bisector, Voronoi surface, Medial surface,
skeleton.

Given two objects in the plane or space, their bisector
curve or surface is defined as the set of points which are
equidistant from the two objects. While the bisector curve
or surface can never self intersect, in this work, we consider
rational representations of curves and surfaces that contain
the exact bisector curve and/or surface. There are some
redundant surface regions in the rational form that is pre-
sented that self intersect and hence must be eliminated. For
brevity reasons, we denote in this work, those rational forms
as the bisector curves and/or surfaces. The medial axis and
medial surface are also closely related to the bisector curve
and surface; that is, given an object in the plane or space,
the medial axis or surface is defined as the set of interior
points of the object which have minimum distance from at
least two different points on the boundary of the object.

Bisector surfaces and medial surfaces have many impor-
tant applications in engineering [1, 5, 6, 8]. (See Sherbrooke
et al. [8] for a detailed survey. ) However, their construction
is non-trivial except for some special cases. Dutta and Hoff-
mann [1] considered the bisectors for simple surfaces such
as natural quadrics and toroidal surfaces. For these special
types of surfaces, the bisector surfaces have simple closed-
form representations. For general algebraic surfaces, Hoff-
mann et al. [5, 6] formulated the bisector surface (called the
Voronoi surface) using a simultaneous system of non-linear
polynomial equations. The solution scheme is based on the
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dirnensionrdity paradigm [5], which requires a preprocessing
step that determines the global topological structure of the
solution space.

Approximation of bisectors is computationally quite ex-
pensive. Therefore, it is desirable to classify special cases
in which the bisectors have exact representations or simple
approximations. Farouki and Johnstone [3, 4] investigated
the bisector problem for planar rational curves. Given a
point and a rational curve in the plane, the bisector curve
is rational [3]. However, the bisector of two polynomial or
rational curves in the plane is algebraic, but not rational,
in general [4]. In practice, numerical tracing techniques are
required to approximate the bisector curve. This video con-
siders the bisector problem for space points and curves and
shows that the added extra dimension of the 3D space ac-
tually alleviates the computational difficult y! That is, given
a point and a space curve, their bisector is a rational ruled
surface. Moreover, given two space curves, their bisector sur-
face is rational (except for the two dimensional degenerate
case in which the two curves are coplanar).

Given two Cl-continuous space curves, Cl (s) and Cz (t),
consider the necessary conditions for the two points Cl (s0 )
and C2(to)to generate a bisector point P:

1.

2.

3.

Point P must be located in the normal plane LI (so) of
GI(s) at CI(SO).

Similarly, point P must also be located in the normal
plane LZ(to)of C2(t)at Cz(to).

Moreover, point P is also located in the bisector plane
LIZ(so, to) ‘which is the set of equidistant points-from
C1(SO) and Cz(to).

When the three planes: L] (so), L2(to),and L12(s0, to), are
in general position (i.e., no two of them are parallel to each
other), there exists a unique intersection point P of the three
planes.

When the curves Cl (s) and C2(t) are rational 3-space
curves, the planes Ll(s), Lo(t), and Llz(s, t) can be repre-
sented as implicit equations (of z, y, z) with rational coeffi-
cients in s and t:

L,(s) : al(s)x +bl(s)v + C1(S)Z = all(s),
Lz(t) : az(t)x + k(t)v + cz(t)z = dz(t),

LIZ(S, t) : alz(s, t)z + blz(s, t)y+ c12(s, t)z = dlz(s, t),

where all the coefficients are rational fimctions of s and t.
Based on Cramer’s rule, it is quite straightforward to show
that z, y, z are rational functions of these coefficients; there-
fore, they are rational functions of s and t. As a result,
we can represent the bisector surface P(s, t) as a rational
surface of s and t.
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When one of the two curves (say, Cl(s)) degenerates to
a single point Q, the orthogonal plane LI (s) is not defined.
Let LIZ (to ) denote the bisector plane between points Q and
Cz (to). Then, we have the following plane equations of Lz (t)
and Liz(t):

LZ(t) : az(t)z + b2(t)y + c2(t)z = d2(t)

L,Z(t) : a12(t)z + b12(t)y + c12(t)z = d12(t),

where all the coefficients are rationaf functions of t. The
common solution of the above two equations is the inter-
section line of two planes: LO(t) and LIZ(t). That is, each
parameter tcontributes a line to the bisector surface; thus
the bisector surface becomes a ruled surface. The ruling di-
rection N(t)is given by the cross product of the normals of
Lz(t) and LLz(t):

N(t) = (az(t), b2(t), cz(t)) x (a~z(t),blz(t),clz(t)),

which is rational. To represent the ruled bisector surface as
a rationaf surface, we need to construct a rational directrix
curve on the surface. Let L 1(t) be the plane which passes
through the given point Q and is orthogonal to the ruled
direction N(t)at t:

L,(t) : al(t)z + bl(t)y + cl(t)z = all(t),

where (al (t),bI(t), cl(t)) = N(t) and dl (t) = (N(t), Q). Alf
the coefficients of L1 (t),Lz (t), and LIz (t) are rational; there-
fore, their common intersection point is also rational in t.
The trace of these intersection points generates a rationaf
directrix curve on the ruled bisector surface. Since the in-
dicatrix curve IV(t) is also rational, the bisector surface is a
rational ruled surface.

The computation of the bisector surface is efficient as it
requires the symbolic solution of a small (3 by 3) linear sys-
tem. The symbolic manipulation involves the summation
and product of different piecewise polynomial and rational
functions. Overafl, and for all the bisector surfaces in this
video, the computation of a single bisector surface on a high-
end workstation takes a fraction of a second only. A wire-
frame animation of the same video can, in fact, be computed
and animated in real-time on a high-end workstation, at the
rate of several frames per second.

Given two rational space curves, the existence of a ra-
tional bisector surface has great potential in surface design
as well as in conventional engineering applications of medial
surfaces. It is easy and quite intuitive to control the geomet-
ric shape of a (bisector) surface by changing the shape and
orientation of the two base curves or to control the shape
of a rufed (bisector) surface with one base curve and a base
point. Motivated by the efficiency of the bisector surface
computation, we propose the possibility of using the bisec-
tor surface construction aa another freeform modeling con-
struction scheme in traditional modeling environments, in
a similar way to the sweep surface or surface of revolution
construction schemes.

Clearly not alf bisectors have rationaf representations.
Questioning the varieties that can benefit from the presented
symbolic approach is naturaf. Moreover, the extension of the
proposed scheme to higher dimensions is feasible. In R3, the
bisectors of the cme-point, curve-curve, and surface-point
cases alf have bivariate rational forms.

This video consists of a sequence of nearly 4000 frames,
with each frame containing a bisector surface computed from
different and continuously changing curves and points. The
bisectors were computed using the symbolic tools of the
IRIT [7] solid modeling system, developed at the Technion,
Israel. The resulting bisector surfaces were then rendered
transparently using a rendering tool of the same modeling
system. Figure shows one example of a bisector surface
computed to two quadratic Bspline space curves.

This text is an abstracted version of Reference [2].

Figure 1: A bisector surface of two quadratic Bspline space
curves. The bisector surface is order seven by seven.
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