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We present an algorithm that computes the convex hull of multiple rational curves
in the plane. The problem is reformulated as one of finding the zero-sets of polyno-
mial equations in one or two variables; using these zero-sets we characterize curve
segments that belong to the boundary of the convex hull. We also present a prepro-
cessing step that can eliminate many redundant curve segments.c© 2001 Academic Press
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1. INTRODUCTION

Many geometric problems have solutions that are simpler for convex objects than for
general nonconvex objects [13]. For example, interference among convex polygons can
be detected more efficiently than among arbitrary simple polygons, and so convex hulls
are commonly used in preprocessing for interference tests: when the convex hulls do not
intersect, there can be no interference among the given polygons. Applications of this sort
have motivated the development of several optimal algorithms for computing the convex
hull of a simple polygon in linear time [6, 8].

There are a few theoretical algorithms for computing the convex hull of a planar curved
object [1, 3, 14]. These algorithms are optimal in the sense that their time complexity is
O(n), wheren is the number of curved edges in an input object. (Each algorithm is based on a
different definition of “curved edge”; see the Refs. [1, 3, 14] for more details.) Nevertheless,
each step of these convex hull computations is based on expensive procedures that compute:
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(i) the tangent line from a point to a curved edge and (ii) the common tangent line of two
curved edges. In practice, however, many planar curved objects are constructed out of a
small number of freeform curves, each of which may be quite complicated; in such cases,
the efficiency and robustness of computing tangent lines is dominant, and combinatorial
complexity as a function ofn is not an appropriate measure of performance.

The boundary of the convex hull of a curve segmentC consists of subsegments ofC as
well as line segments thatsupport Cat two different locations. (A linesupportsa curve
C if and only if it touchesC at some point(s) and the curveC is totally contained in the
half-plane bounded by the line.) The curveC may be supported by a line at: (i) both end
points, (ii) one end point and one interior point, or (iii) two interior points. It is trivial to
compute the line passing through both end points ofC; a line through a fixed point and
tangent toC is called apoint–curve tangent; and a line tangent toC at two different interior
points is called abi-tangent. The supporting lines of types (ii) and (iii) are, respectively, the
point–curve tangents and bi-tangents ofC.

Point–curve tangents may be computed by solving a polynomial equation in one variable;
the computation of bi-tangents can be formulated as a system of two polynomial equations
in two variables, which can be solved using existing techniques [10, 11, 15]. In this paper,
we employ a simple technique that represents the polynomial equations using B-spline
basis functions. The convex hull property of the B-spline representation then provides a
robust, yet reasonably efficient, procedure that computes all solutions based on an adaptive
subdivision scheme [5].

Previous algorithms [7, 9, 12] for computing common tangent lines required each curve
to be segmented into certain simple pieces such as convex and monotone segments, which
is cumbersome and time-consuming for high-degree curves. In this paper, we take a general
approach that needs no special structure for the input curves and imposes no limitation
on their degrees: we assume only that the input curves are planar, rational, piecewiseC1-
continuous, and contain no straight line segments. Once the problem has been reformulated
in terms of B-spline polynomial equations, a generic zero-set finder is used to compute all
the solutions of these equations.

The zero-set approach provides a simple way of characterizing the curve segments that
appear on the boundary of the convex hull. Assume that a curve pointC(t0) is on the
boundary of the convex hull. The tangent line at this point intersects the curve at no point
other thanC(t0). This condition can be formulated by complementing the projection of a
zero-set.

The rest of this paper is organized as follows. In Section 2, we present preliminary
algorithms for computing the point–curve tangents, bi-tangents, and common tangents for
rational curves in the plane. In Section 3, we describe the main algorithm of this paper,
which computes the convex hull of a rational curve and that of multiple rational curves.
A technique for eliminating many redundant curve segments is introduced in Section 4.
Section 5 concludes this paper.

2. PRELIMINARIES

To begin, we will consider how to compute: (i) the tangent lines from a pointP to a
piecewise rational curveC, (ii) all lines tangent toC at two different locations, and (iii) all
lines tangent to two different curvesC1 andC2 simultaneously. We reduce each procedure
into a zero-set finding problem in one or two variables.
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2.1. Computing Point–Curve Tangents

Let P = (px, py) be a fixed point and

C(t) =
(

x(t)

w(t)
,

y(t)

w(t)

)
be a regularC1-continuous rational curve of degreed in the xy-plane. The lineL P,C(t0)

passing throughP andC(t0) is tangent to the curveC(t) at the pointC(t0) if and only
if the vectorC(t0)− P is orthogonal to the normal vectorN(t0) = w′(t0)(y(t0),−x(t0))
− w(t0)(y′(t0),−x′(t0)). This condition can be formulated as a polynomial equation of
degree 2d − 2 in one variablet

F1(t) = 〈C(t)− P, N(t)〉
= (x′(t)y(t)− x(t)y′(t))

+ px(w(t)y′(t)− w′(t)y(t))+ py(x(t)w′(t)− x′(t)w(t))

= 0, (1)

which has at most 2d − 2 real roots. In Fig. 1a, the curveC(t) is drawn in solid black and all
tangent lines toC(t) from a fixed pointP are drawn in gray. The functionF1(t) of Eq. (1)
is shown in Fig. 1b. BothC(t) andF1(t) are represented as B-spline curves.

2.2. Computing Bi-tangents and Curve–Curve Tangents

When the pointP = (px, py) is located on the same curveC(r ), Eq. (1) can be reformu-
lated as

F2(r, t) = w(r )〈C(t)− C(r ), N(t)〉
= w(r )(x′(t)y(t)− x(t)y′(t))

+ x(r )(w(t)y′(t)− w′(t)y(t))+ y(r )(x(t)w′(t)− x′(t)w(t))

= 0. (2)

FIG. 1. C(t) is a quadratic periodic B-spline curve with 103 control points: (a) shows all tangents lines from
a pointP to a curveC(t); and in (b) the functionF1(t) is shown together with all the solutions of Eq. (1).
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Additionally, when the lineLC(t),C(r ) is parallel to bothC′(t) andC′(r ), we have the following
two simultaneous equations in two variables

F1
2 (r, t) = w(r )〈C(t)− C(r ), N(t)〉 = 0, (3)

F2
2 (r, t) = w(t)〈C(r )− C(t), N(r )〉 = 0. (4)

Let F̄1
2 andF̄2

2 denote the zero-sets of the above two equations, respectively:

F̄1
2 =

{
(r, t)

∣∣F1
2 (r, t) = 0

}
and F̄2

2 =
{

(r, t)
∣∣F2

2 (r, t) = 0
}
. (5)

Note that Eqs. (3) and (4) are symmetric with respect to the variablesr andt : F1
2 (t, r ) =

F2
2 (r, t). Thus, the zero-sets̄F1

2 andF̄2
2 are symmetric about the diagonal liner = t . When

one zero-set is constructed, the other can be simply obtained as its reflection about the
diagonal line. The simultaneous solutions of Eqs. (3) and (4) are given as the elements in
the intersection of two zero-sets̄F1

2 ∩ F̄2
2 .

Figure 2 shows an example. In Fig. 2a the functionF1
2 (r, t) is shown as a scalar B-spline

surface. The zero-set̄F1
2 is computed; its reflection about the diagonal liner = t yields

FIG. 2. The two zero-sets of Eqs. (3) and (4) are intersected to yield the pairs (r, t) that admit common
tangent lines toC: in (a), the functionF1

2 (r, t) is shown along with its zero-set,̄F1
2 ; in (b), the intersection points of

F̄1
2 ∪ F̄2

2 (below the diagonal liner = t) are drawn in gray; finally, in (c), all the computed bi-tangents are shown.
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the other zero-set̄F2
2 . Their intersectionF̄1

2 ∩ F̄2
2 provides all (r, t)-pairs of parametric

locations that admit bi-tangent lines. Due to the symmetry, only the solutions below the
diagonal liner = t need to be considered. Figure 2c shows the original curve itself with
all its bi-tangent lines. All pairs (r, t) on the diagonal liner = t clearly satisfy Eqs. (3)
and (4). In Fig. 2b, it is easy to see that the whole diagonalr = t is contained in the zero-
set. Nevertheless, we do not consider solutions above the diagonal since they are of no
practical use.

If C1(t) andC2(r ) are two regularC1-continuous rational curves in thexy-plane, their
common tangent lines can be found by replacingC(t) by C1(t) andC(r ) by C2(r ) in the
above equations.

3. THE CONVEX HULL OF FREEFORM CURVES

Assuming a “black box” that computes all bi-tangents, the boundary of the convex hull
of a curveC(t) (denoted asCH(C)) can be constructed by selecting the appropriate curve
segments ofC(t) and some bi-tangent line segments. WhenC(t) is an open curve, the
boundary of the convex hull may also contain at most four point–curve tangent lines (from
the end points ofC(t)). For computational efficiency, it is important to construct only
the bi-tangents and point–curve tangents that appear on the boundary of the convex hull.
Without loss of generality, we may assume that the curveC(t) is C1-continuous by splitting
it into many pieces if necessary. It is quite straightforward to merge two convex hulls (see
Fig. 3). Thus the convex hull of multipleC1-continuous curves can be constructed by first
computing the convex hull of eachC1-continuous curve and then merging them into the
convex hull of all curves. (A more efficient method will be discussed later.)

In general, the total number of bi-tangents for a rational curveC(t) of degreed is O(d2).
On the other hand, there are onlyO(d) inflection points, which means that the curveC(t)
hasO(d) convex segments. Thus, there are at mostO(d) convex segments on the boundary
of the convex hull. Note that each convex curve segment inCH(C) is adjacent to at most two
bi-tangents. Consequently, there are at mostO(d) bi-tangents that can appear inCH(C).
Moreover, there are at most four point–curve tangents.

Consider the two pointsC(t1) andC(t2) in Fig. 4. The pointC(t1) is in CH(C) since the
curveC(t) is completely on one side of the tangent line atC(t1). On the other hand,C(t2) is
not inCH(C). The tangent line atC(t2) intersects the curve transversally atC(t3) andC(t4);
thus the curveC(t) cannot be completely on one side of the tangent line. When a tangent
line has no transversal intersection, the curveC(t) is completely on one side of the tangent

FIG. 3. Two convex closed curves can have at most four bi-tangent lines.
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FIG. 4. Point C(t1) is on CH(C) while point C(t2) is not. Note thatC(t) is completely on one side of the
tangent line atC(t1); in contrast, there are some segments of the curve on both sides of the tangent atC(t2).

line and the tangent point is on the boundary of the convex hull. This simple observation
can be summarized as follows:

LEMMA 1. A curve interior point C(t1) ∈ CH(C) if and only if the tangent line of C(t)
at C(t1) has no transversal intersection with C(t).

Remark. We have not considered the end points of an open curveC(t) in the above
lemma. Each end point may be considered as a semicircle with radius zero. Any line
passing through the end point may be considered as a tangent line to the semicircle. Thus
an end point of the curveC(t) is in CH(C) if and only if there is at least one line that passes
through the end point but does not intersect the curve transversally at an interior point. In
Fig. 5, the two end points ofC(t) share the same tangent line (i.e., the vertical line passing
through them); however,P1 ∈ CH(C), whereasP2 /∈ CH(C). The horizontal line passing
throughP1 intersectsC(t) at no other point; however, any line passing throughP2 intersects
C(t) transversally at some other point(s).

The conditionF2(r, t) = 0 of Eq. (2) means that the tangent line atC(t) intersects the
curve atC(r ) (transversally or tangentially). The set of curve points, at each of which the
tangent line intersects the curve at no other points, is defined as

CHo(C) = {C(t) | F2(r, t) 6= 0, ∀r 6= t}. (6)

This setCHo(C) is clearly a subset of the boundary of the convex hull and it is also a subset
of the curveC(t) itself:

CHo(C) ⊂ CH(C) ∩ C. (7)

FIG. 5. An open curve.
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The differenceCH(C) ∩ C\CHo(C) contains some extra points such as: (i) the end points
of each connected curve segment ofCHo(C) and, sometimes, (ii) the end points ofC(t).
(We assume that each supporting line ofC(t) is tangent toC(t) at no more than two curve
points; thus all isolated points ofCH(C) ∩ C must be end points ofC(t).)

We sort the curve segments inCHo(C) according to their normal (or tangent) angles. If
there is a gap between the normal angles of two consecutive curve segments in this sorted
list, then an end point ofC(t) must correspond to the gap since it is a global extreme point
in the missing normal directions (see pointP1 in Fig. 5). In this case, we need to insert the
end points ofC(t) into the sorted list of curve segments ofCHo(C). (Note that we may
consider each curve end point as a degenerate semicircle of radius zero.) By connecting
each pair of two consecutive segments (in this sorted order) by their common tangent line
segment, we can constructCH(C). Thus, the above setCHo(C) of convex curve segments
and the end points ofC(t) defineCH(C) completely and uniquely.

The diagonal liner = t is contained in the zero-set ofF2(r, t). Moreover, one can show
that (r − t)2 is a factor ofF2(r, t). If F̂2(r, t) = (r − t)−2F2(r, t), thenF̂2(r, t) has no more
factors of (r − t) (we omit the proof here). Thus the zero-set ofF̂2(r, t) characterizes the
setCHo(C) of Eq. (6). Consider the projection of the zero-set ofF̂2(r, t) on to thet-axis.
The intervals on thet-axis that are “uncovered” (in the projection) correspond to the curve
segments ofCHo(C). Figure 6c shows the convex hull of a closed curve; the functionF2(r, t)
is shown in Fig. 6a, and its zero-set (except the diagonal liner = t) is shown in Fig. 6b
along with its projection on to thet-axis.

Figure 7a shows all tangent lines from a pointP to an open curveC(t). All bi-tangent
lines ofC(t) are presented in Fig. 7b. Finally, all segments ofC(t) that appear inCH(C)
are displayed in Fig. 7c. Figure 8 shows the same technique applied to a self-intersecting
curve.

4. TRIMMING REDUNDANT CURVE SEGMENTS

Given a set of curve segments{Ci } in the plane, each boundary point on the convex
hull must be a global extreme point (among all curve points) in the normal direction of
the convex hull at the boundary point. Assume that we have selected 2k normal directions:
Nk

j = (cos2π j
2k , sin 2π j

2k ), for j = 0, . . . ,2k − 1. Let pj be the extreme point (among all
curve points of{Ci }) in the direction ofNk

j ; that is, we have〈pj , Nk
j 〉 = max{〈p, Nk

j 〉 |
p ∈ ∪Ci }. (See Figs. 9a–9d for examples of such normal directions and the corresponding
extreme points in these directions; note thatNk

j = Nk+1
2 j and thus the set of normal direc-

tions {Nk
j } is properly contained in the set{Nk+1

j }.) If there is more than one such point,
we considerpj to be the line segment connecting all of them. The closed convex polygon
Pk (= p0, p1, . . . , p2k−1, p0) thus defines a sequence of gradually expanding convex
polygons{Pk} that converges toCH(∪Ci ), the boundary of the convex hull of the curve
segments{Ci }.

LetI(Pk) denote the interior region of the convex polygonPk. Any point ofCi contained
in the open regionI(Pk) cannot be on the boundary of the convex hullCH(∪Ci ). Let {Ck

i }
denote the curve segments that are left after trimming based on the convex regionI(Pk). For
a sufficiently largek, the set{Ck

i } mostly consists of curve segments that actually appear
on the boundary of the convex hull. However, it is difficult to determine such a value ofk
a priori. Thus we may start with a small value ofk (say,k = 3 or 4), compute 2k extreme
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FIG. 6. The convex hull of a cubic periodic B-spline curve with 33 control points: (a) the functionF2(r, t)
is shown along with its zero-set (except the diagonal liner = t); (b) the zero-set contours (except the diagonal
line r = t) are shown in the (t, r )-plane (the contours projected on to thet-axis provide the domain of the curve,
which is not part of its convex hull); and (c) shows the final convex hull.

points, and trim out the input curve segments{Ci } using the convex regionI(Pk). After
that, we computeCH(Ck

i ), the boundary of the convex hull of each trimmed curve segment
Ck

i , and merge them intoCH(∪Ci ), the boundary of the convex hull for all curve segments
{Ci }. Figure 9 shows a closed Jordan curve and its expanding convex polygonsPk, for

FIG. 7. C(t) is a quadratic B-spline curve with open end conditions and eight control points: (a) shows all
tangent lines from a pointP to a curveC(t); (b) shows all bi-tangent lines ofC(t); and (c) shows all segments of
C that appear inCH(C).
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FIG. 8. C(t) is a quadratic B-spline curve with 13 control points: (a) shows all tangent lines from a pointP
to a curveC(t); (b) shows all bi-tangent lines ofC(t); and (c) shows all segments ofC that appear inCH(C).

k = 1, 2, 3, 4, 5. In Figs. 9a–9e, the trimmed curves{Ck
i } are drawn as bold lines. The

convex hull itself is shown in Fig. 9f.
Figure 10 shows a curve with a complicated shape. In Figs. 10a–10e, the convex polygons

Pk (k = 1, 2, 3, 4, 5) are shown in thin lines and the trimmed subsegments ofC(t) in the

FIG. 9. Expanding convex polygons and the convex hull.
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FIG. 10. Convex hull of a complicated curve.

exterior ofPk are shown in bold lines. Consider a half-plane that contains a convex polygon
Pk = (p0, p1, . . . , p2k−1, p0) and is bounded by an infinite linepi pi+1. For a sufficiently
largek (e.g., fork ≥ 3, as in Fig. 10), there are at most two trimmed subsegments ofC(t) that
may lie outside this half-plane. LetCi (t) andCi+1(r ) denote two such trimmed subsegments
of C(t).

The setCH(C) ∩ Ci is characterized by

CHo(Ci ) =
{

Ci (t)
∣∣F i

2(s, t) 6= 0∧ F i
3(r, t) > 0, ∀s, r 6= t

}
. (8)

In the above equation,F i
2(s, t) andF i

3(r, t) are formulated by modifying Eq. (2) as

F i
2(s, t) = wi (s)〈Ci (t)− Ci (s), Ni (t)〉,
F i

3(r, t) = wi+1(r )〈Ci (t)− Ci+1(r ), Ni (t)〉,

where we assume thatwi (s) > 0 andwi+1(r ) > 0. The conditionF i
2(s, t) 6= 0 means that

line tangent toCi (t) intersects the curveCi (t) at no other pointCi (s), s 6= t ; moreover,
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FIG. 11. Convex hull of multiple curves.

F i
3(r, t) > 0 means that the curve segmentCi+1(r ) is totally contained in the interior of the

half-plane that contains the convex polygonPk and is bounded by the line tangent toCi (t).
By switching the roles ofCi (t) andCi+1(r ), we can compute the subsegment ofCi+1 that
contributes toCH(C).

When an end pointC(t0) of C(t) is located outside the half-plane bounded bypi pi+1,

the setCH(C) ∩ Ci is characterized by

CHo(Ci ) =
{

Ci (t)
∣∣F i

1(t) > 0∧ F i
2(s, t) 6= 0∧ F i

3(r, t) > 0, ∀s, r 6= t
}
, (9)

whereF i
1(t) is formulated by modifying Eq. (1) as

F i
1(t) = 〈Ci (t)− Ci (t0), N(t)〉,

whereCi (t0) is an end point of the curveCi (t). The conditionF i
1 > 0 means that the end

point C(t0) is in the interior of the half-plane that contains the convex polygonPk and is
bounded by the tangent line ofCi (t). Figure 11 shows how the convex hull of multiple
rational curves may be computed using the same technique.

5. CONCLUSION

In this paper, we have presented an algorithm that computes the convex hull of multiple
rational curves in the plane. The input curves may have self-intersections; moreover, they
may be open curves.
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In a preprocessing step, we compute a convex polygon that closely approximates the
convex hull. By trimming the input curves with respect to this convex polygon, we can
make the algorithm output sensitive. The convex hull itself is then constructed using tools
for computing point–curve tangents, bi-tangents, and curve–curve tangents.

All examples of this paper were computed within several seconds to several minutes
on a SGI machine with a 150 MHz R4000 CPU. The proposed approach is stable and
reasonably efficient; it essentially reduces the convex hull problem into that of finding
the zero-sets of scalar functions represented in B-spline form. The NURBS representation
has nice properties (such as subdivision and convex hull containment) that accelerate the
numerical procedure by isolating zero-sets efficiently [5].
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