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We present an algorithm that computes the convex hull of multiple rational curves
in the plane. The problem is reformulated as one of finding the zero-sets of polyno-
mial equations in one or two variables; using these zero-sets we characterize curve
segments that belong to the boundary of the convex hull. We also present a prepro-
cessing step that can eliminate many redundant curve segmetitso1 Academic Press
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1. INTRODUCTION

Many geometric problems have solutions that are simpler for convex objects than
general nonconvex objects [13]. For example, interference among convex polygons
be detected more efficiently than among arbitrary simple polygons, and so convex h
are commonly used in preprocessing for interference tests: when the convex hulls do
intersect, there can be no interference among the given polygons. Applications of this
have motivated the development of several optimal algorithms for computing the con
hull of a simple polygon in linear time [6, 8].

There are a few theoretical algorithms for computing the convex hull of a planar curv
object [1, 3, 14]. These algorithms are optimal in the sense that their time complexity
O(n), wherenis the number of curved edges in an input object. (Each algorithmis based c
different definition of “curved edge”; see the Refs. [1, 3, 14] for more details.) Neverthele
each step of these convex hull computations is based on expensive procedures that con
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(i) the tangent line from a point to a curved edge and (ii) the common tangent line of t
curved edges. In practice, however, many planar curved objects are constructed out
small number of freeform curves, each of which may be quite complicated; in such ca:s
the efficiency and robustness of computing tangent lines is dominant, and combinatc
complexity as a function afi is not an appropriate measure of performance.

The boundary of the convex hull of a curve segnmértonsists of subsegments ©fas
well as line segments thatupport Cat two different locations. (A linsupportsa curve
C if and only if it touchesC at some point(s) and the cur@is totally contained in the
half-plane bounded by the line.) The cu@emay be supported by a line at: (i) both end
points, (ii) one end point and one interior point, or (iii) two interior points. It is trivial to
compute the line passing through both end point€p#& line through a fixed point and
tangent taC is called gpoint—curve tangenand a line tangent t6 at two different interior
points is called di-tangent The supporting lines of types (ii) and (iii) are, respectively, the
point—curve tangents and bi-tangent<of

Point—curve tangents may be computed by solving a polynomial equation in one varial
the computation of bi-tangents can be formulated as a system of two polynomial equati
in two variables, which can be solved using existing techniques [10, 11, 15]. In this pay
we employ a simple technique that represents the polynomial equations using B-sp
basis functions. The convex hull property of the B-spline representation then provide
robust, yet reasonably efficient, procedure that computes all solutions based on an ada
subdivision scheme [5].

Previous algorithms [7, 9, 12] for computing common tangent lines required each cu
to be segmented into certain simple pieces such as convex and monotone segments, \
is cumbersome and time-consuming for high-degree curves. In this paper, we take a gel
approach that needs no special structure for the input curves and imposes no limita
on their degrees: we assume only that the input curves are planar, rational, pieGéwise
continuous, and contain no straight line segments. Once the problem has been reformu
in terms of B-spline polynomial equations, a generic zero-set finder is used to compute
the solutions of these equations.

The zero-set approach provides a simple way of characterizing the curve segments
appear on the boundary of the convex hull. Assume that a curve @dgigk is on the
boundary of the convex hull. The tangent line at this point intersects the curve at no pc
other thanC(tp). This condition can be formulated by complementing the projection of
zero-set.

The rest of this paper is organized as follows. In Section 2, we present prelimine
algorithms for computing the point—curve tangents, bi-tangents, and common tangents
rational curves in the plane. In Section 3, we describe the main algorithm of this pay
which computes the convex hull of a rational curve and that of multiple rational curve
A technique for eliminating many redundant curve segments is introduced in Sectior
Section 5 concludes this paper.

2. PRELIMINARIES

To begin, we will consider how to compute: (i) the tangent lines from a pBitd a
piecewise rational curv€, (ii) all lines tangent taC at two different locations, and (iii) all
lines tangent to two different curvé€y andC, simultaneously. We reduce each procedure
into a zero-set finding problem in one or two variables.
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2.1. Computing Point—Curve Tangents
Let P = (px, py) be a fixed point and

_(X() y()
c= (m’ m)

be a regulaCt-continuous rational curve of degreein the xy-plane. The lineL P.Clto)
passing throughP? and C(tp) is tangent to the curv€(t) at the pointC(tp) if and only

if the vectorC(tg) — P is orthogonal to the normal vectd (tp) = w’(to)(y(to), —X(to))

— w(to)(Y'(to), —X'(to)). This condition can be formulated as a polynomial equation ¢
degree & — 2 in one variable

Fa(t) = (C(t) — P, N(t))
= (X'(O)y(t) — x®)y'(®)
+ Px(w(t)y'(t) — w't)y(t)) + py(xO)w'(t) — X' w(t))
=0, (1)
which has at most®— 2 real roots. In Fig. 1a, the cur@(t) is drawn in solid black and all

tangent lines t&(t) from a fixed pointP are drawn in gray. The functiafii(t) of Eq. (1)
is shown in Fig. 1b. BotlC(t) and F1(t) are represented as B-spline curves.

2.2. Computing Bi-tangents and Curve—Curve Tangents

When the poinP = (px, py) is located on the same cur@r ), Eq. (1) can be reformu-
lated as

For, t) = w(r){C(t) — C(r), N(t))
= w(r)(X'(t)y(t) — x(@)y'(t))
+x()(w(t)y'(t) — w't)y(t)) + yr)(x(t)w'(t) — X' (t)w(t))
—0. 2

FIG. 1. C(t)is aquadratic periodic B-spline curve with 103 control points: (a) shows all tangents lines fro
a pointP to a curveC(t); and in (b) the functiorF;(t) is shown together with all the solutions of Eq. (1).
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Additionally, whenthe lindc ) c() is parallel to botl€’(t) andC'(r ), we have the following
two simultaneous equations in two variables

F3(r,t) = w(r)(C(t) — C(r), N(t)) =0, ©)
F3(r,t) = wt)(C(r) — C(t), N(r)) = 0. (4)

Let]-:21 and]—fz2 denote the zero-sets of the above two equations, respectively:
Fr={rt)|Fr,)=0} and F2={(t)]F2(r t)=0}. (5)

Note that Egs. (3) and (4) are symmetric with respect to the variatdesit: F3(t,r) =
F2(r,t). Thus, the zero—selﬁ_z1 and]—jz? are symmetric about the diagonal line= t. When
one zero-set is constructed, the other can be simply obtained as its reflection abouf
diagonal line. The simultaneous solutions of Egs. (3) and (4) are given as the elemen
the intersection of two zero-sef N F2.

Figure 2 shows an example. In Fig. 2a the functiglfr, t) is shown as a scalar B-spline
surface. The zero-sef} is computed; its reflection about the diagonal line- t yields
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FIG. 2. The two zero-sets of Egs. (3) and (4) are intersected to yield the patjstifat admit common
tangentlines t€: in (a), the functiornF3(r, t) is shown along with its zero-sefy; in (b), the intersection points of
F3} U FZ (below the diagonal line = t) are drawn in gray; finally, in (c), all the computed bi-tangents are shown
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the other zero-sefzz. Their intersectionle N }722 provides all ¢, t)-pairs of parametric
locations that admit bi-tangent lines. Due to the symmetry, only the solutions below
diagonal liner =t need to be considered. Figure 2c shows the original curve itself wi
all its bi-tangent lines. All pairsr(t) on the diagonal line =t clearly satisfy Egs. (3)
and (4). In Fig. 2b, it is easy to see that the whole diagoralt is contained in the zero-
set. Nevertheless, we do not consider solutions above the diagonal since they are
practical use.

If C4(t) andCy(r) are two regulaC!-continuous rational curves in they-plane, their
common tangent lines can be found by replad@{g) by Ci(t) andC(r) by Cu(r) in the
above equations.

3. THE CONVEX HULL OF FREEFORM CURVES

Assuming a “black box” that computes all bi-tangents, the boundary of the convex h
of a curveC(t) (denoted agH(C)) can be constructed by selecting the appropriate cury
segments ofc(t) and some bi-tangent line segments. Wi() is an open curve, the
boundary of the convex hull may also contain at most four point—curve tangent lines (fr
the end points ofc(t)). For computational efficiency, it is important to construct only
the bi-tangents and point—curve tangents that appear on the boundary of the convex
Without loss of generality, we may assume that the c@t¢ is C-continuous by splitting
it into many pieces if necessary. It is quite straightforward to merge two convex hulls (
Fig. 3). Thus the convex hull of multipie*-continuous curves can be constructed by firs
computing the convex hull of eadd!-continuous curve and then merging them into the
convex hull of all curves. (A more efficient method will be discussed later.)

In general, the total number of bi-tangents for a rational c@ft¢ of degreed is O(d?).

On the other hand, there are or(d) inflection points, which means that the cu®@¢)
hasO(d) convex segments. Thus, there are at ni@&t) convex segments on the boundary
of the convex hull. Note that each convex curve segmefit(C) is adjacent to at most two
bi-tangents. Consequently, there are at m@&l) bi-tangents that can appeardfi{(C).
Moreover, there are at most four point—curve tangents.

Consider the two point€(t;) andC(t,) in Fig. 4. The poinC(t;) is in CH(C) since the
curveC(t) is completely on one side of the tangent lin€4t; ). On the other handZ(ty) is
notinCH(C). The tangent line & (t,) intersects the curve transversally{ts) andC(ts);
thus the curveC(t) cannot be completely on one side of the tangent line. When a tange
line has no transversal intersection, the cutg) is completely on one side of the tangent

FIG. 3. Two convex closed curves can have at most four bi-tangent lines.
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C(ts)

C(ty)

FIG. 4. PointC(t;) is onCH(C) while pointC(ty) is not. Note thatC(t) is completely on one side of the
tangent line a€(t;); in contrast, there are some segments of the curve on both sides of the tar@@st at

line and the tangent point is on the boundary of the convex hull. This simple observat
can be summarized as follows:

LEMMA 1. A curve interior point Gt;) € CH(C) if and only if the tangent line of )
at C(t;) has no transversal intersection with(ig.

Remark. We have not considered the end points of an open cGft®in the above
lemma. Each end point may be considered as a semicircle with radius zero. Any |
passing through the end point may be considered as a tangent line to the semicircle. -
an end point of the curv€(t) is inCH(C) if and only if there is at least one line that passes
through the end point but does not intersect the curve transversally at an interior point
Fig. 5, the two end points @ (t) share the same tangent line (i.e., the vertical line passir
through them); howeveR; € CH(C), whereasP, ¢ CH(C). The horizontal line passing
throughP; intersectsC(t) at no other point; however, any line passing thro®gintersects
C(t) transversally at some other point(s).

The conditionF;(r, t) = 0 of Eq. (2) means that the tangent lineCit) intersects the
curve atC(r) (transversally or tangentially). The set of curve points, at each of which tt
tangent line intersects the curve at no other points, is defined as

CH(C) = {C(t) | F2(r, 1) # 0, Vr #t}. (6)

This setCH°(C) is clearly a subset of the boundary of the convex hull and it is also a sub:
of the curveC(t) itself:

CH°(C) c CH(C)NC. @)

b

B

|

FIG.5. Anopen curve.




CONVEX HULL OF RATIONAL PLANE CURVES 157

The differenceZH(C) N C\C'H°(C) contains some extra points such as: (i) the end point
of each connected curve segment’@{°(C) and, sometimes, (ii) the end points ©ft).
(We assume that each supporting lineGgf) is tangent taC(t) at no more than two curve
points; thus all isolated points 6fH(C) N C must be end points @(t).)

We sort the curve segments@rt°(C) according to their normal (or tangent) angles. If
there is a gap between the normal angles of two consecutive curve segments in this s
list, then an end point aE (t) must correspond to the gap since it is a global extreme poi
in the missing normal directions (see politin Fig. 5). In this case, we need to insert the
end points ofC(t) into the sorted list of curve segments@f{°(C). (Note that we may
consider each curve end point as a degenerate semicircle of radius zero.) By conne
each pair of two consecutive segments (in this sorted order) by their common tangent
segment, we can construét{(C). Thus, the above sét+°(C) of convex curve segments
and the end points dZ(t) defineCH(C) completely and uniquely.

The diagonal ling =t is contained in the zero-set &% (r, t). Moreover, one can show
that ¢ — t)2is a factor ofFa(r, t). If Fao(r, t) = (r — t)=2F5(r, t), thenFa(r, t) has no more
factors of ¢ —t) (we omit the proof here). Thus the zero-setf?@(r, t) characterizes the
setCH°(C) of Eq. (6). Consider the projection of the zero-selﬁatr, t) on to thet-axis.
The intervals on thé-axis that are “uncovered” (in the projection) correspond to the curv
segments of H°(C). Figure 6¢ shows the convex hull of a closed curve; the fundfign t)
is shown in Fig. 6a, and its zero-set (except the diagonalrliaet) is shown in Fig. 6b
along with its projection on to thieaxis.

Figure 7a shows all tangent lines from a poihto an open curv€(t). All bi-tangent
lines of C(t) are presented in Fig. 7b. Finally, all segment<df) that appear i€ H(C)
are displayed in Fig. 7c. Figure 8 shows the same technique applied to a self-intersec
curve.

4. TRIMMING REDUNDANT CURVE SEGMENTS

Given a set of curve segmenf€;} in the plane, each boundary point on the conve
hull must be a global extreme point (among all curve points) in the normal direction
the convex hull at the boundary point. Assume that we have seletteatial directions:
NK = (cosZl, sinZl), for j =0,...,2— 1. Let p; be the extreme point (among all
curve points of(C;}) in the direction ofN¥; that is, we have pj, N¥) = max{(p, N¥) |
p € UC;}. (See Figs. 9a—9d for examples of such normal directions and the corresponc
extreme points in these directions; note thléiftz Ngj” and thus the set of normal direc-
tions{N}‘} is properly contained in the seIN}‘“}.) If there is more than one such point,
we considerp; to be the line segment connecting all of them. The closed convex polygc
P« (= po, P1, ..., Px_1, Po) thus defines a sequence of gradually expanding conve
polygons{Py} that converges t6H+(UC;), the boundary of the convex hull of the curve
segmentgC; }.

LetZ(Py) denote the interior region of the convex polygan Any point ofC; contained
in the open regioff(Py) cannot be on the boundary of the convex G (UC;). Let {CK}
denote the curve segments that are left after trimming based on the convex@@ipri-or
a sufficiently large, the set{CK} mostly consists of curve segments that actually appes
on the boundary of the convex hull. However, it is difficult to determine such a valke of
a priori. Thus we may start with a small valuelofsay,k = 3 or 4), compute 2extreme
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FIG. 6. The convex hull of a cubic periodic B-spline curve with 33 control points: (a) the fundfign t)
is shown along with its zero-set (except the diagonal tiret); (b) the zero-set contours (except the diagonal
liner = t) are shown in thet(r)-plane (the contours projected on to thaxis provide the domain of the curve,
which is not part of its convex hull); and (c) shows the final convex hull.

JRAVA

points, and trim out the input curve segmef(®@} using the convex regiofi(Py). After
that, we comput€7(CF), the boundary of the convex hull of each trimmed curve segmet
CK, and merge them int6H(UC; ), the boundary of the convex hull for all curve segments
{Ci}. Figure 9 shows a closed Jordan curve and its expanding convex polfRypfar

(2) (b) (c)

FIG. 7. C(t) is a quadratic B-spline curve with open end conditions and eight control points: (a) shows .
tangent lines from a poirf to a curveC(t); (b) shows all bi-tangent lines &(t); and (c) shows all segments of
C that appear i€+ (C).
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% | @ ;é—
C(t) C(t) C(t)

(2) (c)

FIG. 8. C(t)is a quadratic B-spline curve with 13 control points: (a) shows all tangent lines from afoint
to a curveC(t); (b) shows all bi-tangent lines @(t); and (c) shows all segments Gfthat appear i€ H(C).

k=12 3,4,5. In Figs. 9a—9e, the trimmed curve@i"} are drawn as bold lines. The
convex hull itself is shown in Fig. 9f.

Figure 10 shows a curve with a complicated shape. In Figs. 10a—10e, the convex poly¢
P« (k=1,2,3,4,5) are shown in thin lines and the trimmed subsegmen(bfin the

PR
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convex hull

FIG. 9. Expanding convex polygons and the convex hull.
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(f) convex hull

FIG. 10. Convex hull of a complicated curve.

exterior of P, are shown in bold lines. Consider a half-plane that contains a convex polyg
P« = (po, P1, - - - » px_1, po) and is bounded by an infinite ling p;1. For a sufficiently
largek (e.g., fork > 3, asin Fig. 10), there are at most two trimmed subsegme@§ pthat
may lie outside this half-plane. L& (t) andC;_ 1(r) denote two such trimmed subsegments
of C(t).

The setCH(C) N C; is characterized by

CHO(Ci) = {Ci(t) | Fa(s, t) # O A F4(r, t) > 0,Vs,1 #1t}. (8)
In the above equatioiFi(s, t) andFi(r, t) are formulated by modifying Eq. (2) as

Fh(s.t) = wi()(Ci(t) — Ci(s), Ni(1)),
For, ) = wita(r)(Cit) — Cia(r), Ni(t)),

where we assume that (s) > 0 andwi1(r) > 0. The conditionF(s, t) # 0 means that
line tangent taC; (t) intersects the curv€;(t) at no other poinC;(s), s # t; moreover,
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FIG. 11. Convex hull of multiple curves.

Fi(r,t) > 0 means that the curve segm@nt 1(r) is totally contained in the interior of the
half-plane that contains the convex polyg@pand is bounded by the line tangenQd(t).
By switching the roles o€; (t) andC;1(r), we can compute the subsegmenCpf, that
contributes t&€H(C).

When an end point(ty) of C(t) is located outside the half-plane boundedpy; 1,
the setC’H(C) N C; is characterized by

CHO(Ci) = {Ci(t) | Fi(t) > OA Fh(s.t) # OA Fi(r.t) > 0,¥s,r £}, (9)
where]-‘il(t) is formulated by modifying Eq. (1) as
Fi(t) = (Ci(t) — Cito), N(1)),

whereC; (tp) is an end point of the curvg;(t). The conditior17—‘i1 > 0 means that the end
point C(tp) is in the interior of the half-plane that contains the convex polygerand is
bounded by the tangent line & (t). Figure 11 shows how the convex hull of multiple
rational curves may be computed using the same technique.

5. CONCLUSION

In this paper, we have presented an algorithm that computes the convex hull of mult
rational curves in the plane. The input curves may have self-intersections; moreover, 1
may be open curves.
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In a preprocessing step, we compute a convex polygon that closely approximates
convex hull. By trimming the input curves with respect to this convex polygon, we ce
make the algorithm output sensitive. The convex hull itself is then constructed using to
for computing point—curve tangents, bi-tangents, and curve—curve tangents.

All examples of this paper were computed within several seconds to several mint
on a SGI machine with a 150 MHz R4000 CPU. The proposed approach is stable
reasonably efficient; it essentially reduces the convex hull problem into that of findi
the zero-sets of scalar functions represented in B-spline form. The NURBS representa
has nice properties (such as subdivision and convex hull containment) that accelerate
numerical procedure by isolating zero-sets efficiently [5].
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