
Offset curves have diverse engineering
applications, spurring extensive research

on various offset techniques. Research in the early
1980s focused on approximation techniques to solve
immediate application problems. This trend continued
until 1988, when Hoschek applied nonlinear opti-
mization techniques to the offset approximation prob-
lem.1,2 Since then, it has become quite difficult to
improve the state of the art of offset approximation,
with only incremental advances achieved.

Offset research turned more theoretical in the 1990s.
Farouki and Neff3,4 clarified the fundamental difficulty
of exact offset computation. Farouki and Sakkalis5 sug-
gested the Pythagorean Hodograph curves, which allow
simple rational representation of their exact offset
curves. Although many useful plane curves such as con-
ics do not belong to this class, the Pythagorean
Hodograph curves might have much potential in prac-
tice, especially when used for offset approximation.

In a recent paper6 on offset curve approximation, we
suggested a new approach based on approximating the
offset circle instead of the offset curve itself. To demon-
strate the effectiveness of this approach, we compared
it extensively with previous methods. To our surprise,
Tiller and Hanson’s simple method7 outperforms other
methods for offsetting (piecewise) quadratic curves,
even though its performance is not as good for high-
degree curves.

The experimental results revealed other interesting
facts, too. Had these details been reported several years
ago, we believe offset approximation research might have
developed somewhat differently. This article is intended
to fill an important gap in the literature. We conducted
qualitative as well as quantitative comparisons employing
various contemporary offset approximation methods for
freeform curves in the plane. We measured the efficien-
cy of the offset approximation in terms of the number of
control points generated while making the approxima-
tions within a prescribed tolerance.

Offset of planar curves
Given a regular parametric curve, C(t) = (x(t), y(t)),

in the plane its offset curve Cd(t) by a constant radius d
is defined by

(1)

where N(t) is the unit normal vector of C(t):

(2)

The regularity condition of C(t) guarantees that (x′(t),
y′(t)) ≠ (0, 0) and N(t) is well defined on the curve C(t).
Equation 2 has a square root term in the denominator.
Therefore, even if the given curve C(t) is polynomial, its
offset is not generally a polynomial or rational curve.
This fundamental deficiency motivated the develop-
ment of various polynomial and rational approximation
techniques of Cd(t). While the offset to a polynomial or
rational parametric curve must be approximated, a close
cousin of the offset, the evolute, is somewhat counter-
intuitively representable as a rational curve (see the
sidebar “Evolute”).

Most offset approximation techniques iteratively fit
an approximation curve, measure its accuracy, and sub-
divide the problem if the approximation error exceeds
the tolerance. This divide-and-conquer approach
exploits the subdivision property of the base curve C(t).
Henceforth, we assume C(t) is represented by a Bezier
or nonuniform rational B-spline (NURBS) curve.

Denote by C a
d(t) the approximation of Cd(t).

Traditionally, the offset approximation error has been
measured only at finite sample points along C(t), com-
puting εi=||C(ti)−C a

d(ti)||−d. Elber and Cohen8 pro-
posed a symbolic method to compute the global error
between squared distances:

(3)

The error function ε(t) is obtained by symbolically com-
puting the difference and inner product of Bezier or
NURBS curves9 (see the sidebar “Symbolic Computation”
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on the next page). Therefore, it can
be represented as a Bezier or NURBS
scalar function. As a scalar field, the
largest coefficient of ε(t) globally
bounds the maximal possible error
due to the convex hull property of
Bezier or NURBS formulation. In this
article, we exploit the error func-
tional ε(t) of Equation 3 to measure
all the offset approximation errors.
This provides not only a global bound
for each method but an equal basis
for comparing different methods.

Qualitative comparisons
We first compare how various off-

set approximation methods perform
on freeform curves. Focusing on
why certain techniques yield differ-
ent levels of under- and overestima-
tion, we suggest ways to alleviate
these inaccuracies.

Control polygon-based
methods

Let C(t) be a B-spline curve with k
control points of order n and defined
over a knot sequence τ ={ti},
0≤ i<n+k. The ith node parameter
value ξi of C(t) is defined as

(7)

for 0 ≤ i < k. Hence, a node parame-
ter value is an average of n – 1 con-
secutive knots in τ. Each control point
Pi of C(t) is associated with one node,
ξi. C(ξi) is typically close to Pi; in gen-
eral, however, it is not the closest point of C(t) to Pi.

Cobb11 translated each control point Pi by  d ⋅ N(ξi ),
whereas Tiller and Hanson7 translated each edge of the
control polygon into the edge normal direction by a dis-
tance d. Unfortunately, Cobb’s method always under-
estimates the offset—that is, ε(t) ≤ 0—for all t. (For the
proof and related issues, see the sidebar “Under- and
Overestimation” on page 65.)

Tiller and Hanson’s technique7 did not underestimate
the offset curve. In addition to computing the exact lin-
ear and circular offset curves, their method outperforms
the other methods for offsetting (piecewise) quadratic
curves. However, for offsetting high degree curves, this
simple method performs about as well as Cobb’s.11

Coquillart12 solved the underestimation problem. Her
method takes into account the distance between Pi and
C(ξi) and the curvature κ(ξi) of C(t) at ξi. Using numer-
ical approximation, it computes the closest point of C(t)
to the control point Pi, using C(ξi) as an initial solution.
With these enhancements, Coquillart was able to offset
the linear and circular segments exactly.

Elber and Cohen13 took a different approach that

exactly computes the offsets of linear and circular ele-
ments. Using the values of ε(t) (in Equation 3) at t = ξ0,
. . . , ξn, they estimated the error in the neighborhood of
each control point Pi and used it to adjust the transla-
tional distance applied to Pi. This perturbation-based
approach iteratively converges to the exact circular off-
set segment. For general curves, using Cobb’s result11 as
an initial solution, the perturbation process typically
reduces Cobb’s offset approximation error by an order
of magnitude. In principle, this method can be applied
to any offset approximation method that produces
piecewise polynomial curves.

Most traditional techniques subdivide C(t) at the mid-
dle of the parametric domain; however, a better solu-
tion uses the parameter of the location with the
maximum error. Since ε(t) represents the exact squared
error function, we can find the parameter location of the
maximal error and subdivide C(t) there. Alternatively,
instead of subdividing C(t), we can insert new knots into
C(t) at the parameter locations with errors larger than
the allowed tolerance. Elber and Cohen8 took this refine-
ment approach.
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Evolute
The evolute of C(t) is defined

as

where κ(t) is the curvature of
C(t) = (x(t), y(t)):

That is, E(t) is a variable radius offset with offset radius d(t) =
1/κ(t). Figure A shows two examples of evolute curves. Quite
surprisingly, E(t) is a rational curve, provided C(t) is a rational or
polynomial curve:

In contrast to the offset computation in Equation 1, there is no
square root term in the representation of E(t). In Figure A, the
curves and their evolutes are both represented as B-spline curves.
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A  (a) A B-spline
curve C(t), in
light curve, is
shown along
with its evolute
E(t), in bold
curve. (b) The
evolute E(t) for a
cubic polynomi-
al approxima-
tion of a circle
C(t), is shown.
E(t) is scaled up
by a factor of 20.

.



Interpolation methods
Klass14 used a cubic Hermite curve to approximate the

offset curve. He determined the cubic Hermite curve by
interpolating the position and velocity of the exact off-
set curve at both endpoints. Klass’ numerical approxi-
mation procedure is quite unstable when the offset
curve becomes almost flat. Therefore, instead of using
the original algorithm, we compute the first derivative
of the offset curve based on the following simple closed
form equation (see also Farouki and Neff 3):

(8)

where k(t) is the curvature of C(t).
Hoschek1 suggested a least-squares solution for deter-

mining C ′d(t) at the curve endpoints. That is, at each end-
point of Cd(t), the direction of C ′d(t) is maintained
parallel to C′(t); however, instead of using Equation 8,
their lengths are determined so that the cubic Hermite
curve best fits Cd(t) in the least-squares sense. For com-
putational efficiency, the optimization uses only finite
samples of Cd(t).

Hoschek and Wissel2 used a general nonlinear opti-
mization technique to approximate a high-degree spline
curve with low-degree spline curves. They applied the
same technique to approximate an exact offset curve
with low-degree spline curves.

We would expect the least-squares-based methods1,2

to perform better than other methods. However, a ques-
tion remains about whether the least-squares solution is
optimal when searching for the smallest number of (say,
cubic) curve segments to approximate an exact offset
curve. In general, it is not. In the special case of offsetting
quadratic curves, Tiller and Hanson’s simple method7 per-
forms much better than the least-squares methods.1,2

It is important to ask how we got this unexpected
result. The answer could prove useful in improving the
accuracy of offset approximation. The least-squares solu-
tion optimizes the integrated summation of the least-
squares errors in the approximation. Therefore, even if
a small portion of the approximation curve has a large
error, as long as the rest of the curve tightly approximates
the exact curve, the overall least-squares error can be
very small. That is, the least-squares solution provides
an optimal solution with respect to an L2 norm. Further
evaluating this L2 optimal solution with respect to the L∞

norm (of Equation 3), we find the optimality is no longer
guaranteed. This important observation suggests possi-
ble improvements over the nearly optimal solutions.1,2

Pham15 suggested a simple B-spline interpolation
method to approximate the offset curve. Finite sample
points are generated on the exact offset curve and inter-
polated by a piecewise cubic B-spline curve. This simple
method also performs pretty well. In many examples, its

′ = + ⋅ ′C t d t C td( ) ( ( )) ( )1 κ
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Symbolic Computation
In this article, we employed ε(t) (in Equation 3)

and εm(t) (in Equation 11) to estimate the offset
approximation error. We also need to compute the
composition of U(s(t)) (in Equation 10). The
symbolic computation of these equations involves
the difference, product, and sum of (piecewise)
scalar polynomial or rational curves.

Let C1(t) = ∑i=0
m Pi Bi,τ(t) and C2(t) = ∑j=0

n Pj Bj,η(t) be
two (piecewise) polynomial regular parametric
curves, in the Bezier or NURBS representations. The
computation of C1(t) ± C2(t) can be accomplished
by elevating both C1(t) and C2(t) to a common
function space. The order of the common function
space is equal to the maximal order of C1(t) and
C2(t). If either C1(t) or C2(t) is a B-spline curve, the
common function space is defined by considering
both knot vectors τ and η and preserving the
lowest degree of continuity at each knot. Once we
determine the common function space, we elevate
both C1(t) and C2(t) to this space via degree raising
and refinement. (See Elber9 and Farouki and Rajan10

for more details and the extension to rationals.)
The computation of C1(t)C2(t) is somewhat more

involved. Here, we consider only the case of Bezier
polynomial curves. (See Elber9 for the more
general cases of piecewise polynomials and
rationals.) The ith Bernstein Bezier basis function of
degree k is defined by

(4)

The product of two Bernstein Bezier basis
functions is

(5)

Therefore, we have

(6)

where Qk accumulates all the combinatorial terms

for k = i + j. Hence, C1(t)C2(t) is represented as a
Bezier polynomial curve of degree m + n.
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Under- and Overestimation
Cobb’s offset approximation11 is formally

defined as follows:

where ||N(ξ i)||= 1 for i = 0, …, n. The vector field
curve V(t) = Σ n

i = 0 N(ξ i) Bi (t) has all its control
points N(ξ i) on the unit circle S1. By the convex
hull property, we have ||V(t) || ≤ 1 and

If N(ξ i) ≠ N(ξ j), for some 0 ≤ i, j ≤ n, we have 
min ||V(t)||< 1, and this results in an error in the
offset approximation. Hence, this method always
underestimates the exact offset. Figure B shows a
quartic Bezier curve C(t) and its offset
approximation Ca

d(t). The difference vector field
D(t) = C(t) − Ca

d(t) is completely contained in a disk
of radius d. All the control points of D(t) lie on the
circumference of the disk.

Underestimating offsets may lead to undesirable
results. For example, in numerically controlled
(NC) machining, the underestimation leads to
gouging. Assume the underestimation of the
offset is bounded from below by

dmin = min(||dV(t)||).

When we translate control point Pi in the direction

of N(ξ i) by a distance d2/dmin, the resulting curve
completely overestimates the exact offset (see
Figure C):

We can reduce the relative error in the offset
approximation by alternating the under- and
overestimations. We do this by adjusting the offset
distance at each control point appropriately.

Figure D shows an example of this approach.
We use the same quartic Bezier curve as in Figures
B and C. The quartic Bezier offset approximation
curve interpolates the exact offset at five discrete
locations, corresponding to the node values i/4, 
0 ≤ i ≤ 4.
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B  (a) An offset approximation Ca
d (t) computed by

translating the control points of the original curve
C(t) (dashed lines) by an amount equal to the
offset distance will always underestimate the real
offset. (b) D(t) = C(t) − Ca

d (t) is found to be fully
contained in a circle of the offset radius size, d.

(b)

(a)

Cd(t)

D(t)

C(t)

d

a

(b)(a)

Cd(t)

D(t)
C(t)

d

a

C  (a) An offset approximation Ca
d (t) of a quartic

Bezier curve C(t) (dashed lines) is computed by 
forcing Ca

d (t) to overestimate the error. 
(b) D(t) = C(t) − Ca

d (t). Compare with Figure B.

D  (a) An offset approximation Ca
d (t) of a quartic

Bezier curve C(t) (dashed lines) is computed by forc-
ing Ca

d(t) to interpolate at five locations on the exact
offset curve computed at the node values on Ca

d (t).
(b) D(t) = C(t) − Ca

d (t). Compare with Figures B and C.
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performance is only slightly worse than and sometimes
even better than the local least-squares methods.1,2

Circle approximation methods
Assume the base curve C(t), t0 ≤ t ≤ t1, is a polynomi-

al curve with no inflection point, and a unit circular arc
U(s), s0 ≤ s ≤ s1, is parameterized so that

If we compute a reparameterization s(t) so that

we can then compute the offset curve as

(9)

The offset curve is not a polynomial or rational curve;
therefore, we have to approximate U(s) and/or s(t) by a
polynomial or rational.

Lee et al.6 approximated the unit circle U(s) with
piecewise quadratic polynomial curve segments Qj(s),
j = 0, . . . , n. The Hodograph curve Qj′(s) is piecewise

linear; therefore, the parallel constraint

provides the reparameterization of s(t) as a rational poly-
nomial of degree d – 1, where d is the degree of C(t). For
a polynomial curve C(t) of degree d, the resulting offset
approximation (computed as in Equation 9) is a rational
curve of degree 3d – 2. (For a rational curve C(t) of degree
d, the offset approximation curve is of degree 5d –4.)

For a quadratic polynomial curve C(t), this technique
also provides a simple method to represent the exact off-
set curve Cd(t) as a rational curve of degree six. Assume
that the exact circle Q(s), 0 ≤ s ≤ 1, is represented by a
rational quadratic curve. Then the parallel constraint

provides the reparameterization of t(s) as a rational
polynomial of degree two. Therefore, the exact offset
curve Cd(t) is a rational curve of degree six. Even with
the high degree of six, the exact offset capability sug-
gests this as the method of choice for offsetting (piece-
wise) quadratic polynomial curves, especially for
high-precision offset approximation. However, this
exact offset capability does not extend to rational qua-
dratic curves. (Some rational quadratic curves have no
exact rational parametrization of their offset curves.)

We can attempt to globally approximate s(t) by max-
imizing the constraint energy

(10)

Lee et al.16 took this approach, in which the composition
of  U(s(t))=(U° s)(t)is carried out symbolically9 (see
also the sidebar “Symbolic Computation”).

The offset approximation of Lee et al.6 depends on the
method used for the piecewise quadratic approximation
to the circle. The error in the offset approximation stems
only from the quadratic polynomial approximation of
the circular arc, scaled by the offset radius d. Lee et al.
used five different circle approximation methods.6 Two
of the five methods generate G1-continuous circle
approximations with quadratic Bezier curve segments.
In the first method, the unit circle U(s) is totally con-
tained in the closed convex region bounded by the qua-
dratic curve segments. The corresponding offset curve
approximation completely overestimates the exact off-
set curve. In the second method, the quadratic curve
segments pass through both the interior and exterior of
the unit circle U(s). Therefore, the offset approximation
curve both under- and overestimates the exact offset
curve, while the approximation error is reduced by half
from the overestimation of the first method. We use this
second method, referred to as Lee in the next section,
for comparison with other methods.

In contrast, Lee et al.16 approximated the reparame-
trization s(t), while representing the circle U(s) exactly
by a rational quadratic curve. In this method, the error
stems only from the inaccurate reparameterization func-
tion s(t), which results in a mismatch in the parallel con-
straint of C ′ (t)||U ′(s(t)). To our knowledge, this is the
only offset approximation method for which the use of
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1 An offset
approximation
(light curve) for
a quadratic
polynomial B-
spline curve
with eight
control points.
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ε(t) is completely ineffective in the global error bound.
The term ε(t) always equals zero. Lee et al.16 measured
the angular deviation of U(s(t)) from the exact offset
direction N(t) by using the following error function:

(11)

The error equals zero if orthogonality is preserved.
Otherwise, it equals cos2 θ, where θ is the angle between
U(s(t)) and C′(t).

Quantitative comparisons
We consider here how efficiently each method approx-

imates the offset curve given a prescribed tolerance. We
give several examples of Bezier and B-spline curves, both
in polynomial and rational forms. All methods compared
in this article are implemented using the Irit17 solid mod-
eling system developed at Technion, with some of the
offset approximation methods implemented at Postech.

Methods under comparison
We quantitatively compare the following methods:

■ Cob: Cobb’s simple method11 in which the control
points are translated by the offset distance. This
method always creates underestimated offsets. (See
the sidebar “Under- and Overestimation.”)

■ Elb: An adaptive offset refinement approach suggest-
ed in Elber and Cohen.8 Instead of subdividing the
base curve, whenever the error is too large, the offset
curve is refined to yield a better approximation (by
using more control points). The error analysis of ε(t)
is exploited to find better candidate locations for
refinement. This method also underestimates the off-
set curves.

■ Coq: The enhancement suggested by Coquillart12 that
allows the exact offset representation of linear as well
as circular segments.

■ Til: Tiller and Hanson’s method,7 which translates the
edges of the control polygon rather than the control
points.

■ Klass: Klass’s method14 that fits a cubic Bezier curve
to each offset curve segment to interpolate the bound-
ary points and velocities of the exact offset curve.

■ Pham: Pham’s method15 that interpolates a sequence
of finite sample points on the exact offset curve by a
nonuniform piecewise cubic B-spline curve. (Pham’s
original method uses a uniform B-spline curve; we
modified it, however.) When the offset approxima-
tion error exceeds the prescribed tolerance, more
sample offset points give a better fit.

■ Lst: The global least-squares approximation that fits
a uniform piecewise cubic B-spline curve to the off-
set curve. Again, when the offset approximation error
exceeds the prescribed tolerance, more sample offset
points give a better fit.

■ Hos: The least-squares method of Hoschek1,2 that fits
a cubic Bezier curve to each offset curve segment.
When the error exceeds the tolerance, the base curve
is subdivided into two subsegments and the offset

approximation is repeated recursively.
■ Lee: The approach suggested by Lee et al.6 that

approximates the curve of the convolution between
C(t) and the offset circle d ⋅ U(s) of radius d.

Traditionally, the offset approximation error has been
measured only at finite sample points of C(t) and C a

d(t).
As mentioned earlier, we adopt the symbolic approach
of error estimation.8 Therefore, we can provide an L∞
global upper bound on the offset approximation error
for each method under comparison. The global error
bound is derived by symbolically computing the error
function ε(t) (in Equation 3). Because of the convex hull
property of the Bezier or NURBS representation of the
scalar function ε(t), we can easily determine its upper
bound as the maximum coefficient of the Bezier or
NURBS basis functions.

Comparison results and remarks
Figure 1 and Figure 2 show the results of offsetting

(piecewise) quadratic curves. We compare the number
of control points with respect to the accuracy of offset
approximation. In these examples, Tiller and Hanson’s
method7 outperforms the other methods even if the base
curve has sharp corners with high curvature (Figure 2).
This surprising result has never been reported in the lit-
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2 An offset
approximation
(light curve) for
a quadratic
polynomial with
sharp corners.

.



erature. In fact, we assumed that the least-squares meth-
ods provide near-optimal solutions to the offset approx-
imation problem. However, the superior performance
of Tiller and Hanson7 tells us that this is not true in gen-
eral.

At this moment, we have no clear explanation of the
underlying geometric properties of this unusual phe-
nomenon. Nevertheless, we can point to at least two pos-
sible sources of the nonoptimality in the current
least-squares methods:

■ As discussed above, the least-squares methods pro-
vide the optimal solutions in an L2 norm, which may
be quite different from the optimal solutions in an L∞
norm.

■ The least-squares optimization procedure solves an
overconstrained problem, the solution of which
depends on the distribution of finite sample points on
the offset curve. In some degenerate cases, the least-
squares solution may have large variation depending
on the distribution of data points.

Further investigations should help eliminate these lim-
itations, likely advancing the state of the art of offset
curve approximation.

Figures 3 through 6 show other examples of offset-
ting (piecewise) quadratic and cubic B-spline curves.

Throughout our tests we observed the following con-
sistent results:

■ The underestimating offset approximation method,
Cob, performs quite poorly.

■ The adaptive offset refinement approach, Elb, works
better than Cob, especially when high precision is
desired.

■ For offsetting (piecewise) quadratic curve segments,
Tiller and Hanson’s method outperforms the others,
especially when high precision is required.

■ For offsetting (piecewise) cubic curve segments, the
least-squares methods, Lst and Hos, perform much
better than the other methods, especially when high
precision is required.

■ In many examples, the local cubic B-spline interpola-
tion method, Pham, performs as well as—and some-
times even better than—Hos. However, its
performance deteriorates when the base curve has a
radius of curvature similar to the offset radius.

■ The only geometrical method that approaches the
efficiency of the least-squares methods is Lee, fol-
lowed not so closely by Elb.

For the case of offsetting (piecewise) cubic curves,
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the global least-squares method, Lst, outperforms all the
other methods, closely followed by the local least-
squares method, Hos, and by the local cubic B-spline
interpolation method, Pham. Many practical situations
require the production of local optimal solutions based
only on the available local data. For example, for data
storage, we can store only the subdivision locations of
the curve, not all control points generated. We then use
the local methods to generate the control points (on the
fly) by considering only local data. In this case, Hos and
Pham are the methods of choice.

As discussed above, Pham’s performance depends on
the radius of curvature of the base curve. When the
radius of curvature is similar to the offset radius, the
sample offset points cluster together. The B-spline inter-
polation of these clustered points generates undulation,
which is the main source of large approximation error.
In this case, it is better to use fewer data points for the
interpolation. Figure 7 and Figure 8 exemplify this phe-
nomenon by comparing the relative performances of
different offset approximation methods. Given a fixed
base curve, by increasing the offset radius gradually, we
can observe that Pham’s method has the worst relative
performance near the offset distance, which starts to
develop cusps in the offset curve.

We should consider another source of undulation in
Pham’s method. The mismatch in speeds between the

two curves (the base curve and the offset curve) also
causes deterioration in the quality of the offset approx-
imation. To implement Pham, we used a nonuniform
cubic B-spline curve in which the data points of the off-
set inherit the knot values of the base curve points.
When the offset data points cluster, their knot values
are much sparser compared with the offset curve length.
This unnatural assignment of knot values generates
undulation. Therefore, for a better offset approxima-
tion, we must also rearrange the knot values of the off-
set data points.

Til’s superior performance (in the quadratic case) sug-
gests the possibility of improving the current least-
squares methods by resolving their limitations as
discussed above. The limitation resulting from the L2

norm seems more serious. To resolve this problem, we
need to develop an efficient algorithm to compute and
optimize the L∞ norm of the offset approximation error;
that is, the maximum of the error function ε(t) (in
Equation 3):

(12)
  
max ( ) ( )
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or a more precise geometric distance measure based on
the following Hausdorff metric:

(13)

where s is assumed to be a local perturbation of the
parameter t.

Note that Cobb’s method11 essentially models the L∞
norm of Equation 12 in terms of the maximum and
minimum magnitudes of the distance curve, 
D(t) = C(t) – C a

d(t), in the sidebar Figures B, C, and D.
Let’s consider a variant of Cobb that uses the least-
squares technique to optimize the offset distance at
each control point so that the distance curve D(t) is a
best fit to the offset circle of radius d. This method mea-

sures the offset error in the L∞ sense of Equation 12.
(Note that the approximation of D(t) to an offset circle
still has the limitation of L2 norm.) Although we have
not provided all the details in this article, Lee et al.’s
method6 actually measures the offset approximation
error under the L∞ norm of Equation 13, which is more
precise than the L∞ norm of Equation 12. We expect
that future offset approximation techniques (while
incorporating these L∞ norms into their optimization
procedures) may provide more accurate results than
the current least-squares methods.

Conclusion
Comparing several contemporary offset approxima-

tion techniques for freeform curves in the plane shows
that, in general, the least-squares methods perform very
well. However, for the case of offsetting quadratic curves,
the simple method of Tiller and Hanson7 is the method
of choice. Therefore, the least-squares methods need fur-
ther improvement to produce near-optimal solutions in
all cases. Some of the current methods6,8,11 have geo-
metric representations of the offset approximation error
(in certain L∞norms), whereas none of the current least-
squares methods have such geometric interpretation of
their respective error bounds. We also pointed out two
limitations of the current least-squares methods: the L2

norm they employ and their dependency on the finite
sample points used in the optimization.
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The B-spline interpolation method also needs further
investigation to eliminate the curve undulation result-
ing from the curve speed mismatch between the base
curve and the offset curve. In this respect, there are still
many ways to improve the current state of the art of off-
set curve approximation. We hope that the experimen-
tal results reported here and the related remarks will
serve as useful guidelines for future research. ■
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