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ABSTRACT 
 

We present an algorithm for answering the following fundamental question: Given two 
arbitrary (piecewise) polynomial curves, are they the same? This basic CAGD question is 
answered by first reducing the two curves into canonical irreducible forms.  This is done by 
reversing the processes of knot refinement, degree raising, and composition. The two curves 
are then compared in their irreducible forms and their shared domains, if any, are identified. 
The ability to answer this fundamental identity question will be a boon for numerous 
applications.  In this paper, we demonstrate a few such applications.  The algorithm allows one 
to identify two boundary curves (shared as a common seam) between two different surfaces as 
an identical curve (or not) even when they are represented differently. Moreover, we show that 
reparameterization is insecure as a watermarking method, which invalidates the proposal of 
[8]. 
 
Keywords: Polynomials; rationals; composition; decomposition; knot refinement; knot 
removal; degree-raising; degree-reduction; water-marking; curve matching. 
 
 

1. INTRODUCTION 
There are several known ways of modifying the representation of a piecewise polynomial/rational regular curve, 

)(tC , while preserving its geometry or trace: 
• Degree Raising [1].  A piecewise polynomial/rational curve of degree d can always be raised and 

represented as a curve of higher degree d + k, k = 0 . 
• Refinement [1].  Every piecewise polynomial/rational curve can be refined, i.e., new knots can be 

inserted into the curve, without affecting its shape.  However, these new knots introduce potential 
discontinuities into the geometry. 

• Composition [2], [5].  Let t(r) be an allowable change of parameter.  Then, the trace of ))(()(ˆ rtCrC =  is 
identical to that of C(t), albeit in a possibly different domain or speed. 

It is quite well known that both degree raising and refinement are reversible.  That is, given a curve )(tC  known to 
be of degree d, which is represented as a curve of degree d + k, k > 0 , one can deduce its original representation in 
degree d. One simple way to achieve this, though not necessarily the most stable one, is to convert the 
representation to monomial form as C(t) =                and purge all the coefficients ia , for i > d, that are zero. Then, 
convert the curve back to the representation based on its original basis functions.  More on degree reduction can 
be found, for example, in [9]. 
Similarly, the process coined “knot removal” [7] attempts to detect knots whose removal has little or no effect over 
the shape of the curve.  Remove knot t i and examine the best/closest shape one can find to the original curve )(tC , 
under a certain norm, in the subspace that excludes knot t i.  If the new shape is identical to C(t), the curve C(t) 
resides in the subspace that excludes t i, since the knot t i only introduces a potential discontinuity, and therefore, it 
can be removed. 
The third way to modify the representation while preserving the shape is via functional composition.  The 
composition function modifies the speed of the curve or its domain but not the curve trace.  In fact, when the 
composition is made using an identity function, that is t(r) = r, the composition is reduced to a degree raising 
operation.  Let the degree of t(r) = r be k, e.g., 11 −+−= krrrrt ])[()( , and let the degree of C(t) be d.  Then, the 



composition is reduced to a simple degree raising, with ))(()(ˆ rtCrC =  being of degree dk.  It is interesting to note 
that another simple way of achieving a degree raising effect is by multiplying a constant one of degree l.  Namely, 
let p(t) = 1 be a (constant) polynomial of degree l, e.g., ltttp ])[()( +−= 1 .  Then, D(t) = C(t) p(t) is a new curve of 
degree d + l, but with exactly the same shape as the curve C(t). In this paper, we assume only allowable changes of 
parameters, t(r), in the functional compositions; that is, t'(r) > 0 , r∀ . 
Reversing the composition operation on polynomials, or decomposition of polynomials, is a complex task; yet it is 
a feasible operation as we demonstrate it in this paper.  Symbolic processing software packages, such as Maple [3] 
or Mathematica [10], support the composition functionality as a built-in procedure. They do not, however, 
support the reverse operation of the composition.  Given a composed function H(x), we seek to find its 
decomposition, if any, as H(x) = f(g(x)).  In other words, we find the original functions, f(x) and g(x), if they exist. 
The fact that symbolic manipulation programs provide no such reverse capability is more surprising, as function 
decomposition has great importance in general, and in geometric modeling, specifically.  In fact, the first 
algorithm to decompose H(x) into f(x) and g(x) was proposed by [5] more than 15 years ago, and it was improved 
thereafter by [2]. 
Degree raising and refinement were both previously suggested as weak watermarking techniques.  It is interesting 
to note that the composition operation has been proposed to be a highly robust way to watermark spline models 
[8].  However, a clear implication of this paper invalidates the proposal of [8] –  we show that composition is 
insecure as a watermarking method. 
Another important need for identifying the similarity of two curves could be found in the way geometry is typically 
represented in contemporary geometric modelers.  A model is typically a collection of freeform (trimmed) surfaces 
that are stitched together along shared seams.  In many cases the two curves sharing the seam are identical 
geometrically but are represented differently due to the way the surfaces containing these two curves were 
constructed. For example, to construct a ruled surface between a quadratic and a cubic curve, the quadratic is 
artificially degree-raised to be a cubic.  Having two curves sharing a seam represented differently makes cross-
seams processing difficult.  For example, in order to create a water-tight tessellation of the geometry, both 
surfaces, along this shared seam, must be sampled in exactly the same way. Knowing that these two curves are 
indeed the same curve can greatly simplify this process. 
The rest of this paper is organized as follows.  In Section 2, we present our approach to the functional 
decomposition problem, and outline the complete algorithm, exploiting the unique structure that allows one to 
avoid solving a non-linear system of constraints.  In Section 3, an algorithm is presented that brings all these 
functionalities into play in a single identity testing algorithm.  In Section 4, we demonstrate a few interesting 
applications and examples, and finally, we conclude this paper in Section 5.  
 
2. FUNCTIONAL DECOMPOSITION 
Consider two non-linear polynomials f(x) and g(x). The resulting composition of (f og)(x) = f(g(x)) is a higher 
degree polynomial with many non-linear terms.  In general, finding a solution to a set of non-linear equations is 
difficult.  In our case, these equations are well structured, and we will employ this simple structure to efficiently 
deduce the decomposition, if it exists. Moreover, its unique structure is exactly the same in projective space when 
f(x) is rational. 
The key observation that makes the functional decomposition tractable can be summarized as follows: In the 
composition of two polynomials f(x) and g(x), the lowest degree terms reveal the structure of f(x) and the highest 
degree terms expose the structure of g(x). The result of the composition has many high degree terms.  However, 
and being closely related to convolution, many of these terms assume a simple form at the two ends of this 
composition process.  In other words, the terms with the highest and lowest degrees are the simplest. In Section 
2.1, we provide additional corroboration of our claim that no generality is lost by employing the following 
canonical forms of f(x) and g(x), for a general composition H(x) = f(g(x)), 
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By exploiting this canonical form, we could greatly simplify the composition formulation and its structure analysis. 
When the two functions in Eqn. (1) are composed, we end up with a polynomial of degree km: 
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Examine the coefficients of the k terms of H(x) with the highest degrees. Each coefficient ikc −  is expressible as a 
function of ikma −  and 1+−ikk cc ,,L , for 11 −= ki ,,L , where 1=kc . Once the coefficients of g(x) are computed in 



this way, the relationship between ia 's and jb 's is linear. Each coefficient jb is again computed as an explicit 
function of ja , 11 −kcc ,,L , and 10 −jbb ,,L , for 10 −= mj ,,L . 
The rest of this section is organized as follows. In Section 2.1, we reduce the general problem into a canonical 
representation to ease the solution process.  The actual algorithm is presented in Section 2.2. 

 
2.1 A Template Solution 
In this section, we present an affine transformation that simplifies the procedure of decomposing a polynomial 
H(x) = f(g(x)) into two polynomials f(x) and g(x), if such exist. This is to justify the simplified structure of f(x) and 
g(x) in Eqn. (1). 
Consider the affine transformation, which is also a linear polynomial: βα += xxl )( , for some constants 0≠α  and 
ß. Then, its inverse transformation is another linear polynomial: )()( βα −= −− xxl 11 . 
Given a composite polynomial H(x) = f(g(x)), there are infinitely many different ways that H(x) may be 
decomposed into f and g using the above linear polynomials: 

))(ˆ(̂))(()( xgfxgfxH ==  where ),)(()(̂ xlfxf 1−= o ))(()(ˆ xglxg o= . 

If f(x) and g(x) are polynomials, then ))(()(̂ xlfxf 1−= o  and ))(()(̂ xglxg o=  are also polynomials of the same degrees, 
respectively. 
Assume that g(x) is a polynomial of degree k: 01
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Using the linear polynomial, )()( 0
1 cxcxl k −= − , we get :))(( xgl  
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Thus, without loss of generality, we may assume that 1=kc  and 00 =c . We will now assume that f(x) is a 
polynomial of degree m and that g(x) is given in the special form, with 1=kc  and 00 =c :  
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for some 0≠mb . Their composition H(x) = f(g(x)) is a polynomial of degree km and it can be represented as 
follows: 
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Comparing the terms of degree km, we note that mkm ba = . Subdividing the above equation by setting mkm ba = , 
we may assume that both H(x) and f(x) have 1  as the coefficient of their leading terms.  Therefore, in the ensuing 
discussion of this paper, we assume that, 
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and also that: 
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2.2 Recurrence Formulas 
This section presents recurrence formulas that can be used in computing the coefficients ikc −  and jb , recursively. 
We first define the coefficients ],[ ilA , ;,,( ml L1=  ),, lkli −= L0  as follows: 
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Note that  
ikciA −=],[1 , for 10 −= ki ,,L ;  

10 == l
kclA ],[ , for ml ,,L1= ; and 

ikmaimA −=],[ , for 11 −= ki ,,L . 

Moreover, for each ml ,,L2= , using the relation  
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we can derive the following recurrence formula:  

∑ = +− −= i
j jik jlAcilA 0 1 ],[],[ , for 10 −= ki ,,L .  

By induction, we can easily show that ],[ ilA  is determined by the coefficients ikk cc −,,L . 
Using this recurrence formula, we can derive the following equation: 

. ],[

],[],[)(],[],[

],[],[],[],[

],[],[],[

],[],[

∑ ∑
∑ ∑∑ ∑

∑∑
∑

∑

−
=

−
= +−−

−
=

−
= +−−

−
−=

−
= +−−

−
= +−

−
= +−−−

−
= +−−

= +−−

+=

++−=+−+=

−+−+−+−+=

−+−+−=

−==

1
1

1
1

1
1

1
1

1
2

1
1

1
1

1
1

1
1

0

1122

12202

1101

1

m
l

i
j jikik

m
l

i
j jikik

m
ml

i
j jikik

i
j jik

i
j jikikik

i
j jikik

i
j jikikm

jlAcmc

jlAciAcmjlAcimAc

jmAcjmAcimAmAcc

jmAcimAmAc

jmAcimAa

 

Consequently, we have  
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Note that each term ],[ jlA  was determined by ikk cc −,,L . Thus, ikc −  is completely determined by ikma −  and 

1+−ikk cc ,,L . 
Once the values of 11 cck ,,L− are determined using the above recurrence relation, each coefficient ib  can be 
represented as a rational expression of 11 cck ,,L−  and 10 −ibb ,,L . For this purpose, we define the coefficients ],[ ilB , 

;,,( ml L1=  ),, klli L= , as follows: 
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iciB =],[1 , for 11 −= ki ,,L ; and 

11 == lcllB ],[ , for ml ,,L1= . 

Each coefficient ],[ ilB  can be computed using the following equation: 
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A recurrence relation for ],[ ilB  can be formulated as follows:  

∑ = −−= k
j j jilBcilB 1 1 ],[],[ . 

Since 01 =−− ],[ jilB  for 1−<− lji  and )( 1−>− lkji , we have 
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Once all the coefficients ],[ ilB  are computed, we can represent the value of lb , ),,( 11 −= ml L ,as a rational 
expression of 10 −ll bba ,,, L , and ],[,],,[ llBlB 11 −L , where we assume 0=],[ lpB  if pl <  or lpk < . 
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The following two algorithms summarize the procedure for computing the coefficients of f(x) and g(x). For each 
divisor k of n, (1 < k < n), we set m = n/k and call Algorithms 1 and 2 to construct two component polynomials 



g(x) and f(x), and test if H(x) = f(g(x)) holds. From the nested loops in their pseudo-codes, we can see that 
Algorithm 1 is always computed in O(kn) time, whereas Algorithm 2 is computed in O(n2) time. This time the 
complexity may look relatively high. However, consider that n is the degree of the polynomial H(x), which is 
usually smaller than 30 for all practical purposes. For a given n < 30 , Algorithms 1 and 2 are called, at most, five 
times. Thus, the whole computation can be done in real-time. 

 
Algorithm 1 
Input:  The composite function H(x) of degree n; 
Output: The function g(x) of degree k that satisfies  

  f(g(x)) = H(x); 
DecompositionG( H(x) ) 
begin 

for 1=:i  to 1−k  do 
 ikmaimA −⇐],[ ; 
end 
for 1=:l  to m  do 
 10 ⇐],[lA ; 
end 
for 1=:i  to 1−k  do // Eqn. (3) 
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for 1−= ml :  downto 1  do 

],[],[],[ jlAcilAilA i
j jik∑ −
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01 ; 

end 
end 

00 =c ; 

Construct a polynomial function g(x) using ic , 

ki ,,, L10= ; 
return g(x); 
 
 
 

Algorithm 2 
Input:   The composite function H(x) of degree n;            

 The function g(x) of degree k. 
Output: The function f(x) of degree m that satisfies  

  f(g(x)) = H(x); 
DecompositionH( H(x), g(x) ) 
begin  

//Assume s
s

k
k

k xcxcxxg +++= −
− L1
1)(   

for 1=:i  to 1−k  do 
 iciB ⇐],[1 ; 
end 
for 2=:l  to m  do 

for 1=:i  to kl  do  

⇐],[ ilB ∑ +−
−−= −−),min(

))(,max( ],[1
11 1lik

lkij j jilBc ; 

  end 
end 

for 1=:l  to 1−m  do // Eqn. (4) 
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s
],[ ; 

end 
00 ab ⇐ ; 

Construct a polynomial function f(x) using lb , 

110 −= ml ,,, L ; 
return f(x); 

3. CURVE IDENTITY ALGORITHM 
A single curve may undergo a sequence of degree raising, knot refinement, and composition operations.  
Unfortunately, these operations are non-commutative.  That is, the result of a degree raising operation followed by 
a composition with a function t(r) is different, in general, from the result when the two operations are applied in 
reverse order. On the other hand, a knot that introduces a potential discontinuity will remain a potential 
discontinuity even after degree raising or composition operations. However, a single such knot may be manifested 
as several such knots after these operations since in the higher degree representation of the shape, multiple knots 
are necessary to preserve the same potential discontinuities. 
Given a curve C(t), we apply the knot removal test once and remove all knots whose removal will not affect the 
shape.  Once completed, there are no knots that introduce potential discontinuities and no such knot will emerge 
later in the curve identification process.  
A curve could be degree raised from a quadratic to a cubic, an operation that cannot be represented as a 
composition.  Similarly, a composition with a non-linear function t(r) that changes the speed of C(t) cannot be 
represented as a degree raising. Therefore, in the second stage of our algorithm, we interleavingly apply degree 
reductions and/or decompositions, until both attempts fail.  We are then left with a curve with no potentially 
discontinuous knots, that is not a result of a composition, and whose degree is irreducible.  We call such a curve an 
irreducible curve. 
Let )(tC1  and )(rC2  be two irreducible scalar polynomial curves. Clearly, if the degrees of the two curves are 
different, the curves are different.  Even if the two curves have the same degree, one cannot tell their identity by a 
simple comparison of their coefficients. The two curves may represent exactly the same polynomial, while 
spanning different domains, e.g. domains that can partially overlap or, alternatively, domains which are 
completely disjoint.  In Section 3.1, we explain how to bring the two curves to a canonical domain and how to 



detect their shared domain, if any, so that their coefficients or control points can finally be compared and their 
identity can be detected. 
Finally, consider two irreducible piecewise-polynomial curves, )(tC1  and )(rC2 . Here, one must compare adjacent 
polynomial segments one after the other between the two curves, determining the overlapping, if any, between the 
two curves. 
 
3.1 Shared Domain Determination 
In this section, we present an algorithm that determines the shared domain of two scalar irreducible polynomial 
curves of the same degree that are assumed to be similar.  This algorithm can be extended to support multivariate 
and vector-valued irreducible polynomial manifolds, which will briefly be described at the end of this section. 
Let C1(t) and C2(r) be two irreducible scalar polynomial curves of the same degree k: 

1001 ≤≤= ∑ = ttatC k
i

i
i ,)( ; 

1002 ≤≤= ∑ = rrbrC k
i

i
i ,)( . 

The two curves are assumed to represent exactly the same polynomial, possibly defined on different or completely 
disjoint domains. There are three main steps in the domain determination algorithm. In the first step, and 
because of our similar-polynomial assumption, there exists a linear composition transformation βα += ttl )(  of 
the parametric domain such that  

1021 ≤≤+= ttCtC ),()( βα , 0≠α . 

Note that the range of l(t) is not necessarily ],[ 10 . Then, using this equality, we can derive the following equation: 
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and consequently, we have 

ik
i

k
i

ijik
ij j

i
i t

i
j

bta∑ ∑ ∑= =
−

= 

















=0 0 βα . 

Now, by comparing the coefficients of kt  and 1−kt  we get  
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In the second stage, one can evaluate the composition of ))(( tlC2  and compare the coefficients of this curve with 
those of )(tC1 , for the curve identity.  If indeed all coefficients are found identical, we proceed to the third stage of 
the algorithm.  Otherwise, we declare these two curves as different. 
The third step of the algorithm determines whether the parametric domains of the two curves are completely 
disjoint or partially overlap.  In the case of partial overlap, we need to find the shared domain of both curves. The 
answer is derived by computing the intersection 21 SS ∩ , where ],[ 101 =S and  
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Then, by mapping the end points of 21 SS ∩  back into the parametric domain 10 ≤≤ r  of curve )(rC2 , we 
complete the algorithm. 
The presented algorithm can be extended to support vector-valued manifolds. Consider two vector curves )(tC1  
and )(rC2  that are assumed to be identical.  By applying the presented algorithm (for scalar curves) to each 
coordinate of )(tC1  and )(rC2 , we derive α  and β , map and then compare the control points of )(tC1  and ))(( tlC2 , 
for identity.  



4. EXAMPLES AND APPLICATIONS 
We present several examples, starting with examples for the identity tests between two piecewise polynomial 
parametric curves in Section 4.1.  In Section 4.2, we consider the case of watermarking freeform spline geometry, 
while in Section 4.3, we present an application to matching curves across boundaries of surfaces sharing a 
common seam. 
 
4.1 Are two curves the same? 
We start our examples with an identity comparison between two polynomial curves, CRV1_0 and CRV2_0, which 
undergo a sequence of degree raising, knot refinement and composition operations, as described in Tab. 1  to 3.  
The curves are shown in Fig. 1 to 3. The two final curves in each example, for example CRV1_4 and CRV2_3 in 
Tab. 1, are processed by the proposed algorithm and are either found identical with an overlapping domain that is 
specified or are found non overlapping and a mismatch is declared. The original data sets are presented in 
Appendix A. 
 

Curve 1                                Curve 2 
CRV1_0: Original cubic polynomial     CRV2_0: Original cubic polynomial 
CRV1_1: Extract Region [0.1, 0.9]     CRV2_1: Extract Region [0.3, 0.8] 
CRV1_2: Refinement at 0.2, 0.33, 0.7 CRV2_2: Refinement at 0.35, 0.4 
CRV1_3: Composition with quadratic curve CRV0 CRV2_3: Degree Raise to a quartic 
CRV1_4: Degree raise to degree 7th polynomial  
CRV_MATCH: Extract Region [0.4874, 0.8795] of CRV1_4 to match CRV2_3 

 
Tab. 1. Example 1 - the stages two identical curves undergo; see also Fig. 1. The original data of the curves can be found 
in Appendix A. 

  
          CRV1_1   CRV1_2   CRV1_3   CRV1_4    CRV_MATCH           CRV2_1   CRV2_2   CRV2_3 

 
Fig. 1. Example 1 - The different representation changing operations that the two input curves undergo before a 
similarity test is applied to them.  The original identical curves, CRV1_0 and CRV2_0, are shown as thin lines behind 
the drawn curves (thick black) and their control polygons (thick gray). See also Tab. 1. 

 
Curve 1                                Curve 2 
CRV1_0: Original quadratic polynomial CRV2_0: Original quadratic polynomial 
CRV1_1: Composition with quadratic curve CRV0 CRV2_1: Extract Region [0.5, 1.0] 
CRV1_2: Composition with quadratic curve CRV0   
CRV1_3: Composition with quadratic curve CRV0  
CRV1_4: Degree raise to degree 17th polynomial  
CRV1_5: Refinement at 0.3, 0.5, 0.7             
CRV1_6: Extract Region [0.0, 0.7]               
CRV_MISMATCH: No overlapping region - curves are disjoint 

 
Tab. 2. Example 2 - the stages two identical curves undergo until non overlapping domain results;  see also Fig. 2.  The 
original data of the curves can be found in Appendix A. 
 

  
               CRV1_1  CRV1_2  CRV1_3  CRV1_4  CRV1_5  CRV_MATCH         CRV2_1 

 
Fig. 2. Example 2 - The different representation changing operations that the two input curves undergo before a 
similarity test is applied to them.  The original identical curves, CRV1_0 and CRV2_0, are shown as thin lines behind 
the drawn  curves (thick black) and their control polygons (thick gray). See also Tab. 2. 
 

 



Curve 1                                Curve 2 
CRV1_0: Original cubic polynomial     CRV2_0: Original cubic polynomial 
CRV1_1: Composition with cubic curve CRV0_1 CRV2_1: Composition with cubic curve CRV0_2 
CRV1_2: Degree Raise twice to 12th degree polynomial CRV2_2: Degree Raise to 11th degree polynomial 
CRV1_3: Refinement at 0.2, 0.3, 0.5, 0.6   CRV2_3: Refinement at 0.2, 0.4. 0.6, 0.9 
CRV1_4: Extract Region [0.1, 0.7]  
CRV_MATCH: Extract Region [0.0215, 0.6590] of CRV2_3 to match CRV1_4 

 
Tab. 3. Example 3 - the stages two identical curves undergo; see also Fig. 3. The original data of the curves can be 
found in Appendix A. 

         
      CRV1_1      CRV1_2      CRV1_3      CRV1_4            CRV2_1     CRV2_2      CRV2_3     CRV_MATCH 

 
Fig. 3. Example 3 - The different representation changing operations that the two input curves undergo before  a 
similarity test is applied to them.  The original identical curves, CRV1_0 and CRV2_0, are shown as thin lines behind 
the drawn curves (thick black) and their control polygons (thick gray). See also Tab. 3. 

 
4.2 Reparameterization as an Insecure Watermarking 
Digital watermarking is a relatively new subject of research in computer graphics.  In particular, watermarking 
three-dimensional data has been mainly focused on polygonal meshes.  Watermarking freeform spline geometry 
has also been the subject of great interest; however, there has been little success in the area so far.  As presented in 
this paper, the same freeform geometry can be represented in different forms when we deal with Bézier and B-
spline curves and surfaces. 
Not surprisingly, all these techniques for modifying representation were once proposed as possible ways of 
watermarking freeform geometry represented as B-spline [8] manifolds.  Yet, degree raised curves could easily be 
degree reduced [9]. Similarly, a refined curve could be restored via a knot removal procedure [7].  Ohbuchi et al. 
[8] mentioned these deficiencies in the watermarking methods based on knot insertion and degree raising and 
they proposed reparameterization via composition as possibly a more robust alternative to watermarking. Hence, 
a clear and immediate implication of our result in this paper is the discrediting of composition as a watermarking 
option. 
 
4.3 Curve Matching via a Reduction 
Modern geometric CAD systems are capable of modeling highly complex scenes, with hundreds if not thousands 
of (trimmed) surfaces. Different surfaces are frequently stitched together along shared seams.  In many cases, the 
curves along the stitched surfaces share neither the same degree nor the same knot sequence.  This 
incompatibility can produce black holes while the two adjacent surfaces are tessellated into polygons (see Fig. 4(c). 
and Fig. 5(c).).  Similarly, there could be discontinuities in parametric texture that are mapped across shared 
curved boundaries, due to compositions (see Fig. 4(a). and Fig. 5(a).). 
Given two curves )(tC1  and )(rC2  from two surfaces along a shared boundary, we consider the problem of 
checking whether these two curves are identical, and if so, find a canonical representation for the two curves.  
Such a canonical representation is very useful in matching the tessellation on both sides of the shared seam (see 
Fig. 4(d). and Fig. 5(d).).  Moreover, it may provide a way to reparametrize one of the surfaces so that the two 
surfaces are texture-mapped seamlessly across their common boundary curve (see Fig. 4(b). and Fig. 5(b).). 
 
 
 



      
 

           Fig. 4(a).             Fig. 4(b).              Fig. 4(c).              Fig. 4(d). 
 

Fig. 4(a)., Fig. 4(b). The same boundary curve has different representation; and Fig. 4(b)., Fig. 4(d). its canonical form is  
derived via decomposition, yielding proper texture mapping Fig. 4(c). and tessellation Fig. 4(d). across the seam. 

 

 
 

               Fig. 5(a).             Fig. 5(b).                Fig. 5(c).             Fig. 5(d). 
 
Fig. 5(a)., Fig. 5(c). The same boundary curve can be parameterized differently. Two differently parameterized 
boundary curves are matched into one canonical form, yielding seamless texture Fig. 5(b). and tessellation Fig. 5(d). 

 

  
             Fig. 6(a).                               Fig. 6(b).              

 
Fig. 6(a). A differently parameterized boundary curve (around the neck of a duck model) results in a skewed texture  
map;  
Fig. 6(b). but the matched curve using a canonical form unifies the two surface patches. 
 

5. DISCUSSION AND CONCLUSION 
In this paper, we have presented an answer to the fundamental question about the identity of piecewise-
polynomial parametric curves.  In order to answer this query one is required to have the ability to reverse all 
possible ways of modifying a curve without changing its trace, namely degree raising, knot refinement and/or 
composition.  Based on these functionalities, we can convert the two curves into their irreducible canonical forms 
by interchangingly applying these reverse operations. A final stage of shared domain determination is required 
before the coefficients or the control points can be compared. 
The presented results could immediately be applied to piecewise rational forms.  Nevertheless, rational forms 
have more degrees of freedom to change the representation while preserving the shape. Beyond the obvious ability 
to uniformly scale all weights, the Moebious transformation [6] over rationals provides a simple scheme to modify 
the curve speed (but neither the trace nor the degree) by changing the weights.  A canonical representation that 
completely fixes this degree of freedom could require that the value of the first weight equal the last. 



We believe that the extension of the presented approach to tensor product surfaces is straight forward, as the bi-
variate function is multiplicative and one can treat each variable separately. This extension also holds for 
multivariate tensor product representations. 
We believe that the similarity test presented in this paper will find other important applications in freeform shape 
design. 
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APPENDIX A 
A.1 Example 1 
CRV0:  A scalar quadratic Bezier curve with coefficients )  ( 018100 .,/,. . 
CRV1_0 = CRV2_0: A cubic Bezier curve with control points ..,.,.,.,.,.,.,. ) ( ) ( ) ( ) ( 012080504060100000  
 
A.2 Example 2 
CRV0:  A scalar quadratic power basis curve with coefficients )  ( 604000 .,.,. . That is 26040 t.t. + . 
CRV1_0 = CRV2_0: A quadratic Bezier curve with control points ..,./,/,.,. ) ( ), ( ) ( 010141810000  
 
A.3 Example 3 
CRV0_1:  A scalar cubic power basis curve with coefficients )   ( 21210000 /,/,.,. . That is 22 32 // tt + . 

CRV0_2:  A scalar cubic power basis curve with coefficients ).   ( 21414100 /,/,/,.  That is 244 32 / t / t t/ ++ . 
CRV1_0 = CRV2_0: A cubic Bezier curve with control points ) ( ) ( ) ( ) ( 08010000405010000 .,.,.,.,.,.,.,. . 
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