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Abstract
We propose a sweep-based approach to the freeform deformation of three-dimensional objects. Instead of using a
volume enclosing the whole object, we approximate only its deformable parts using sweep surfaces. The vertices
on the object boundary are bound to the sweep surfaces and follow their deformation. Several sweep surfaces
can be organized into a hierarchy so that they interact with each other in a controlled manner. Thus we can
support intuitively plausible shape deformation of objects of arbitrary topology with multiple control handles.
A sweep-based approach also provides important advantages such as volume preservation. We demonstrate the
effectiveness of our technique in several examples.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Curve, surface, solid, and object representations

1. Introduction

Since its introduction by Sederberg and Parry [SP86], the
freeform deformation (FFD) has established itself as one
of the most powerful shape design methods for freeform
objects. A user of FFD starts with an existing object and
changes its shape. This contrasts with the use of sweeps,
which allow a designer to create three-dimensional objects
from scratch instead of modifying existing shapes. In this pa-
per, we combine these two well-known shape design tools,
and propose a new technique for the sweep-based freeform
deformation of existing three-dimensional objects.

In conventional FFD [SP86, Coq90, MJ95], the user de-
forms the shape of an object using control lattices which
define trivariate volumes enclosing the parts of an object
to be deformed. This requires a hierarchy of multiple lat-
tices which is rather difficult to specify because of its three-
dimensional structure. This difficulty motivates us to con-
sider variants of FFD which are based on a one-parameter
family of affine transformations [Bar84,CR94] or on a coor-
dinate frame that moves along the axis of an object [LCJ94].

Figure1 explains the basic idea of our approach. It shows
the Utah teapot represented as a union of three deformable
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parts: the body, the spout and the handle. Each part is ap-
proximated by a sweep surface. The boundary vertices of
each deformable part are then bound to appropriate cross-
sections of the sweep surfaces. By deforming these surfaces,
the corresponding parts of the teapot change their shapes. An
interesting feature of the Utah teapot is its multiple control
handles, and the deformation of one handle influences the
others to maintain the consistency of the teapot’s topology.
There certainly need to be constraints on the allowable inter-
actions between the three different parts of the Utah teapot.
Figure1(b) shows a deformation of the teapot body and the
hierarchy of different sweep surfaces, which automatically
changes the shape of the handle and the spout so as to main-
tain the topology of the teapot model as the body changes its
shape. Figure1(c) shows the result of a deformation of the
handle, and the hierarchy of sweep surfaces which makes
the body and spout change their shapes as the user bends the
handle. In this paper, we will address these interaction prob-
lems and show how to set up the necessarily complicated
interaction rules between different deformations.

Using existing FFD methods, it is difficult, or at best te-
dious, to support interactions among multiple deformations.
Even commercial modeling packages may only support a
few limited symmetric interactions. And some FFD meth-
ods [Bar84,LCJ94] provide insufficient degrees of freedom
to specify arbitrary interactions among multiple deforma-
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(a) (b) (c)

Figure 1: Interactions among deformations:(a) teapot model and control sweep surfaces, (b) deformation of the body, and (c)
deformation of the spout and handle.

tions. Our new FFD approach uses sweeps to support inter-
actions among different deformable parts in a natural way.

Our technique works by approximating the deformable
parts of an object using control sweep surfaces which are
constructed by interpolating some key cross-sections. An ob-
ject is represented using multiple deformable sweep surfaces
which can interact because they are organized in a hierarchy.
An effective way of binding a sweep surface to other sweep
surfaces within such a hierarchy is to bind key cross-sections
to cross-sections of the parent part (there are more details in
Section 5). Using this simple binding mechanism, we can
construct a hierarchy between a number of control sweep
surfaces and then deform them simultaneously.

A sweep-based representation provides various additional
important advantages, which we itemize in the following
summary of the main contributions of our work:

• Sweep-based FFDprovides an intuitive and effective
control mechanism for modifying and editing three-
dimensional shapes.

• Direct control of the deformation of three-dimensional
objects is achieved.

• Interactions among deformationsare fully supported.
• Hierarchy-based interaction of deformations can easily

be organized, which facilitates the preservation of object
topology.

• Volume-preserving interaction is possible because a
sweep-based representation greatly simplifies volume
computation; both total and relative volumes can be pre-
served.

The rest of this paper is organized as follows. In Section2,
we briefly review some representative FFD techniques. Sec-
tion 3 introduces our sweep-based approach to freeform de-
formation. In Section4, we propose three control techniques
for sweep surfaces and in Section5 we discuss interactions
among deformations of different parts of an object. Exper-
imental results are presented in Section6. Finally, we con-
clude this paper in Section7.

2. Related Work

Freeform deformation (FFD) techniques employ different
types of control lattices to construct three-dimensional vol-
umes that surround the objects to be deformed. Sederberg
and Parry [SP86] used parallelepiped control lattices. Co-
quillart [Coq90] extended the types of control lattice to in-
clude cylindrical lattices and lattices located on surfaces. Us-
ing the Catmull-Clark subdivision scheme, MacCracken and
Joy [MJ95] further extended the capability of FFD by intro-
ducing lattices of arbitrary topology.

Barr [Bar84] proposed a simple deformation technique for
stretching, twisting, bending and tapering solid primitives.
This method is essentially the application of a one-parameter
family of affine transformations to the cross-sections of an
object along its axis. Chang and Rockwood [CR94] clari-
fied the underlying affine structure of this approach in a sys-
tematic way. Lazarus et al. [LCJ94] presented a general de-
formation scheme that is based on a coordinate frame that
moves along the axis of an object. Singh et al. [SF98] pro-
posed a deformation technique that uses a parametric curve
and influence function. Hyun et al. [HYC∗05] considered the
deformation of a human body model using sweep surfaces.

These methods all provide some sort of intuitive handle
on the deformation of an object. In this paper, we further ex-
tend these results so as fully to utilize the underlying affine
structures of the moving frames. Our approach offers effec-
tive ways of controlling the deformation of an object while
preserving a visual resemblance to its original shape. An im-
portant advantage of this approach is that we can support
various types of interaction among different parts of an ob-
ject.

Recently, some new deformation techniques have been
proposed. Hua and Qin [HQ03] presented a modified FFD
in which they employ a scalar field as the embedding space
instead of a volume. The vertices of an object are pa-
rameterized by the level-set of a scalar field and follow
its deformation. Angelidis et al. [ACWK04] introduced a
volume-preserving operator as a shape deformation tool.
Simplified polygonal meshes can also be used as control
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structures [SK00,CO03], as can continuous parametric sur-
faces [FMP96, COJ∗02]. Yoshizawa et al. [YBS03] pre-
sented a skeleton-driven mesh deformation technique in
which they used a Voronoi-based skeletal mesh as a control
structure for freeform models. Ju et al. [JSW05] generalized
mean-value coordinates from closed 2D polygons to closed
triangular meshes and applied them to mesh deformation.
Using a rigid motion-invariant mesh representation, Lipman
et al. [LSLC05] proposed an interactive mesh editing and
shape interpolation technique.

To improve the controllability of FFDs, a number of direct
manipulation techniques have been proposed. Hsu and Kauf-
man [HK92] introduced the direct manipulation of FFDs,
and later Hu et al. [HZTS01] presented an explicit solu-
tion to this problem using constrained optimization. Chang
et al. [CLKH98] also proposed the direct manipulation of
a generalized cylinder, which is somewhat similar to our
sweep surface.

3. Sweep-based Freeform Deformation

Sweeps are a procedural modeling technique for represent-
ing three-dimensional freeform objects [PT97]. In this sec-
tion, we describe our sweep-based FFD.

Sweep surface from a continuous motion.A sweep surface
generated by a continuous motion provides a nice control
structure for FFDs. Let{Xi} be a set of key cross-sections.
Each key cross-sectionXi is associated with a local transfor-
mationTi−1,i (represented by a4×4 matrix) from the previ-
ous key cross-sectionXi−1. Thus, when a key cross-section
Xj changes its position and orientation, all the following key
cross-sectionsXk(k > j) are automatically updated by a se-
ries of relative transformations. This arrangement facilitates
intuitive deformations such as bending and twisting.

Our sweep surface is generated by interpolating these key
cross-sections{Xi}:
S(θ, t) = C(t)+R(t) ·Ot(θ)

=




x(t)
y(t)
z(t)


+




r11(t) r12(t) r13(t)
r21(t) r22(t) r23(t)
r31(t) r32(t) r33(t)


·



r(θ, t)cosθ
r(θ, t)sinθ

0


 ,

whereOt(θ) represents a star-shaped cross-sectional closed
curve andC(t) andR(t) describe its position and orientation
respectively.

Figure 2(a) shows a set of key cross-sections and Fig-
ure 2(b) shows the sweep surface generated by interpolat-
ing them. As shown in Figure2, our sweep surface repre-
sents a time-variant star-shaped cross-section by a scalar ra-
dius functionr(θ, t). This sweep surface can be used as a
control structure for bending, twisting and tapering. More-
over, to achieve local deformations, we can change the cross-
sectional shape of a sweep surface by modifying the scalar
radius functionr(θ, t).

(a) (b)

Figure 2: Sweep surface:(a) key cross-sections, (b) resulting
sweep surface.

If the sweep surfaceS(θ, t) has no self-intersection, it
bounds a volume of magnitude

∫
A(t)

〈
N(t),C′(t)

〉
dt, (1)

where A(t) is the area of the cross-sectionOt(θ) (see
[STV03]) and N(t) is a unit normal vector of the mov-
ing cross-sectional plane, which appears as the third col-
umn vector ofR(t). In Section5, we will show how to use
this simple integral formula to solve an interaction prob-
lem while preserving (both absolute and relative) volumes
among multiple deformations.

Control sweep surface construction.Before changing the
shape of an object, its deformable parts must be approxi-
mated by sweep surfaces. We start by selecting the parts
to be deformed and creating initial control sweep surfaces
which enclose those parts. Figure3(a) shows the leg of the
well-known Armadillo model and an initial control sweep
surface.

In the second step, key cross-sections are computed by
cutting the polygonal model of the selected part with planes.
The center of each key cross-section is computed, and then
radii from the center to the boundary vertices of the cross-
section are sampled. Figure3(b) shows a key cross-section
with sampled radii. A control sweep surface can then be con-
structed by interpolating these key cross-sections. The cen-
ters of the key cross-sections are interpolated by a cubic B-
spline curveC(t) using chord length parametrization, and
their orientations (represented by unit quaternions) are lin-
early interpolated and normalized to form a rotation matrix
R(t). The sampled radii on each key cross-section are inter-
polated by a B-spline functionr(θ, t). Figure3(c) shows the
control sweep surface constructed by interpolating the com-
puted key cross-sections.

In the third step, we can manually edit the positions and
orientations of these key cross-sections, insert additional key
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(a) (b)

(c) (d)

Figure 3: Control sweep surface construction:(a) the se-
lected part of the Armadillo leg and the initial control sweep
surface, (b) a key cross-section and sampled radii, (c) an in-
termediate control sweep surface, and (d) the final tightly
fitting control sweep surface.

Figure 4: Binding a vertex to a control sweep surface.

cross-sections if necessary. Then the second and third steps
are repeated until a tightly fitting surface has been generated.

Figure3(d) shows a control sweep surface constructed in
this iterative way including the insertion of some additional
key cross-sections with manually adjusted orientations. Fig-
ures5(b) and6(b) show control sweep surfaces for all the
deformable parts of a dinosaur and a bunny model.

Vertex binding and deformation. Once a control sweep
surface has been constructed, the vertices in the part of the
original model that is to be deformed are bound to that sur-
face. To do this, we first compute the cross-sectional plane
that contains a vertexv by solving

< v−C(t),N(t) >= 0,

where< ·, · > signifies an inner product, andN(t) repre-
sents a unit normal vector of the moving cross-sectional
plane. The local coordinate of the vertexv in that plane
is then determined from̂v = R(t)T(v−C(t)). The circu-
lar binding angleθ is arctan(v̂y/v̂x). Finally, the signed
distanced from the control sweep surface is computed as
d = ‖v̂‖−‖S(θ, t)−C(t)‖ = ‖v−C(t)‖−‖S(θ, t)−C(t)‖.
Figure 4 shows an example of this binding procedure in
which a vertexv is bound to a cross-section of a control
sweep surface using the binding parameters(θ, t,d).

During a deformation, the user can change the shape of
the control sweep surface to which all the vertices of the
deformable part are bound. Then all the vertices of that part
can be reconstructed using the following equation, and will
then track the deformation of the control sweep surface.

v = C(t)+R(t)




(r(θ, t)+d) ·cosθ
(r(θ, t)+d) ·sinθ

0


 . (2)

Figures5(c) and5(d) show the deformation of a dinosaur
model and Figures6(c) and6(d) show the deformation of
the neck and ears of a bunny model, all of which we achieved
by editing the positions and orientations of a few key cross-
sections.

4. Sweep Surface Control

In this section, we will introduce three types of control tech-
nique for sweep surfaces: editing key cross-sections; directly
controlling a point on a sweep surface; and controlling the
position and orientation of an arbitrary cross-section. We
start with the editing of key cross-sections and move on to
the higher-level control techniques, which provide more in-
tuitive and effective deformations.

Editing key cross-sections.We now consider how to apply
various deformations such as bending, twisting, and tapering
to sweep-based models by editing their key cross-sections.
During a deformation, a user can select one key cross-section
Xi and edit its local position and orientationTi−1,i with re-
spect to the previous key cross-sectionXi−1. These changes
affect consecutive key cross-sections{Xk}, k= i, i +1, · · · ,n,
and update their global positions and orientations{T0,k}. Al-
ternatively, we can edit a key cross-sectionXi independently
of other key cross-sections. We can also easily edit the radius
function r(θ, t) of key cross-sections, in addition to trans-
forming them. The edited key cross-sections are interpolated
and the corresponding sweep surface is constructed. Figure7
shows the results of these editing operations.

c© The Eurographics Association and Blackwell Publishing 2006.
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(a) (b)

(c) (d)

Figure 5: Sweep-based deformations:(a) dinosaur model,
(b) control sweep surfaces, (c) and (d) deformations of the
dinosaur model.

(a) (b)

(c) (d)

Figure 6: Sweep-based deformations:(a) bunny model, (b)
control sweep surfaces, (c) and (d) deformation of the ears
and neck.

(a) (b) (c)

Figure 7: Editing key cross-sections by changing their: (a)
position, (b) orientation and (c) radius.

Direct control of a surface point. Sometimes a user wants
to deform the shape of an object directly by editing points
on its boundary. When the user picks and manipulates a ver-
tex v with binding parameters(θ, t,d), the corresponding
cross-section moves and rotates, resulting in a new config-
uration, andS(θ, t) must change to accommodate this offset.
The basic idea of our technique is to edit appropriate key
cross-sections so that the sweep surface passes through the
changed target point. However, the relation between a point
on a sweep surface and its key cross-sections is highly non-
linear, and there are many possible ways to modify a sweep
so that its surface contains a specified point.

Figure8 shows a strategy based on an infinitesimal edit-
ing operation. The user picks a pointv (in red) on a sweep
surface and moves it to a pointv′ (in blue), which generates a
difference vector∆v at the vertexv. Our strategy is to divide
∆v into a linear component∆t and an angular component∆q,
and then to start a numerical target tracking process. We first
select the lower key cross-sectionXi , and consider a sphere
centered at the originpi of Xi , with radius‖v− pi‖. The ver-
tex v′ is then projected on to the sphere, where it generates
a new vertexv′′. The linear component∆t is the difference
v′′−v′, and the rotational axis is computed as the cross prod-
uct(v′′− pi)×(v− pi) and then normalized. The magnitude
of ∆q, which determines the rotation of the cross-section, is
computed as follows:

‖∆q‖= arccos

(
< v− pi ,v

′′− pi >

‖v− pi‖ · ‖v′′− pi‖
)

.

By applying both the linear and angular difference vec-
tors to the key cross-sectionXi , the vertexv approaches the
target positionv′ when a new sweep surface is constructed.
To achieve convergence, we repeat this procedure until the
distance fromv to v′ is reduced within a given tolerance.
For stability, we propagate control to thek lower key cross-
sectionsXi , · · · ,Xi−k+1, starting from the lowest key cross-
sectionXi−k+1 and ending atXi . In general, each key cross-
section has 6 degrees of freedom and there are a number of
possible ways to bring the sweep on target, of which our

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 8: The separation of a difference vector∆v.

(a) (b)

Figure 9: Direct control of a sweep surface.

technique is only one. Alternatively, we can use just one of
the difference vectors to achieve other types of control. Fig-
ure9(a) shows a point selected by the userv (in black), the
target positionv′ (in red), and the affected key cross-sections
(in green). Figure9(b) shows the result of the control pro-
cess, in which both the linear and angular components of the
change have been combined.

Direct control of an arbitrary cross-section. We now pro-
pose another direct control technique for a sweep surface.
(Later, we will use this technique to support hierarchy-based
interactions among different parts of an object.) During a
deformation, the user selects a point on a sweep surface
and changes the position and orientation of the cross-section
that contains that point. In Figure10(a), Xu is the selected
cross-section andX′u is the new cross-section. We edit the
key cross-sectionXi which is closest toXu, assuming thatXu

will follow Xi to a large extent, and repeat this process until
the transformational distance betweenXu andX′u is reduced
within a given tolerance. Figure10(b) shows the direct con-

(a) (b)

Figure 10: Direct control of an arbitrary cross-section.

trol of the cross-sectionXu using this method. Although we
only editedXi in Figure 10, this method can be extended
to the editing of multiple key cross-sections, as discussed
above.

5. Interactions among Deformations

We will now consider the problem of simultaneously con-
trolling the interaction between a number of different defor-
mations of an object using multiple control handles. As a
simple example, we will edit the Utah teapot, using sepa-
rate handles to control the body, spout and handle. Each of
these components is approximated by a sweep surface, and
its shape is changed by controlling that surface. We need to
maintain the consistency of the model’s topology during de-
formations. For example, when the user bends the handle,
the body should follow. When the body is modified, the han-
dle and the spout need to track the deformation of the body.
We require a mechanism to specify the hierarchy of these
deformations, and rules to control their interactions (see Fig-
ure1).

Hierarchy of sweep surfaces.We now show how we spec-
ify a hierarchy of sweep surfaces. In the teapot example of
Figure1(b), the body is a root node, and the handle and the
spout are child nodes. A hierarchy is then specified by bind-
ing key cross-sections of child nodes to cross-sections of
their parent node. In the teapot example, there are two types
of child node. One is a loop, for the handle, and the other is
a branch, for the spout. As shown in Figure11, both the first
and last key cross-sections of the handle node (loop type),
namelyXhandle

f irst andXhandle
last , are bound to cross-sections of

the body, namelyXbody
handle- f irst and Xbody

handle-last. But for the
spout node (branch type), only the first key cross-section
of the spout,Xspout

f irst , is bound to cross-sectionXbody
spout- f irst

of the body. The binding of a key cross-section is a sim-
ple extension of the vertex binding technique introduced in
Section3, and can be represented by the binding parame-
ters (θ, t,d, q̂). For example, the three binding parameters

c© The Eurographics Association and Blackwell Publishing 2006.
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Figure 11: Binding of key cross-sections.

(θhandle
f irst , thandle

f irst ,dhandle
f irst ) represent the displacement of the

center of the key cross-sectionXhandle
f irst from the body sweep

surface, as expressed in Equation (2), and the fourth bind-
ing parameterq̂handle

f irst represents its relative orientation to

the cross-sectionXbody
handle- f irst of the body sweep surface. Us-

ing this binding information, the bound key cross-sections
change their positions and orientations when the sweep sur-
face of their parent node is deformed. In the teapot example
of Figure1(c), the handle is a root node, the body is a child
node and the spout is a grandchild node. The rest of the in-
teractions can be realized in a similar fashion.

Hierarchy-based interactions.Once the cross-sections of
all child nodes have been bound to the sweep surface of their
parent node, following the hierarchical structure, we need to
solve the problem of interactions among multiple deforma-
tions.

In the teapot example, when the user changes the shape
of the body, the handle and the spout should follow the de-
formation of the body. The first key cross-sectionXspout

f irst of
the spout is simply updated using its binding parameters
(θspout

f irst , tspout
f irst ,dspout

f irst , q̂spout
f irst ), and then the positions and ori-

entations of the rest of the key cross-sectionsXj , j = 2, ...,n,
are automatically updated using the local transformations
Tj−1, j from the previous key cross-sectionXj−1. The con-
trol sweep surface of the spout node is then reconstructed
by interpolating the updated key cross-sections, and all ver-
tices bound to that sweep surface are also reconstructed
using their binding parameters. For the handle, the prob-
lem becomes more complicated. We can easily compute the
new positions and orientations of the two key cross-sections
Xhandle

f irst andXhandle
last from their binding parameters. But this

may result in an undesirable deformation because the inter-
mediate key cross-sections are not considered. So then we
compute the difference between the new transformation of
the last key cross-sectionXhandle

last and its old transforma-
tion. Finally, we apply our direct control technique to the
last key cross-sectionXhandle

last , using the difference between
these transformations. When the direct control technique is
applied, all key cross-sections except the first oneXhandle

f irst
are updated iteratively, and the result is a natural deforma-

Figure 12: Broken topology during a deformation.

tion of the handle. Figure1(b) shows a deformation of the
teapot body in which the handle and the spout change their
shapes automatically so as to maintain the topology of the
teapot model as the body changes its shape.

In the case of the deformation of the spout, we do not need
to take any additional action, because there is no topological
constraint on the spout and it can deform independently. But
when we modify the handle, we need to deform the body
as well, so that the loop-type topology of the handle and
the body is maintained. Figure12 shows the broken topol-
ogy that occurs when we do not consider the simultaneous
control of deformations. To maintain the teapot’s topology,
we need to apply our direct control technique to the cross-
sectionXbody

handle-last of the body to which the last key cross-

sectionXhandle
last of the handle is bound (see Figure11). When

a user deforms the control sweep surface of the handle node,
the last key cross-sectionXhandle

last changes its position and
orientation. From the new values we can compute the tar-
get position and orientation of the cross-sectionXbody

handle-last
of the body node. The difference between the target and the
previous transformation of the cross-sectionXbody

handle-last is
then computed. Finally, using the direct control technique
for an arbitrary cross-section which we introduced in Sec-
tion 4, we can control the sweep surface of the body so that
its cross-sectionXbody

handle-last coincides with the target posi-
tion and orientation, thus maintaining the topological con-
straints on the teapot model. Figure1(c) shows the result of
a deformation of the handle, in which the body and spout
change their shapes automatically as the user bends the han-
dle.

Volume-preserving interactions.The volume of a sweep
surface is given in Equation (1). Using this integral formula,
we have developed two simple interaction rules which can
be applied to deformations of an object with multiple con-
trol handles. The first is atotal volume preservation rule
which maintains the overall volume of an object during a de-
formation. When the deformable part of an object changes
its shape, it generates a change∆V in the volume of this
part. This difference∆V is uniformly divided between each
control handle, and each radius functionr(θ, t) is updated

c© The Eurographics Association and Blackwell Publishing 2006.
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(a) (b)

Figure 13: Volume-based interactions:(a) total volume
preservation, (b) volume ratio preservation.

to reflect to the proportion of the volume distributed to that
handle. First, the target volume of each control handle is
computed. We then increase or decrease the sampled radii of
each key cross-section and repeat the process until the target
volume is reached. Figure13(a) shows the result of a defor-
mation of the teapot using the volume-preservation rule, in
which the spout and the handle increase their volumes as the
body shrinks. The second interaction rule is avolume ratio
preservation rule, which maintains the ratio of the volume
of a child node to that of its parent node. This rule is im-
plemented using a similar update of the radii of key cross-
sections, embedded within an iteration process. Figure13(b)
shows the result of a deformation using the volume ratio-
preservation rule, where the ratio between the volumes of
the spout and handle, and that of the body, are preserved.

6. Experimental Results

We have implemented our sweep-based freeform deforma-
tion technique in C++ on a P4-3.2GHz PC with a 2GB main
memory. Our deformation technique works in real-time for
all the test examples presented in this paper; it is simple to
implement and easy to use. The most time-consuming step
is to construct control sweep surfaces for all the deformable
parts of an object. This usually takes from five to ten min-
utes. To minimize this construction time, we have developed
a user interface which includes a semi-automatic process to
compute key cross-sections, and their positions and orienta-
tions can subsequently be edited manually. The processing
time for vertex binding step depends on the number of ver-
tices to be bound to a control sweep surface. Table1 lists the
number of vertices in each model and the time required for
vertex binding.

Figure 14 shows the results of the direct deformation
of a bunny model using five control sweep surfaces. In
Figures14(a) and14(c), the user picks a vertex with the
binding parameters(θ, t,d) and specifies its target posi-
tion, which generates a displacement vector. Our direct con-
trol technique is then applied to the pointS(θ, t) on the
sweep surface. In Figure14(b), only the translational com-
ponent of the displacement vector is considered; while in
Figure14(d), only the rotational component is considered.

Table 1: Number of vertex and binding time (sec).

Models Bunny Dinosaur Teapot
Number of vertices 19,226 14,048 12,882

Time for vertex binding 21.714 16.580 13.820

Figure15 shows the deformation of a teapot model, using
the hierarchy-based interaction rule combined with editing
of the radius functionr(θ, t) to achieve a local deformation.

We have also extended our technique to support arbitrary
interactions among deformable parts. In Figure16(a), four
legs of a chair model are approximated by control sweep sur-
faces. To facilitate interactions among them, they are virtu-
ally interconnected by three auxiliary sweep surfaces (shown
in red and cyan). Figure16(b) shows the deformation of
a front leg with no interaction. In Figure16(c) the user
changes the shape of a single leg and both front legs change
their shapes because of the presence of a virtual sweep that
connects them. In Figure16(d) three virtual sweeps are in-
volved, and all four legs of the chair become elongated.

7. Conclusions

We have shown that a sweep-based approach provides an ex-
cellent control mechanism for deforming three-dimensional
objects. Once an object has been approximated with sweep
surfaces, it is easy to control shape deformations using a
small number of sweep parameters. We have also proposed
various control techniques for sweep surfaces, which allow
the user to change the shape of an object intuitively and ef-
fectively. When an object has multiple deformable parts, it
is straightforward to build a hierarchy of deformations using
sweeps, and it is also easy to describe the interactions among
them. Moreover, our approach supports local deformations
by the editing of a radius functionr(θ, t).

The main difficulty in our approach is the construction
of the control sweep surfaces, which requires some user in-
tervention. This can be ameliorated by incorporating conve-
nient user interfaces or advanced surface fitting techniques.

In the current implementation, we focused on applying
our deformation technique to three-dimensional mesh mod-
els. In future work, we will investigate the feasibility of con-
trolling the shape of freeform objects which have other rep-
resentations, such as implicit surfaces or procedural models,
and extend our technique to support more complex interac-
tion rules.
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(a) (b) (c) (d)

Figure 14: Direct deformations of a bunny model.

Figure 15: Deformations of a teapot model.

(a) (b) (c) (d)

Figure 16: Deformations of a chair model.
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