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Abstract

We present an algorithm for computing Minkowski sums
among surfaces of revolution and surfaces of linear extru-
sion, generated by slope-monotone closed curves. The spe-
cial structure of these simple surfaces allows the process of
normal matching between two surfaces to be expressed as
an explicit equation. Based on this insight, we also present
an efficient algorithm for computing the distance between
two simple surfaces, even though they may in general be
non-convex. Using an experimental implementation, the
distance between two surfaces of revolution was computed
in less than 0.5 msec on average.

1 Introduction

Computing the Minkowski sum of two objects is closely
related to computing the Euclidean distance between them
and hence to detecting collisions [3, 8, 20, 21]. Previous
work has mainly focused on computing (or utilizing the
structure of) the Minkowski sum of (i) two convex free-
form objects [2, 8, 16], (ii) two polygonal/polyhedral ob-
jects [3, 5, 6, 7, 10, 18, 20, 21, 22], or (iii) two planar
free-form objects [1, 12, 16, 17]. It is a very complicated
task to compute and represent the more general Minkowski
sum of two non-convex three-dimensional free-form ob-
jects. Thus it is worthwhile to consider special cases where
the Minkowski sum can be computed relatively easily.

In this paper, we present an efficient algorithm for com-
puting the Minkowski sum of two simple surfaces—by
which we mean surfaces of revolution and surfaces of linear
extrusion generated by slope-monotone closed curves (i.e.
curves of continually increasing or continually decreasing
slope). Note that a convex region in a plane is bounded by
a slope-monotone closed curve; but the latter does not al-
ways bound a convex region. In general, a slope-monotone
closed curve bounds a set of convex regions; but their union

may form a non-convex object (see Figure 1).

The slope-monotonicity of these simple curves allows
our algorithm to work much like a Minkowski sum algo-
rithm for convex objects. Moreover, surfaces of revolution
and surfaces of linear extrusion are2 1

2 -dimensional, and not
full-blown three-dimensional surfaces. An important ad-
vantage of these simple surfaces is the simplicity of their
Gauss maps, which makes normal matching quite straight-
forward. Once the normal matching has been done, the
Minkowski sum can quite easily be computed as the vector
sums of pairs of points, one on each surface, that correspond
to the same normals.

The main contribution of this paper is the derivations of
explicit formulas for matching the normals of two simple
surfaces. These formulas can also be used to generate all
points where a surface has a given outward normal direc-
tion. Based on this simple method, we have developed an
efficient algorithm for computing the distance between two
surfaces of revolution. Note again that these surfaces are
non-convex in general.

Previous Minkowski sum algorithms deal with non-
convex objects by decomposing them into convex pieces [9,
15, 18, 19]. Many real-world objects can be fully or in large
part modeled using surfaces of revolution and surfaces of
linear extrusion. Consequently, our algorithm has a great
deal of potential for real-time collision detection (and hence
avoidance) among non-convex three-dimensional objects in
everyday use. In an experimental result shown in Figure 14,
the distance between the objects at each snapshot was com-
puted in less than 0.5 msec on average, which compares
quite favorably with previous results [9, 13, 15] for less gen-
eral objects.

The rest of this paper is organized as follows. In Sec-
tion 2, we review some preliminary material. Sections 3–5
consider the Minkowski sum of surfaces of revolution and
surfaces of linear extrusion. In Section 6, we present an al-
gorithm for computing the distance between two surfaces of
revolution. Finally, Section 7 concludes this paper.



2 Preliminaries

We will briefly review slope-monotone closed curves, the
surfaces of revolution generated by these curves, and their
Minkowski sum. Formal definitions in this area [14, 23] are
rather tedious and we take an informal approach.

The slope-monotone closed curve shown in Figure 1(a)
represents the union of three circular regions, while that in
Figure 1(b) represents the union of three elliptic regions.
While tracing along a curve counterclockwise, the region
immediately to the left of the curve will be in the interior of
the object. The triangular region at the center of Figure 1(b)
is not in the interior since this region is always (locally) to
the right of the curve.

The slope-monotone closed curve of Figure 1(a) has four
local minimum points. For any fixed direction, there are al-
ways four locations where the curve has its outward normal
in that direction. This number is called thecycleof a slope-
monotone closed curve. Thus the curve in Figure 1(a) has
cycle 4, even though this curve represents a union of three
convex regions. The curve in Figure 1(b) has cycle 5.

(a) (b)

Figure 1. Slope-monotone closed curves
(drawn in bold) representing unions of con-
vex regions.

When we rotate a slope-monotone closed curve about
a fixed axis, we obtain a surface of revolution (see Fig-
ure 2). (We will assume that the curve is not symmetric
about this axis.) Because of the symmetry of the resulting
surface shape about its axis of rotation, there are2k points
where the surface has its outward normal pointing in a fixed
directionN , wherek is the cycle of the generating curve.
(We will assume that the directionN is not parallel or anti-
parallel to the axis of rotation.) In Figure 2(a), the curve has
cycle 1; thus the surfaceS1 in Figure 2(c) has two points
where the surface has its outward normal in a fixed direc-
tion N 6= (0, 0, 1). Similarly, the surfaceS2 of Figure 2(d)
has four points where the surface has its outward normal in
a fixed direction.

Given two surfaces of revolution, generated by slope-
monotone curves of cycleki, i = 1, 2, each surface has
2ki points where its outward normal is in a given direc-

z

y

z

y
ϕ

(a)C1 (b) C2

(c) S1 (d) S2

Figure 2. Two slope-monotone closed curves
and their surfaces of revolution.

tion N . By matching these points and taking their vector
sums, we generate4k1k2 points; as we change the normal
directionN smoothly they in turn generate surface patches.
These comprise the Minkowski sum surface, which bounds
the volumetric Minkowski sumV1 ⊕ V2 of two solidsV1

andV2, where eachVi is the volume bounded bySi, and
V1 ⊕ V2 = {v1 + v2 | vi ∈ Vi}, i = 1, 2. (See Kim and
Sugihara [14] for more details.)

Depending on the way in which solid objects are being
represented (e.g. as boundary models), a global trimming
procedure may be needed to complete the construction, by
eliminating the redundant parts of the Minkowski sum sur-
face that belong to the interior of the Minkowski sum [17].
Although trimming is a non-trivial task, we ignore the de-
tails in this paper. Depending on the application, it is often
sufficient to do trimming locally, indirectly, or only approx-
imately. In the following sections, the Minkowski sum of
two surfaces means the whole of the Minkowski sum sur-
face generated by the vector sums of surface points corre-
sponding to the same surface normals.

3 Two Surfaces of Revolution

We now present an algorithm for computing the Minkowski
sum of two surfaces of revolution generated by slope-
monotone closed curves. This result is an extension of Kim
and Sugihara [14], where the Minkowski sum was com-
puted for two axis-parallel surfaces of revolution.



3.1 Normal Vectors

Two slope-monotone closed curvesC1 andC2 are defined
in theyz-plane as follows:

C1(s) = (0, y1(s), z1(s)), C2(t) = (0, y2(t), z2(t)).

An axis l is contained in theyz-plane and makes an angle
ϕ with the z-axis. LetS1 denote the surface generated by
rotating the curveC1 about thez-axis; and letS2 denote
another surface generated by rotatingC2 about the axisl:

S1(θ, s) = (−y1(s) sin θ, y1(s) cos θ, z1(s)),
S2(ψ, t) = (−ŷ2(t) sin ψ, ŷ2(t) cos ψ cosϕ + ẑ2(t) sin ϕ,

−ŷ2(t) cos ψ sin ϕ + ẑ2(t) cos ϕ),

where

ŷ2(t) = y2(t) cos ϕ− z2(t) sin ϕ,

ẑ2(t) = y2(t) sin ϕ + z2(t) cos ϕ,

for all θ, ψ, s, andt (see Figure 2). Note that the parame-
terization ofS2(ψ, t) can be obtained in three steps: (i) ro-
tateC2(t) through an angleϕ about thex-axis and call the
resulting curveĈ2(t) = (0, ŷ2(t), ẑ2(t)), (ii) rotate Ĉ2(t)
through an angleψ about thez-axis, and (iii) rotate the re-
sulting surface of revolution through an angle−ϕ about the
x-axis.

From the partial derivatives ofS1(θ, s),

∂S1

∂θ
= (−y1(s) cos θ,−y1(s) sin θ, 0),

∂S1

∂s
= (−y′1(s) sin θ, y′1(s) cos θ, z′1(s)),

we can compute the normal vector ofS1(θ, s) as

∂S1

∂θ
× ∂S1

∂s
= y1(s)(−z′1(s) sin θ, z′1(s) cos θ,−y′1(s)).

Similarly, from the partial derivatives

∂S2

∂ψ
= (−ŷ2(t) cos ψ,−ŷ2(t) sin ψ cosϕ,

ŷ2(t) sin ψ sin ϕ),
∂S2

∂t
= (−ŷ′2(t) sin ψ, ŷ′2(t) cos ψ cos ϕ + ẑ′2(t) sin ϕ,

−ŷ′2(t) cos ψ sin ϕ + ẑ′2(t) cos ϕ),

we can compute the normal vector ofS2(ψ, t) as

∂S2

∂ψ
× ∂S2

∂t
=

ŷ2(t)(−z′2(t) sin ψ, z′2(t) cos ψ cosϕ− ŷ′2(t) sin ϕ,

− ŷ′2(t) cos ϕ− ẑ′2(t) cos ψ sin ϕ). (1)

Note that, whenC1(s) passes through thez-axis (and
thusy1(s) changes its sign), the normal vector changes its
direction. Moreover, wheny1(s) = 0, the normal vec-
tor vanishes. Thus we define an outward normal vector
N1(θ, s) by deleting the termy1(s), to obtain:

N1(θ, s) = (−z′1(s) sin θ, z′1(s) cos θ,−y′1(s)).

Let N1(θ, s) denote the unit outward normal vector of
S1(θ, s). It can be formulated as:

N1(θ, s) =
(−z′1(s) sin θ, z′1(s) cos θ,−y′1(s))√

y′1(s)2 + z′1(s)2
.

We can repeat this procedure for the other surfaceS2(ψ, t).
In this case the axisl plays a similar role to that of thez-
axis in the discussion above, andN2(ψ, t) denotes the unit
outward normal vector ofS2(ψ, t).

3.2 Matching Normal Vectors

To move nearer to computing the Minkowski sum, we now
need to find all pairs of matching normal vectors ofS1 and
S2. That is, givenθ ands, we need to compute the parame-
tersψ andt that satisfy the following relation:

N1(θ, s) = N2(ψ, t).

This procedure involves computation of the Gauss maps of
S1 andS2, which is relatively easy because the surfaces we
are dealing with are generated by slope-monotone closed
curves. For eachs, the normal vectorsN1(θ, s), (0 ≤ θ ≤
2π), generate a circle on the Gauss sphere. Similarly, for
eacht, the normal vectorsN2(ψ, t), (0 ≤ ψ ≤ 2π), gener-
ate another circle on the Gauss sphere (see Figure 3).

A(s )2

A(s )1 A(t )2
A(t )1

(a) (b)

Figure 3. Circles on the Gauss sphere: (a)
circles generated by N1(θ, s), and (b) circles
generated by N2(ψ, t).

Givenθ ands, we now consider how to compute the pa-
rametersψ and t that satisfyN1(θ, s) = N2(ψ, t). Note
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Figure 4. Matching normal vectors.

thatN2(0, t) is located on theyz-plane, andN2(ψ, t) is ob-
tained by rotatingN2(0, t) about the axisl by angleψ. Thus
we have

N2(0, t) = Rl(−ψ)N2(ψ, t)
= Rl(−ψ)N1(θ, s), (2)

whereRl(ψ) represents the rotation about axisl by angle
ψ.

The normal vectorN2(0, t) is computed using Equa-
tion (2):

N2(0, t) = Rl(−ψ)N1(θ, s)

=
1√

y′1(s)2 + z′1(s)2
(3)




−z′1(s)(sin θ cos ψ − cos θ cos ϕ sin ψ)+
y′1(s) sin ϕ sin ψ

z′1(s)(sin θ sinψ cosϕ+
cos θ cos2 ϕ cos ψ + cos θ sin2 ϕ)+
y′1(s)(sin ϕ cos ϕ cos ψ − sinϕ cos ϕ)

−z′1(s) sin θ sinψ sin ϕ−
z′1(s) cos θ(sinϕ cosϕ cosψ − cos ϕ sin ϕ)−

y′1(s)(sin
2 ϕ cosψ + cos2 ϕ)




.

Since N2(0, t) is contained in theyz-plane, its x-
component is equal to zero. Consequently, we have the fol-
lowing equation:

−z′1(s)(sin θ cosψ − cos θ cos ϕ sin ψ)
+y′1(s) sin ϕ sin ψ = 0,

which produces

tanψ =
z′1(s) sin θ

y′1(s) sin ϕ + z′1(s) cos θ cos ϕ
. (4)

When cos ψ ≈ 0, we can derivecot ψ instead oftan ψ.
Given θ and s, the angleψ = ψ(θ, s) is computed as a
function of θ ands from Equation (4); and we are able to
find the other parametert = t(θ, s) and the curve point
C2(t), using Equation (3). There are two solutions to Equa-
tion (4) in the range[0, 2π]: ψa andψb = ψa+π. Moreover,
for a fixedψ = ψa or ψ = ψb, there arek2 different val-
ues oft that produce the same unit normal vectorN2(ψ, t),
wherek2 is the cycle ofC2(t). This means that there are
2k2 different pairs(ψ, t) that produce the sameN2(ψ, t),
whereψ = ψa or ψ = ψb. A similar argument applies
to N1(θ, s). Consequently, we have4k1k2 pairs of match-
ing normal vectors for each normal direction, except those
parallel or anti-parallel to the rotational axes ofS1 andS2.

3.3 Computing the Minkowski Sum

Let N2(0, ta(θ, s)) be the normal vector computed in Equa-
tion (3) using the angleψa(θ, s); and letN2(0, tb(θ, s))
be the normal vector computed from the angleψb(θ, s) =
ψa(θ, s) + π. Then, from the following normal matching
conditions

N1(θ, s) = N2(ψa(θ, s), ta(θ, s)),
N1(θ, s) = N2(ψb(θ, s), tb(θ, s)),

we can define two partial Minkowski sums as follows:

(S1 ⊕ S2)a(θ, s) = S1(θ, s) + S2(ψa(θ, s), ta(θ, s)),
(S1 ⊕ S2)b(θ, s) = S1(θ, s) + S2(ψb(θ, s), tb(θ, s)),

for all θ ands. The Minkowski sum ofS1(θ, s) andS2(ψ, t)
is then defined as the union of these two surfaces,

(S1 ⊕ S2)(θ, s) = (S1 ⊕ S2)a(θ, s) ∪ (S1 ⊕ S2)b(θ, s),

for all θ ands.
Let R(Si), i = 1, 2, denote the three-dimensional vol-

ume which is enclosed by the surfaceSi. When the axes of
rotation are non-parallel, the three-dimensional volumetric
Minkowski sum is given as

R(S1)⊕R(S2)
= { p1 + p2 | p1 ∈ R(S1), p2 ∈ R(S2)}
= R((S1 ⊕ S2)a) ∪R((S1 ⊕ S2)b).

(If the two axes are parallel, there will be some extra vol-
umes to consider; see Kim and Sugihara [14] for more de-
tails and some examples.) Figure 5 shows two surfaces of
revolution generated by slope-monotone closed curves. Fig-
ure 6 shows their partial Minkowski sums. Figure 7 shows
two tori and their partial Minkowski sums.



(a) (b)

(c) (d)

Figure 5. Two slope-monotone closed curves
and their surfaces of revolution.

(a) (b)

Figure 6. The partial Minkowski sums of two
surfaces of revolution.

4 Two Surfaces of Linear Extrusion

We now move on to consider the Minkowski sum of two
surfaces of linear extrusion, again generated by slope-
monotone closed curves. The outward unit normals of a
surface of linear extrusion are orthogonal to the direction
of extrusion and thus they form a great circle on the Gauss
sphere. Consequently, the Minkowski sum is relatively
easy to construct: again, normal matching is done by
intersecting the two great circles on the Gauss sphere.
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Figure 7. Two tori and their partial Minkowski
sums.

4.1 Normal Vectors

Two slope-monotone closed curves are now defined in the
xy-plane as:

C1(s) = (x1(s), y1(s), 0), C2(t) = (x2(t), y2(t), 0).

A fixed directionl1 = (a1, 0, c1) is given on thexz-plane
and another directionl2 = (a2, b2, c2) is chosen arbitrarily.
We define two surfaces of linear extrusion as follows:

S1(u, s) = C1(s) + ul1
= (x1(s) + ua1, y1(s), uc1),

S2(v, t) = C2(t) + vl2
= (x2(t) + va2, y2(t) + vb2, vc2).

From the partial derivatives ofS1 andS2, which are

∂S1

∂s
= (x′1(s), y

′
1(s), 0), ∂S1

∂u = (a1, 0, c1),

∂S2

∂t
= (x′2(t), y

′
2(t), 0), ∂S2

∂v = (a2, b2, c2),

we can compute the unit outward normal vectorsN1 and
N2, as follows:

N1(u, s) = N1(u, s)/‖N1(u, s)‖,
N2(v, t) = N2(v, t)/‖N2(v, t)‖,

where

N1(u, s) = (c1y
′
1(s),−c1x

′
1(s),−a1y

′
1(s)),

N2(v, t) = (c2y
′
2(t),−c2x

′
2(t), b2x

′
2(t)− a2y

′
2(t)).

Figure 8 shows the images ofN1(u, s) andN2(v, t) which
generate great circles on the Gauss sphere. Note that each
circle is also contained in the plane orthogonal to the extru-
sion directionli.



N 1 (u , s)
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Figure 8. Gauss images of the surfaces of lin-
ear extrusion.

4.2 Matching Normal Vectors

In Figure 8, two great circles intersect at two antipodal
points. When the extrusion directions are not parallel, the
two surfaces of linear extrusion have matching normal vec-
tors only at the directions±l1×l2. On the other hand, when
the directions are parallel, the problem essentially reduces
to a planar case, which can be solved using the technique of
Sugihara et al. [23].

4.3 Computing the Minkowski Sum

Let N± denote two unit normal directions defined as

N± = ± l1 × l2
‖l1 × l2‖ .

For the directionN+, there arek1k2 pairs of curve points
(C1(si,+), C2(tj,+)) where the surfacesS1 and S2 have
N+ as the unit outward normal vector, fori = 1, . . . , k1,
andj = 1, . . . , k2. (Recall thatkl is the cycle of a slope-
monotone closed curveCl.) Analogous arguments apply to
the directionN−.

Let N± denote the projection ofN± onto thexy-plane.
Then the curveC1(s) hasN+ as its outward normal vector
at eachs = si,+; and similarly the curveC1(s) hasN−
as its outward normal vector at eachs = si,−. Analogous
arguments apply to the other curveC2(t) and the parameters
tj,+ andtj,−.

The Minkowski sum ofS1 and S2 consists of2k1k2

planes, each of which is orthogonal tol1 × l2 and con-
tains one of the points:C1(si,+) + C2(tj,+) or C1(si,−) +
C2(tj,−), for i = 1, . . . , k1, andj = 1, . . . , k2. Here we
consider surfaces of linear extrusion, which are infinitely
extended. The case of truncated surfaces is more involved;
to save space, we omit this more general case.

5 A Surface of Revolution and a Surface of
Linear Extrusion

In this section, we consider the Minkowski sum of a surface
of revolution and a surface of linear extrusion, where the
surfaces are generated by slope-monotone closed curves.

5.1 Normal Vectors

Two generating curves are defined as follows:

C1(s) = (0, y1(s), z1(s)), C2(t) = (x2(t), y2(t), 0).

Then the surface of revolutionS1 may be parameterized as

S1(θ, s) = (−y1(s) sin θ, y1(s) cos θ, z1(s)),

and the surface of linear extrusionS2 is given as

S2(u, t) = C2(t) + ul = (x2(t) + ua, y2(t) + ub, uc),

wherel = (a, b, c) is a direction vector. Their unit outward
normal vectors are

N1(θ, s) =
(−z′1(s) sin θ, z′1(s) cos θ,−y′1(s))√

y′1(s)2 + z′1(s)2
,

N2(u, t) = N2(u, t)/‖N2(u, t)‖,
where

N2(u, t) = (cy′2(t), −cx′2(t), bx′2(t)− ay′2(t)).

5.2 Matching Normal Vectors

Givenu andt, we consider how to compute the parameters
θ and s so that the two unit normal vectorsN1(θ, s) and
N2(u, t) are matched. We can deduce the normal vector
N1(0, s) by rotatingN1(θ, s) through an angle−θ about
thez-axis. Thus, we have

N1(0, s) = Rz(−θ)N1(θ, s)
= Rz(−θ)N2(u, t)
= (cy′2(t) cos θ − cx′2(t) sin θ, −cy′2(t) sin θ

−cx′2(t) cos θ, bx′2(t)− ay′2(t)). (5)

Figure 9 shows the Gauss maps of these two sur-
faces overlayed on the same Gauss sphere. Since thex-
component ofN1(0, s) is equal to zero, we deduce that

tan θ = y′2(t)/x′2(t). (6)

Whencos θ ≈ 0, we can usecot θ instead oftan θ. Givenu
andt, the angleθ = θ(u, t) is computed as a function ofu
andt from Equation (6); and we are able to find the corre-
sponding value ofs = s(u, t) from Equation (5). Note that
there are2k1k2 pairs of matching normal vectors, excluding
the directions parallel or anti-parallel to the axis of rotation
or the direction of extrusion.
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Figure 9. Two Gauss maps overlayed.

5.3 Computing the Minkowski Sum

The Minkowski sum ofS1(θ, s) andS2(u, t) can be con-
structed as a union of partial Minkowski sums. From the
relation

N1(θi(u, t), si(u, t)) = N2(u, t), i = 1, ..., 2k1,

we can define partial Minkowski sums as follows:

(S1 ⊕ S2)i(u, t) = S1(θi(u, t), si(u, t)) + S2(u, t),

for all u andt, andi = 1, ..., 2k1.
Figure 10 shows a surface of revolution and a surface of

linear extrusion. Note that the surface of revolution is gener-
ated by a slope-monotone curve of cycle 1. Thus two partial
Minkowski sums are generated, as shown in Figure 11.

6 Computing Distance

The Minkowski sum can be used in computing the distance
between two surfaces. Given two surfacesS1 andS2, we
may assume that the distance betweenS1 andS2 is realized
at two surface (interior) pointsp1 ∈ S1 andp2 ∈ S2. Then
p1−p2 is the closest point from the origin to the Minkowski
sumS1⊕ (−S2). Consider a ball of radius‖p1−p2‖, with
its center at the origin; this ball will touch the Minkowski
sumS1 ⊕ (−S2) tangentially atp1 − p2.

Let Ni(pi) denote the unit outward normal vector ofSi

atpi, i = 1, 2. ThenN1(p1) is the same as the unit outward
normal vector ofS1 ⊕ (−S2) atp1 − p2, whereasN2(p2)
is anti-parallel toN1(p1). Moreover, the direction vector
p1 − p2 is parallel toN2(p2) and anti-parallel toN1(p1).

Normal matching betweenS1 and−S2 is a first step in
computing the distance‖p1−p2‖ between the two surfaces
S1 andS2. In the next step, we need to check whether the
direction vectorp1 − p2 is parallel toN2(p2); if not, some

(a)S1(θ, s) (b) S2(u, t)

Figure 10. A surface of revolution and a sur-
face of linear extrusion.

(a) (S1 ⊕ S2)1(u, t) (b) (S1 ⊕ S2)2(u, t)

Figure 11. The Minkowski sum of a surface of
revolution and a surface of linear extrusion.

other pair(p1,p2) of points should be tested. Once all these
conditions have been met, we have finally to make sure that
the two pointsp1 andp2 are really the closest points (i.e.
that there are no other closer points).

We could perform normal matching for a coverage of
points across the whole of each surface; but this is unneces-
sary, since we are only trying to find the two closest points.
Starting with a good initial guess, the search can be car-
ried out quite efficiently using an iterative procedure. And
the explicit normal matching formula further simplifies this
procedure.

We will now describe a heuristic algorithm for finding
the closest points between two surfaces of revolution. First
of all, we guess a unit normal directionn which, we hope,
is nearly parallel top1 − p2. There are2k1 points onS1

where the surface hasn as its outward normal direction.
Similarly, there are2k2 points onS2 where the surface has
−n as its outward normal direction. Among4k1k2 pairs of
these points, we select the pair(p1,p2) with the smallest
distance‖p1 − p2‖ between them.

If the direction ofp1 − p2 is indeed parallel ton, we



are done. Otherwise, we have to modify the normal di-
rectionn so as to improve the approximation to the clos-
est pointsp1 andp2. The slope-monotonicity of our gen-
erating curve greatly simplifies this search procedure. Let
p = (p1−p2)/‖p1−p2‖, and consider the Gauss maps of
the two surfacesS1 and−S2. Figure 12(a) shows a region
determined by two pointsn andp on the Gauss sphere of
the surfaceS1; Figure 12(b) shows a similar region for the
other surface−S2. The final solution, wheren andp con-
verge, should be located in both regions of the Gauss map
shown in Figures 12(a)–12(b). The intersection of these two
regions is shown in Figure 13, where the intersected region
is bounded by four great circles. In the next iteration, we
consider the great circular arc that connectsn andp on the
sphere, and take the location that subdivides this arc in the
ratio of1 : 2. (We have determined experimentally that this
ratio produces a faster convergence than the ‘obvious’ ratio
of 1 : 1, which sometimes causes the search to oscillate.)
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l

n

p

l

z

n

p

(a) (b)

Figure 12. (a) A region in the Gauss map of
S1, and (b) a region in the Gauss map of S2.
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p

Figure 13. An intersected region bounded by
four circular arcs.

Using this simple technique to reduce the size of the
search region at each iteration, we can find a candidate pair
of closest points on each surface. To make sure that this
distance is really the global minimum distance between the
two surfaces, we can check2k1 points onS1, at which the
surface hasn as its outward normal direction. If there is any
point among these2k1 that is closer to the other surfaceS2

than the candidatep1, we replacep1 by the point closest to
S2. We then repeat the same procedure for the other surface
S2 using−n andp2. If either p1 or p2 is updated at this
stage, we need to repeat the whole procedure. Otherwise,
we have computed the distance betweenS1 andS2.

We have implemented this iterative search algorithm.
Figure 14 shows an example where a surface of revolution
moves around a torus while smoothly changing its orien-
tation. The figure shows four ‘snapshots’ of the motion,
at each of which the distance between the surfaces was
computed. This took less than 0.5 msec on average (on a
500 MHz Linux machine) using a termination condition of
〈n,p〉 > 0.99999. This performance demonstrates the po-
tential of this approach in real-time collision detection and
avoidance.

Figure 14. An example distance computation.
The bold curved line shows the trajectory of
the center of the moving surface, while bold
line segments show the pairs of points real-
izing the shortest distances.



7 Conclusions

We have presented an efficient algorithm for constructing
the Minkowski sum of two simple surfaces generated by
slope-monotone closed curves. Based on the simple struc-
ture of these surfaces, we have formulated explicit equa-
tions for matching their surface normals. To demonstrate
the effectiveness of this approach, we have implemented an
algorithm for computing the distance between two such sur-
faces of revolution. Experimental results indicate that our
approach compares favorably with previous methods. In fu-
ture work, we would like to extend the geometrical coverage
of our method.
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