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Abstract

We present an algorithm for global self-intersection de-
tection and elimination in freeform curves and surfaces.
A bi-normal line criterion is used for the detection of
antipodal points that characterize a closed loop. The
problem is reduced to solving a system of five multivari-
ate polynomial constraints, including one inequality.
Employing an optimization procedure for constraints,
we can gradually eliminate all self-intersections, while
flipping the locations of antipodal points. The result-
ing surface is globally free of self-intersections. Our
algorithm provides a practical solution to the prob-
lem of global self-intersections, which occurs in the ap-
plication of arbitrary metamorphosis between freeform
curves.
Keywords: Global self-intersection; surface bi-normal
line; antipodal points; multivariate polynomial con-
straints; self-intersection-free metamorphosis.

1 Introduction and Background

Evaluating the intersection of freeform parametric curves
and surfaces is a recurring operation in computer graph-
ics, geometric and solid modeling, and computer-aided
design. Hoffmann [1] listed the intersection problem as
one of the most fundamental problems in the integra-
tion of geometric and solid modeling systems. There
has been very extensive research in this field, resulting
in numerous articles presenting different methods for
intersecting freeform curves and surfaces. Neverthe-
less, only very few papers address the computation of
self-intersections of freeform curves and surfaces, and in
particular, in the context of self-intersection-free meta-
morphosis of freeform curves and surfaces.

The intersection of two surfaces can be topologi-
cally complex in general, comprising several univari-
ate components that we will refer to as closed loops
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and open branches. In the intersection of two freeform
curves, no such components are present and it is clear
that the intersection of two freeform curves is a simpler
task. In order to detect endpoints of an open branch
in the intersection of surfaces, we can simply intersect
the boundary curves of one surface with the other sur-
face. On the other hand, the detection of closed loops
has been a major challenge in surface intersection al-
gorithms.

Sinha et al. [2] presented a parallel normal criterion
for guaranteeing the preclusion of closed loops in the
intersection of two surfaces. The criterion states that
if two surfaces intersect in a closed loop, at least one
line that is normal to one surface must be parallel to
a line that is normal to the other surface. The draw-
back of the parallel normal criterion is that there are,
in general, an infinite number of parallel normal lines
within a closed loop. The same criterion can be applied
to the intersection of two planar curves. Sederberg and
Meyers [3] presented a similar criterion based on cones.
The criterion states that if a cone that tightly bounds
all the normal vectors on one surface lies outside of
a cone that tightly bounds all the normal vectors on
the other surface, no closed loops exist. The authors
noted that their loop detection test has been observed
to require a considerable amount of computation time
for some straightforward cases. In addition, Sederberg
and Meyers [3] reasoned that if two space curves inter-
sect at all, while their bounding cones do not overlap,
they intersect exactly once.

Finally, a decisive collinear normal criterion for loop
detection was presented by Sederberg et al. [4]: if two
surfaces intersect on a closed loop and their normal
vectors do not deviate more than 90◦, then there exists
a line that is perpendicular to both surfaces. In con-
trast to the parallel normal criterion of Sinha et al. [2],
there are only a finite number of lines that are normal
to the two surfaces and each loop in the intersection
must encircle at least one collinear normal line. While
Sederberg et al. [4] presented a correct theory for a loop



detection method, an efficient implementation has thus
far eluded the authors.

Galligo and Pavone [5] presented two different con-
tributions to the determination of a self-intersection
locus for a Bézier bicubic surface. The first one uses a
specific sparse resultant and produces an implicit equa-
tion of a plane projection of this locus. The second one
accurately computes the coordinates of critical points
on this locus, by solving a system of four polynomial
equations in four variables, derived from a previously
computed plane projection of the self-intersection lo-
cus. Seong et al. [6] presented a scheme to trim both lo-
cal and global self-intersections of offset curves and sur-
faces. The scheme is based on the derivation of an an-
alytic distance map between the original curve/surface
and its offset. By solving one/three bivariate polyno-
mial equations for an offset curve/surface, respectively,
all the local and global self-intersection regions in the
offset curves/surfaces can be detected. The trimming
of these regions is completed by projecting the zero-set
of polynomial equation(s) into the desired parametric
domain.

Samoilov and Elber [7] introduced two new methods
for eliminating self-intersections. Both their algorithms
exploit the matching algorithm of Cohen et al. [8]. The
first algorithm investigates building and employing a
homotopy between the two original curves, which is
a composition of a ruled surface with an appropriate
subjective continuous function that causes the curve
of homotopy to be self-intersection-free. The second
algorithm constructs the best correspondence of the
relative parameterizations of original curves. Then,
it eliminates the remaining self-intersections and flips
back the domains that self-intersect.

To the best of our knowledge, there is no known
method in the literature that can efficiently detect self-
intersections in arbitrary metamorphosis of freeform
curves and then eliminate the detected self-intersections.

The rest of this paper is organized as follows. Sec-
tion 2 presents the detection algorithm, which uses a
bi-normal line criterion for global self-intersection de-
tection in freeform surfaces. In Section 3, we present
the global self-intersection elimination algorithm. Sec-
tion 4 provides some examples of metamorphosis be-
tween freeform curves, employing the two proposed al-
gorithms. Finally, we conclude this paper in Section 5.

2 Bi-Normal Line Criterion for Global

Self-Intersection Detection

Let S(u, t), (u, t) ∈ [u0, u1] × [0, 1], denote a regu-
lar surface that represents a locally self-intersection-
free metamorphosis between two simple, regular, pla-
nar freeform curves, C0(u) and C1(u). Global self-
intersection of S(u, t) can be composed of several com-
ponents in the parametric domain of the surface: open

branches, closed loops (see Figure 1) and singular in-
tersections (tangencies with closed loops of size zero).
If the curves C0(u) and C1(u) are open, the end points
of the open branch are easy to detect by intersecting
the surface S(u, t) with its boundary curves S(u0, t)
and S(u1, t). In contrast to open branches, the detec-
tion of closed loop intersection is a complex task.

C0(u)

C1(u)

Cm(u)

Figure 1: A globally self-intersecting surface with a
closed loop intersection component.

While we pose the problem using the metamorpho-
sis application, the presented algorithms are all general.
We start with an algorithm for loop intersection detec-
tion in freeform curves. We now define some terms that
are used in this section:

Definition 2.1 A surface normal line at the pa-

rameter (u1, t1) is a line through S(u1, t1) that is par-

allel to the surface normal, NS(u1, t1), where

NS(u1, t1) = ∂S(u1,t1)
∂u

× ∂S(u1,t1)
∂t

.

Definition 2.2 The line through S(u1, t1) and S(u2, t2)
is denoted as a surface bi-normal line at parameters

(u1, t1) and (u2, t2), where (u1, t1) 6= (u2, t2), if it is a

surface normal line at both S(u1, t1) and S(u2, t2).

Definition 2.3 Let L be a surface bi-normal line of

the surface S(u, t) at parameters (u1, t1) and (u2, t2),
such that 〈NS(u1, t1), NS(u2, t2)〉 < 0. Then, S(u1, t1)
and S(u2, t2) are called the antipodal points.

Figure 2 presents the middle isoparametric curve,
Cm(u), of the surface from the Figure 1 that contains
the bi-normal lines with antipodal points.

L

(u1, t1)

(u2, t2)

Figure 2: The isoparametric curve of the surface seen
in Figure 1, shown with its bi-normal lines.



We make several assumptions regarding the given
metamorphosis surface S(u, t). To begin with, we as-
sume that S(u, t) is locally self-intersection-free. In
addition, we assume that if the surface S(u, t) has a
global self-intersection at some location, then there are
exactly two points in the parametric domain (u1, t1) 6=
(u2, t2) that are mapped to the same location. We fur-
ther assume that if S(u, t) has global self-intersections,
then the normal directions of the surface inside each
loop component do not vary by more than 90◦.

Denote the loop intersection component as C, and
the region in the parametric domain of S(u, t) that
is interior to C as Int(C). Then, under the last as-
sumption, any normal line at (u, t) ∈ Int(C), intersects
S(u, t) exactly once in the domain Int(C). In addition,
any normal line at (u, t) ∈ Int(C) intersects S(u, t) ex-
actly once in the antipodal domain of Int(C), denoted
by Int(AD(C)) (see [4] for proof), where the antipodal
loop component AD(C) is defined as follows:

AD(C) = {(u1, t1)| ∃(u2, t2) ∈ C:
S(u1, t1) = S(u2, t2), where (u1, t1) 6= (u2, t2)}.

Lemma 2.4 If a metamorphosis surface S(u, t) inter-

sects itself in loop components, C and AD(C), then

there exists a bi-normal line at two antipodal points

(u1, t1), (u2, t2) in the parametric domain of the sur-

face, where (u1, t1) ∈ Int(C) and (u2, t2) ∈ Int(AD(C)).

Proof: See [9].

Clearly, Lemma 2.4 is a fundamental and important
part in any global self-intersection detection algorithm.
The self-intersection detection problem is now reduced
to determining all the antipodal points in the paramet-
ric domain of S(u, t). In the next section, we explain
how to detect the bi-normal lines with antipodal points
of a given surface S(u, t).

2.1 Computing Bi-Normal Lines with

Antipodal Points

An algebraic approach to detecting the surface bi-normal
lines with antipodal points to a surface S(u, t) is pre-
sented by solving the following system of five constraints:

(a)
〈
S(u, t) − S(v, s), ∂S(u,t)

∂u

〉
= 0,

(b)
〈
S(u, t) − S(v, s), ∂S(u,t)

∂t

〉
= 0,

(c)
〈
S(u, t) − S(v, s), ∂S(v,s)

∂v

〉
= 0,

(d)
〈
S(u, t) − S(v, s), ∂S(v,s)

∂s

〉
= 0,

(e)
〈

∂S(u,t)
∂u

× ∂S(u,t)
∂t

,
∂S(v,s)

∂v
× ∂S(v,s)

∂s

〉
< 0, (1)

with four unknowns, u, t, v, s.
Notice that (a) and (b) in Equation (1) seek surface

normal lines at the parameter location (u, t), while (c)

and (d) seek surface normal lines at the parameter lo-
cation (v, t). Equation (e) constrains the normal of
S(u, t) to be in the opposite direction to the normal of
S(v, s), in order to find the antipodal points. By em-
ploying only the first four equations in Equation (1),
it is easy to see that the whole parametric domain of
S(u, t) is a solution when u = v and s = t. The fifth
equation ensures that our solution contains no points
of the form (u, t) = (v, s).

The system of equations given in Equation (1) is nu-
merically unstable, since the value S(u, t)−S(v, s) van-
ishes in the first four equations, at global self-intersection
points (u, t) 6= (v, s). Thus, we replace them by equiv-
alent, more numerically stable, conditions as follows:

(a)
〈
S(u, t) − S(v, s), ∂S(u,t)

∂u

〉
= 0,

(b)
〈
S(u, t) − S(v, s), ∂S(u,t)

∂t

〉
= 0,

(c)
〈

∂S(v,s)
∂v

× ∂S(v,s)
∂s

,
∂S(u,t)

∂u

〉
= 0,

(d)
〈

∂S(v,s)
∂v

× ∂S(v,s)
∂s

,
∂S(u,t)

∂t

〉
= 0,

(e)
〈

∂S(u,t)
∂u

× ∂S(u,t)
∂t

,
∂S(v,s)

∂v
× ∂S(v,s)

∂s

〉
< 0. (2)

That is, only Equations (a) and (b) vanish at the
global self-intersection points. In Equations (c) and
(d), the value S(u, t) − S(v, s) is replaced by the nor-
mal to the surface that never vanishes in the case of a
regular surface.

The presented set of Equations (2) forms the mul-
tivariate rational spline function constraints. To find
the solution, we apply a geometric constraint solver
[10]. Armed with the ability to detect the existence of
self-intersections, we will present, in the next section,
a heuristic approach that eliminates self-intersections.

3 Global Self-Intersection Elimination

by LCQP

Let S(u, t) be a surface with some closed loop intersec-
tion components, and let {(ui, ti, vi, si)}

N
i=0 be the set

of antipodal points of S(u, t), as described in Section 2.
In this section, we present an algorithm that attempts
to eliminate all loop intersection components in S(u, t),

seeking a surface Ŝ(u, t) close to S(u, t), which is glob-
ally self-intersection-free.

We begin by a formal representation of the flipping
constraint over Ŝ between a pair of antipodal points
(u, t) and (v, s) as follows:

Ŝ(u, t) = S(v, s), Ŝ(v, s) = S(u, t). (3)

Figure 3 illustrates the result of the flipping opera-
tion between the two antipodal points defined in Equa-
tion (3), which leads to the elimination of the intersec-
tion loop.



(a) (b)

S(u, t)
S(v, s)

Ŝ(v, s)
Ŝ(u, t)

Figure 3: (a) Two isoparametric curves containing the
antipodal points; (b) the resulting isoparametric curves
after applying the flipping action.

To solve the flipping constraint, we consider the
minimization of the following functional, over Ŝ:

N∑

i=0

αi

∥∥∥Ŝ(ui, ti) − S(vi, si)
∥∥∥

2

+

N∑

i=0

βi

∥∥∥Ŝ(vi, si) − S(ui, ti)
∥∥∥

2

. (4)

In the two summations in Equation (4), we seek a

new surface Ŝ(u, t) that satisfies the flipping actions
(Equation (3)), for all (N + 1) antipodal points. The
weights αi and βi, 0 ≤ i ≤ N , are introduced to enable
non-symmetrical flipping.

In order to find the target surface Ŝ(u, t) that is
close to S(u, t), in the L2-norm sense, one should also
minimize the following functional:

∫ t1

t0

∫ u1

u0

∥∥∥Ŝ(u, t) − S(u, t)
∥∥∥

2

dudt. (5)

Combining the minimization of the functionals de-
fined in Equations (4) and (5) with the constraint that

the surface Ŝ(u, t) must describe the metamorphosis
between two curves S(u, 0) and S(u, 1), the following
constrained minimization problem is considered:

minimize

N∑

i=0

αi

∥∥∥Ŝ(ui, ti) − S(vi, si)
∥∥∥

2

+

N∑

i=0

βi

∥∥∥Ŝ(vi, si) − S(ui, ti)
∥∥∥

2

+

∫ t1

t0

∫ u1

u0

∥∥∥Ŝ(u, t) − S(u, t)
∥∥∥

2

dudt

subject to Ŝ(u, t0) = S(u, t0) = C0(u),

Ŝ(u, t1) = S(u, t1) = C1(u). (6)

Employing the B-spline representation of the sur-
face Ŝ(u, t), one can verify that the optimization prob-
lem, defined in Equation (6), is actually a linearly con-
strained quadratic optimization (see [11]). Thus, it can
be solved to find a local optimal solution by one of the
known solvers, e.g. the “optimization toolbox” in [12].

In general, the solution surface Ŝ(u, t) can still have
loop intersection components because it is only locally
optimal. In this case, we again apply the test of the
bi-normal line criterion from Section 2 to find the an-
tipodal points of the obtained surface Ŝ(u, t). Then, we

again solve the optimization problem in Equation (6)

for the new metamorphosis surface Ŝ(u, t). We con-
tinue applying the above algorithm gradually, to achieve
a globally self-intersection-free metamorphosis. Unfor-
tunately, there is no guarantee that this optimization
procedure will converge.

Clearly, if metamorphosis surface S(u, t) is globally
self-intersection-free, its isoparametric curves S(u, t0),
t0 constant, will all be globally self-intersection-free
as well. However, a globally self-intersecting meta-
morphosis surface S(u, t) does not guarantee the exis-
tance of a self-intersecting isoparametric curve S(u, t0).
The following lemma presents a sufficient condition
for a globally self-intersecting surface to possess self-
intersecting iso-curves:

Lemma 3.1 Let S(u, t) be a globally self-intersecting

metamorphosis surface. If the isoparametric curves

S(u, t0), t0 constant, are all planar, S(u, t) holds self-

intersecting isoparametric curves.

Proof: See [9].

Even if the isoparametric curves S(u, t0) of the given
surface S(u, t) are planar, the presented global self-
intersection elimination algorithm does not guarantee
that the isoparametric curves Ŝ(u, t0) of Ŝ(u, t) will
also be planar. Should the user desire planar curves in
the morphing process, one can find a simple 2D projec-
tion, if such exists, of a simple 3D curve, for example
by using the projection technique in [13]. The next
section presents some examples and results.

4 Examples

The first example of global self-intersection elimination
is illustrated in Figure 4. Figure 4(a) shows the same
example of a globally self-intersecting surface with a
closed loop intersection as in Figure 1. Figures 4(b)-(e)
show surfaces, gradually acquired from the presented
algorithm and resulting in a self-intersection-free meta-
morphosis surface, after four iterations.

(a) (b) (c)

(d) (e)

Figure 4: A sequence of surfaces, acquired from the
global self-intersection elimination algorithm, resulting
in a self-intersection-free surface.



Another example is shown in Figure 5. Figure 5(a)
shows a globally self-intersecting metamorphosis sur-
face with a loop intersection component between a cow
and a camel (see Figure 5(c) for the globally self-inter-
secting metamorphosis sequence). Figure 5(b) illus-
trates the self-intersection-free metamorphosis surface
produced by applying the proposed global elimination
algorithm to the surface. Figure 5(d) shows the glob-
ally self-intersection-free metamorphosis sequence. The
loop intersection component was eliminated in a single
iteration of the optimization problem with large values
of α = β = 10 for fast convergence.

(a) (b)

(c)

(d)

(e)

Figure 5: (a) A globally self-intersecting metamor-
phosis surface with loop intersection components; (b)
a globally self-intersection-free metamorphosis surface,
acquired from the global self-intersection elimination
algorithm; (c) a morphing sequence between a cow and
a camel, derived from the surface in (a); (d) a morphing
sequence, derived from the surface in (b); (e) zoomed-
in area of the intermediate curve from (d), which illus-
trates the result of global self-intersection elimination.

5 Conclusions

In this paper, we have presented an algorithm for global
self-intersection detection and elimination for freeform
curves and surfaces. We use a surface bi-normal line

criterion to detect antipodal points on intersection loops,
which is reduced to solving a system of five multivari-
ate polynomial constraints. Then, we gradually flip
the locations of the antipodal points by setting a set of
constraints, until the resulting surface is globally self-
intersection-free. The presented algorithm provides the
solution to the global self-intersection problem that can
occur in the arbitrary metamorphosis between freeform
curves.

In the future, the presented algorithm for global
self-intersection detection could be extended to the case
of metamorphosis volume V (u, v, t), between freeform
surfaces, using a 4D geometry.
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