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ABSTRACT

We present an efficient and robust algorithm for comput-
ing the perspective silhouette on the boundary of a general
swept volume. We also construct the topology of connected
components of the silhouette. As a three-dimensional object
moves along a trajectory, each instance of the moving ob-
ject touches the envelope surface of the swept volume along
a characteristic curveKt – a curveK at timet. Moreover,
the same instance of the moving object has its silhouette
curveLt on its own boundary. The intersectionKt ∩ Lt

contributes to the silhouette of the general swept volume.
We reformulate the problem as a system of two polynomial
equations in three variables. Moreover, connected compo-
nents of a silhouette curve are constructed by detecting the
cases where the two curvesKt andLt intersect tangentially
each other on the boundary surface of the moving object.

1 Introduction

To give an artistic impression or to draw a conceptual image
of a geometric object, it is common to use line drawing tech-
niques, such as pencil, pen-ink drawing or hatching lines.
Non-photorealistic rendering is thus quite popular in com-
puter graphics [5]. Automatic generation of artistic curves
or lines is an important research topic in this area. Silhou-
ettes are among the most important lines in describing the
shape of a three-dimensional object. Computation of sil-
houette curves is needed in constructing the visible area of
an object, removing hidden curves, and performing back-
face culling, to mention only a few. Since silhouettes are
view dependent, they should be reconstructed at each frame
of an animation. Furthermore, stylizing silhouettes requires
silhouette lines to be connected so as to simulate an artistic
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effect of drawing long smooth strokes. It is a non-trivial task
to accomplish all these requirements in an efficient way.

In this paper, we present an efficient algorithm for com-
puting the silhouette curves on the boundary of a general
swept volume. Given a three-dimensional objectO, mov-
ing under a continuous affine transformationA(t), its swept
volume is defined as∪tA(t)[O]. Sweeps are widely ac-
cepted as an effective design tool for creating highly com-
plex three-dimensional shapes [1].

Joy and Duchaineau [8] compute the boundary of a swept
volume using a Marching Cube algorithm in thexyz-space.
Kim and Elber [10] reformulate the problem as a polyno-
mial equation in three variables, which is considerably eas-
ier to compute. In either case, the boundary surface of a
swept volume is approximated by polygons. The silhouette
curves are then approximated by line segments. Instead of
using two steps, it is more efficient to generate the silhouette
curves in a single step.

There has been considerable research on developing ef-
ficient algorithms for computing the silhouettes of polyhe-
dral models (see Isenberg et al. [6] for a recent survey). The
topological structure of silhouette curves is important not
only for a correct rendering but also for the analysis of the
shape. For a coherent stylizing of an animated object, the
topological change of its silhouette plays an important role.
In a recent work, Elber et al. [4] analyzed the topological
structure of silhouette curves, and they solve the 2-piece
mold separability problem in manufacturing processes such
as injection molding or die casting by using the topology
information. In computer vision, the topology of silhou-
ettes has been investigated for the construction of theaspect
graph[2], a structure that provides all topologically distinct
silhouette configurations. Aspect graphs were mainly con-
structed for polyhedral models. Kim and Lee [9] presented
an algorithm for computing the silhouette of a canal surface.
In the current paper, we extend this result to the general



swept volume.
At a fixed timet, the transformed objectA(t)[O] touches

the envelope boundary surface along a characteristic curve,
Kt. Moreover, letLt denote the silhouette curve of this ob-
ject from a view point~P (see Figure 1). The union of the in-
tersection pointsKt∩Lt generates the silhouette curves on
the boundary of the swept volume.Kt andLt are curves lo-
cated on the boundary surface of the moving objectA(t)[O].
The number of intersection points changes through tangen-
tial intersections betweenKt andLt. A new loop of the
silhouette curve may start when the two curvesKt andLt

intersect tangentially; or the construction of a closed loop
may be completed at such a tangential intersection. Thus
the tangential intersections betweenKt andLt are critical
events in the silhouette construction.

The main contribution of our work can be summarized
as follows:

• We generate the silhouette curves on the boundary of
a general swept volume;

• We construct the topology of connected components
of the silhouette curves.

The rest of this paper is organized as follows. In Section
2, we discuss the extraction of silhouette curves. Section 3
considers the topological structure of the silhouette curves.
Experimental results are presented in Section 4. Finally, in
Section 5, we conclude the paper.

2 Extraction of the Silhouette Curves

In this section, we compute the perspective silhouette curves
on the boundary of a general swept volume. We reduce
the problem to that of solving two polynomial equations in
three variables.

Let O denote a three-dimensional object bounded by a
rational parametric freeform surfaceS(u, v), and letA(t)
denote a continuous affine transformation. The swept vol-
ume of the objectO under the affine transformationA(t)
is given as∪tA(t)[O]. Assuminga ≤ t ≤ b, the bound-
ary surface of the swept volume consists of some patches of
A(a)[S(u, v)] andA(b)[S(u, v)], together with the bound-
ary envelope surface. The set of points on the envelope sur-
face is characterized by the following equation [10][11]:

F (u, v, t)

=
∣∣∣∣A′(t)[S(u, v)] A(t)

[
∂S

∂u
(u, v)

]
A(t)

[
∂S

∂v
(u, v)

]∣∣∣∣
= 0. (1)

That is, the Jacobian of the trivariate volumeA(t)[S(u, v)]
vanishes on the envelope surface. Having a single constraint
in three variables, the solution set is a 2-manifold in a three-
dimensional space.

(a)

(b)

Kt

Lt

A(t)[O]

~P

Figure 1: (a) When an objectO moves under a continuous
affine transformationA(t), the characteristic curveKt (in
bold lines) touches the boundary envelope surface; (b) The
silhouette curveLt from a viewpoint ~P is shown in bold
lines together withKt shown in gray.

The silhouette points on the boundary of the swept vol-
umeA(t)[S(u, v)] from a view point~P satisfies the follow-
ing implicit equation:

G(u, v, t)

=
〈
A(t)[S(u, v)]− ~P , A(t)[N(u, v)]

〉
= 0, (2)

whereN(u, v) is the normal ofS(u, v). SinceN(u, v) =
∂S
du × ∂S

dv is rational, the functionG(u, v, t) is also rational.
The common zero-set of Equations (1) and (2) produces 1-
manifold curves in theuvt-space, which correspond to the
silhouette curves on the boundary of the swept volume.

SinceF (u, v, t) = 0 and G(u, v, t) = 0 are rational
equations, their common zero-set can be computed in a highly



robust manner using the convex hull and subdivision prop-
erties of rational spline functions. The computation proce-
dure is reasonably efficient. Solving two equations in three
variables, the result is a univariate curve in theuvt-space,
which can be parameterized by a variables:

(u(s), v(s), t(s)).

See Elber and Kim [3] or Patrikalakis and Maekawa [12]
for more details of how to solve a system ofm polynomial
equations inn variables.

3 Topology of the Silhouette Curves

In the previous section, we reduced the silhouette construc-
tion to a problem of computing the common zero-set of two
polynomial equations in three variables. Now we consider
how to determine the topological structure of the silhouette
curves. For this purpose, we present an algorithm for con-
structing each connected component of the silhouette curve.

Consider a point(u, v, t) in the common zero-set of Equa-
tions (1) and (2). The physical meaning ofF (u, v, t) = 0
is that the boundary surfaceA(t)[S(u, v)] of a moving ob-
ject A(t)[O] touches the boundary envelope surface of a
swept volume∪tA(t)[O] along a characteristic curveKt.
Moreover, the conditionG(u, v, t) = 0 implies that the sur-
face pointA(t)[S(u, v)] is on the silhouette curveLt on the
boundary of the moving objectA(t)[O]. Figure 1 shows
the characteristic curveKt and the silhouette curveLt of
a moving objectA(t)[O] in bold lines. Under a continuous
affine transformationA(t), the intersection points in the set
Kt ∩ Lt trace out the whole silhouette curve on the bound-
ary of the swept volume.

Now we consider a connected component(u(s), v(s), t(s)),
(s0 ≤ s ≤ s1), in the common zero-set ofF (u, v, t) =
G(u, v, t) = 0. Either it forms a closed loop or it has an
endpoint att = 0 or t = 1 (See Figure 3). In the case of a
closed loop, there are at least twot-extreme points(u, v, t)
on the loop, which can be computed by solving the follow-
ing system of three equations in three variables:

F (u, v, t) = 0,

G(u, v, t) = 0,

H(u, v, t) = FuGv − FvGu = 0, (3)

whereFu, Fv, Gu, Gv are partial derivative ofF and G.
The physical meaning of at-extreme point is that the two
curvesKt andLt touch each other tangentially on the bound-
ary surface ofA(t)[O]. (See the two curves att = ti−1, ti in
Figure 2.) The other case of having an endpoint att = 0, 1
can be handled by using the solutions(u, v, t) such that
t = 0, 1 among the common zeros of Equations (1) and
(2).

ti−1

ti

Figure 2:Kt is shown in light gray lines andLt is in dark
gray lines forti−1 ≤ t ≤ ti. A silhouette curve in bold
black lines which is the union ofKt ∩ Lt, ∀t ∈ [ti−1, ti].
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Figure 3: A classification into three curve types which de-
termines the topology of the silhouette curves: (a) a loop,
(b) a curve with local extrema, and (c) a curve that ist-
monotone. The outlined box represents the domain of the
parameter space.

The simultaneous solutions of Equations (1)–(3) corre-
spond to allt-extreme points in the common zero-set of
F (u, v, t) = G(u, v, t) = 0. These include localt-extreme
points as well. Figure 3 shows three typical types of con-
nected components in the common zero-set. Figure 3(c)
shows a connected component with no localt-extreme point;
but this component has both ends att = 0, 1. We define
three different types of connected components:

• A component ofType1 is a closed loop (Figure3(a)).

• A component ofType2has some localt-extreme points
(Figure3(b)).

• A component ofType3 has no localt-extreme point.
It is t-monotone (Figure3(c)).

Connected components are constructed by numerically trac-
ing the intersection curveF (u, v, t) = G(u, v, t) = 0, start-
ing from t-extreme points or endpoints witht = 0, 1. Al-
gorithm 1 summarizes the whole procedure of constructing
the silhouette curve.

4 Experimental Results

We now present a few examples of computing silhouette
curves on the boundary of a general swept volume. Fig-



Algorithm 1
Input:

S(u, v), A rational freeform surface;
A(t), An affine transformation matrix;
~P , The eye position;

Output:
A set of perspective silhouette curves of

A(t)[S(u, v)] from ~P ;
Begin

F (u, v, t) ⇐∣∣A′(t)[S(u, v)] A(t)
[

∂S
∂u (u, v)

]
A(t)

[
∂S
∂v (u, v)

]∣∣;
G(u, v, t) ⇐

〈
A(t)[S(u, v)]− ~P , A(t)[N(u, v)]

〉
;

H(u, v, t) ⇐ FuGv − FvGu;
Z0 ⇐ the common zero-set ofF, G, andH;
Z1 ⇐ the common zero-set ofF andG;
for each solution pointp ∈ Z0 do

Numerically trace a connected component ofZ1

and classify its type;
Parameterize the component according to its type;

end
The other solution points ofZ1 are of Type 3;
Numerically trace each component starting from

the solutions ofF (u, v, t) = G(u, v, t) = 0
wheret = 0, 1;

return A set of silhouette curves;
End.

ure 4 shows the swept volume of an ellipsoid moving along
a linear trajectory under scale change. Its perspective sil-
houette curves are shown in bold lines (Figure 4 (b)). They
are both of type 2. Figure 4(c) shows the projection of
the zero-set on to thevt-plane. Two more examples are
shown in Figure 5. The silhouette curves are applied to non-
photorealistic rendering of the boundary envelope surfaces
of three-dimensional swept volumes. The execution time
for these examples took one or two seconds on a modern
desktop PC.

5 Conclusion

In this paper, we have presented a robust and efficient method
for computing the perspective silhouette of a general swept
volume. We computed the silhouette curves on the bound-
ary envelope surface and also detected all connected com-
ponents of the silhouette. The silhouette computation prob-
lem was reduced to solving a system of two polynomial
equations in three variables. Connected components of the
silhouette curve was detected and constructed usingt-extreme
points in the common zero-set.

Our algorithm can easily be extended to a general case
where the eye position,~p(r), moves along a predefined path.

In this case, Equations (1) and (2) are given in four vari-
ables, and they prodecue a 2-manifold zero-set. Ther-
extreme points on the 2-manifold characterize critical events
where a silhouette component may appear or disappear. For
this purpose, we need to add two additional polynomial
equations. We will investigate more details of this approach
in the future work.
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Figure 4: (a) The envelope of a scaled ellipsoid along a linear trajectory and (b) its perspective silhouette curves. The
silhouette curves in thevt-space is shown in (c). Two curve components of Type 2 are detected.

(a) (b)

Figure 5: (a) The envelope surface and its silhouette curves are shown in bold lines for a swept volume of an ellipsoid moving
along along a trajectory with scale change. (b) A tuba is modeled by sweeping a sphere and a torus.


