Efficient Collision Detection Using Bounding Volume
Hierarchies of k-DOPs*

JamesT. Klosowski f MartinHeld? Joseph S.B. Mitchell 8 Henry Sowizral ¥
Karel Zikan !

Abstract — Collision detection is of paramount importance for many applications in computer graphics and visual-
ization. Typicaly, the input to a collision detection algorithm is a large number of geometric objects comprising an
environment, together with a set of objects moving within the environment. In addition to determining accurately the
contacts that occur between pairs of objects, one needs also to do so at real-time rates. Applications such as haptic
force-feedback can require over 1000 collision queries per second.

In this paper, we develop and analyze a method, based on bounding-volume hierarchies, for efficient collision
detection for objects moving within highly complex environments. Our choice of bounding volumeisto usea* discrete
orientation polytope” (“k-dop”), aconvex polytopewhose facets are determined by hal fspaces whose outward normals
come from a small fixed set of k orientations. We compare a variety of methods for constructing hierarchies (“BV-
trees”) of bounding k-dops. Further, we propose algorithms for maintaining an effective BV-tree of k-dopsfor moving
objects, as they rotate, and for performing fast collision detection using BV-trees of the moving objects and of the
environment.

Our agorithms have been implemented and tested. We provide experimental evidence showing that our approach
yields substantially faster collision detection than previous methods.

Index Terms — Collision detection, intersection searching, bounding volume hierarchies, discrete orientation poly-
topes, bounding boxes, virtual reality, virtual environments.

To appear in the March issue (Vol. 4, No. 1) of IEEE Transactions on Visualization and Computer Graphics.

(©1998 |IEEE. Persona use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

*A technical sketch of this paper appeared in the SIGGRAPH’ 96 Visual Proceedings [26].

Tjklosow@ams.sunysb.edu; http://www.ams.sunysb.edu/"jklosow/jklosow.html. Department of Applied Mathematics and Statistics, State Uni-
versity of New York, Stony Brook, NY 11794-3600. Supported by NSF grant CCR-9504192, and by grants from Boeing Computer Services,
Bridgeport Machines, and Sun Microsystems. Also partially supported by a Catacosinos Fellowship.

theld@ams.sunysb.edu; http://www.ams.sunysb.edu/"held/held.html. Department of Applied Mathematics and Statistics, State University of
New York, Stony Brook, NY 11794-3600. Supported by NSF grants DM S-9312098 and CCR-9504192, and by grants from Boeing Computer
Services, Bridgeport Machines, and Sun Microsystems.

§jsom@ams.sunysb.edu; http://www.ams.sunysb.edu/jsbm/jsom.html. Department of Applied Mathematics and Statistics, State University of
New York, Stony Brook, NY 11794-3600. Partially supported by NSF grant CCR-9504192, and by grants from Boeing Computer Services,
Bridgeport Machines, Hughes Aircraft, and Sun Microsystems.

T henry.sowizral @eng.sun.com; Sun Microsystems, 2550 Garcia Avenue, UMPK 14-202, Mountain View, CA 94043-1100.

l zikan@fi.muni.cz; Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, Czech Republic. Part of this research was conducted
while being supported by a Fulbright Scholars Award.

1 Introduction

The coallision detection (CD) problem takes as input a geometric model of a scene or environment (e.g., a large col-
lection of complex CAD models), together with a set of one or more moving (“flying”) objects, possibly articul ated,
and asks that we determine al instants in time at which there exists a nonempty intersection between some pair of
flying objects, or between a flying object and an environment model. Usually, we are given some information about
how the flying objects are moving, at least at the current instant in time; however, the motions may change rapidly,
depending on the evolution of a simulation (e.g., modeling some physics of the system), or due to input devices under
control of the user. In some applications, it is important to make computations based on the geometry of the region
of intersection between pairs of colliding objects; in these cases, we must not only detect that a collision occurs, but
also report al pairs of primitive geometric elements (e.g., triangles) that are intersecting at that instant. Thus, we can
distinguish between the CD problem of pure detection and the CD problem of detect and report.

Real-time collision detection is of critical importance in computer graphics, visualization, ssmulations of physical
systems, robotics, solid modeling, manufacturing, and molecular modeling. The requirement for speed in interactive
use of virtual environmentsis particularly challenging; e.g., haptic force-feedback can require on the order of 1000
intersection queries per second. One may, for example, wish to interact with avirtual world that modelsacluttered me-
chanical workspace, and ask how easily one can assemble, access, or replace component parts within the workspace:
Can a particular subassembly be removed without collisions with other parts, and while not requiring undue awkward-
ness for the mechanic? When using haptic force-feedback, the mechanic is not only aerted (e.g., audibly or visually)
about a collision, but actually feels a reactionary force, exerted on his body by a haptic device.

A simple-minded approach to CD involves comparing al pairs of primitive geometric elements. This method
quickly becomesinfeasible as the model complexity risesto realistic sizes. Thus, many approaches have recently been
proposed to address the issue of efficiency; we discuss these below.

Our Contribution. Inthis paper, we present a new approach to CD, based on aform of bounding volume hierarchy
(“BV-tree”). Our main contributions include:

1. acareful study of effective methods of constructing BV-trees, using “ discrete orientation polytopes’ (“ k-dops’);

2. an effective method for applying BV-trees of k-dops for moving (rotating) objects, as well as an efficient algo-
rithm, using BV-trees, for detecting collisions?, as objects move within a complex static environment; and

3. experimental results, with real and simulated data, to study design issues of BV-trees that are most relevant to
collision detection.

We have paid careful attention to the generation of particularly challenging and diverse datasets for algorithm design
and for comparative studies. Our tests provide experimental evidence that our methods compare quite favorably with
the best previous methods.

This paper is accompanied by supplementary material on the WWW, including additional color photos, sample
datasets, and the (soon to be released) source code; refer to the authors' web pages.

The remainder of the paper is organized as follows: Prior and related work is reviewed in Section 2. Section 3
provides an introduction to BV-trees, discrete orientation polytopes, and design choices in constructing effective BV-
trees. Section 4 highlights our collision detection algorithm and several key issuesrelated to it. Implementation details
and experimental results are reported in Section 5. The conclusion, Section 6, includes a discussion of extensions and
future work.

2 Previous Work

Due to its widespread importance, there has been an abundance of work on the problem of collision detection. Many
of the approaches have used hierarchies of bounding volumes or spatial decompositionsto address the problem. The
idea behind these approachesis to approximate the objects (with bounding volumes) or to decompose the space they

1strictly speaking, we check for intersections among surfaces rather than volumes. Thus, if one object contains another object but their surfaces
do not intersect, then “no collision” is reported by our agorithm.

occupy (using decompositions), to reduce the number of pairs of objects or primitives that need to be checked for
contact.

Octrees [33, 35], k-d trees [24], BSP-trees [34], brep-indices [8, 42], tetrahedral meshes [24], and (regular)
grids [19, 24] are all examples of spatial decomposition techniques. By dividing the space occupied by the objects,
one needs to check for contact between only those pairs of objects (or parts of objects) that are in the same or nearby
cells of the decomposition. Using such decompositionsin a hierarchical manner (as in octrees, BSP-trees, etc.) can
further speed up the collision detection process.

Hierarchies of bounding volumes have a so been avery popular techniquefor collision detection algorithms. (They
have also been widely used in other areas, e.g., ray tracing [1, 20, 29, 44].) In building hierarchies on objects, one
can obtain increasingly more accurate approximations of the objects, until the exact geometry of the object is reached.
The choice of bounding volume has often been to use spheres [27, 28, 37] or axis-aligned bounding boxes (AABBS)
[7, 24], due to the simplicity in checking two such volumes for overlap (intersection). In addition, it is simple to
transform these volumes as an object rotates and trandl ates.

Another bounding volume that has become popular recently is the oriented bounding box (OBB), which surrounds
an object with a bounding box (hexahedron with rectangular facets) whose orientation is arbitrary with respect to the
coordinate axes; cf. Fig. 1(b). This volume has the advantage that it can, in genera, yield a better (tighter) outer
approximation of an object, asits orientation can be chosen in order to make the volume as small aspossible. In 1981,
Ballard [2] created atwo-dimensional hierarchical structure, known as a*“ strip tree,” for approximating curves, based
on oriented bounding boxes in the plane. Barequet et al. [6] have recently generalized this work to three dimensions
(resulting in a hierarchy of OBBs known as a “BOXTREE"), for applications of oriented bounding boxes for fast
ray tracing and collision detection. Zachmann and Felger [45, 46] have used a similar term, “BoxTree”, for their
hierarchies of oriented boxes, which are also used for collision detection, but are differently constructed from the
“BOXTREE" of Barequet et al.

Oneleading system publicly available for performing collision detection among arbitrary polygona modelsisthe
“RAPID" system, which is also based on a hierarchy of oriented bounding boxes, called “OBBTrees’, implemented
by Gottschalk, Lin, and Manocha[21]. The efficiency of this method is due in part to an algorithm for determining
whether two oriented bounding boxes overlap. This algorithm is based on examining projections along a small set of
“separating axes” and is claimed to be an order of magnitude faster than previous agorithms. (We note that Greene
[22] previously published a similar algorithm; however, we are not aware of any empirical comparisons between the
two algorithms.)

Other approaches to collision detection have included using space-time bounds [27] and four-dimensional geom-
etry [9, 10] to bound the positions of objects within the near future. By using a fourth dimension to represent the
simulation time, contacts can be pin-pointed exactly; however, these methods are restrictive in that they require the
motion to be pre-specified as a closed-form function of time. Hubbard’s space-time bounds [27] do not have such
a reguirement; by assuming a bound on the acceleration of objects, he is able to avoid missing collisions between
fast-moving objects.

There has been a collection of innovativework which utilizes Voronoi diagrams[11, 30, 31, 32] to keep track of the
closest features between pairs of objects. One popular system, I-COLLIDE [11], uses spatial and temporal coherence
in addition to a “ sweep-and-prune” technique to reduce the pairs of objects that need to be considered for collision.
Although this software works well for many simultaneously moving objects, the objects are restricted to be convex.
More recently, Ponamgi, Manocha, and Lin have generalized this work to include non-convex objects [38].

In addition to the “ practical” work highlighted above, there have also been a considerable number of “theoretical”
results on the problem of collision detection in the field of computational geometry. In particular, the distance (and
thus intersection) between two convex polytopes can be determined in O(log2 n), where n is the total number of
vertices of the polytopes, by using the Dobkin-Kirkpatrick hierarchy [15, 16, 17], which takes O(n) time and space to
construct. In the case of one convex polytope and one non-convex polytope, the intersection detection time increases
to O(nlogn) [14, 40], while actually computing the intersection [18] takes O(K log K') time, where K is the size of
the input plus output. Schomer [40] detects the intersection between two translating “ c-iso-oriented” polyhedra (non-
convex, having normals among ¢ directions, where ¢ is a fixed constant) in time O(n 5/3+¢), for any fixed positive
constant e > 0. Schomer and Thiel [41] have recently provided the first provably (worst case) sub-quadratic time
algorithm for a general collection of polyhedrain motion along fixed trajectories. However, the result is purely of
theoretical interest, as the methods are based on several sophisticated (unimplemented) techniques.

Recently, Suri, Hubbard, and Hughes [43] have given theoretical resultsthat may help to explain the practicality of

bounding volume methods, such as our own. In particular, they show that in a collection of objects that have bounded
aspect ratio and scal e factor?, the number of pairs of objects whose bounding volumesintersect isroughly proportional,
asymptotically, to the number of pairs of objectsthat actually intersect, plus the number of objects. Suri et al. usethis
result to obtain an output-sensitive algorithm for detecting all intersections among a set of convex polyhedra, having
bounded aspect ratio and scale factor; their time bound is O((n + k) log?® n), for n polyhedra, where is the number
of pairs of polyhedrathat actually intersect.

3 BV-Trees

We assume asinput aset S of n geometric “objects’, which, for our purposes, are generally expected to be trianglesin
3D that specify the boundary of some polygona models. Much of our discussion, though, applies also to more general
objects.

A BV-treeis atree, BVT(S), that specifies a bounding volume hierarchy on S. Each node, v, of BVT(S) corre-
spondsto asubset, S, C S, with the root node being associated with the full set S. Each interna (non-leaf) node of
BVT(S) has two or more children; the maximum number of children for any internal node of BVT(S) is called the
degree of BVT(S), denoted by 4. The subsets of .S that correspond to the children of node v form a partition of the
set S, of objects associated with v. In acomplete BV-tree of S, the leaf hodes are associated with singleton subsets of
S. Thetota number of nodesin BVT(S) isat most 2n — 1; the height of a completetreeis at least [log s n], whichis
achieved if the BV-treeis balanced. Also associated with each node v of BVT(S) is abounding volume, b(S ,), that is
an (outer) approximationto the set S, using a smallest instance of some specified class of shapes (e.g., boxes, spheres,
polytopes of agiven class, €tc.).

In most of this paper, we will be focusing on the case of asingle (rigid) object, specified by a set F' of boundary
primitives (triangles), given in one particular position and orientation, that is moving (“flying”) within an environment,
specified by aset £ of “obstacle” primitives (triangles). We refer to BVT(F') as the flying hierarchy and BVT(E) as
the environment hierarchy.

3.1 Design Criteria

The choice of which class (or classes) of shapes to use as bounding volumes in a BV-tree is usually dependent upon
the application domain and the different constraints inherent to it. In ray tracing, for example, the bounding volumes
chosen should tightly fit the primitive objects but also alow for efficient intersection tests between a ray and the
bounding volumes [29]. Weghorst, Hooper, and Greenberg [44] discussed making this choice for ray tracing, and
they provided a cost function to help analyze hierarchical structures of bounding volumes. Gottschalk, Lin, and
Manocha [21] looked at this same cost function in the context of collision detection. Given two large input models
and hierarchies built to approximate them, the total cost to check the models for intersection was quantified as

T =N, xCy+ Np xCp, (@D}

where T' is the total cost function for collision detection, NV, is the number of pairs of bounding volumes tested for
overlap, C,, isthe cost of testing apair of bounding volumesfor overlap, NV, isthe number of pairs of primitives tested
for contact, and C), is the cost of testing apair of primitives for contact.

While Equation 1 is a reasonable measure of the cost associated with performing a single intersection detection
check, it does not take into account the cost of updating the flying hierarchy astheflying object rotates. While for some
choices of bounding volumes (e.g., spheres), thereis little or no cost associated with updating the flying hierarchy, in
genera there will be such a cost, and, in particular, we experience an update cost for our choice (k-dops). Thus, we
propose that for collision detection in motion simulation that the cost is best written as the sum of three component
terms:;

T =Ny xCy+ NpxCp+ Ny xCy, 2

whereT', Ny, Cy, Np, and C), are defined as in Equation 1, while V,, is the number of nodes of the flying hierarchy
that must be updated, and C',, is the cost of updating each such node.

2The aspect ratio of an object is defined here to be the ratio between the volume of a smallest enclosing sphere and a largest enclosed sphere.
The scale factor for the collection of objects is the ratio between the volume of the largest enclosing sphere and the smallest enclosing sphere.

Based upon this cost function, we would like our bounding volumesto (a) approximatetightly the input primitives
(to lower N, Np, and N,,), (b) permit rapid intersection tests to determine if two bounding volumes overlap (to
lower C,), and (c) be updated quickly when the primitives (and consequently the bounding volumes) are rotated and
trandated in the scene (to lower C,). Unfortunately, these objectives usually conflict, so a balance among them must
be reached.

3.2 Discrete Orientation Polytopes

Here, we concentrate on our experience with bounding volumes that are convex polytopes whose facets are deter-
mined by halfspaces whose outward normals come from a small fixed set of & orientations. For such polytopes, we
have coined the term discrete orientation polytopes, or “k-dops’, for short.® See Fig. 1(c) for an illustration in two
dimensions of an 8-dop, whose 8 fixed normals are determined by the orientations at +45, +£90, +135, and £180
degrees. Axis-aligned bounding boxes (in 3D) are 6-dops, with orientation vectors determined by the positive and
negative coordinate axes. In this paper, we concentrate on 6-dops, 14-dops, 18-dops, and 26-dops, defined by orienta-
tions that are particularly natural; see Section 3.3.3 for more detail.

Researchers at IBM have used the same 18-dops (which they call “tri-boxes” or “T-boxes”) for visua approxima-
tion purposes within 3DIX [12, 13]. Thisidea of using planes of fixed orientations to approximate a set of primitive
objects was first introduced in the ray tracing work of Kay and Kajiya[29].

2

() AABB (b) OBB (c) 8-dop

Fig. 1. Approximations of an object by three bounding volumes. an axis-aligned bounding box (AABB), an oriented
bounding box (OBB), and a k-dop (where k = 8).

Axis-aligned bounding boxes (AABBS) are often used in hierarchies because they are simple to compute and they
allow for very efficient overlap queries. But AABBs can aso be particularly poor approximations of the set that they
bound, leaving large “empty corners’; consider, for example, a needle-like object that lies at a 45-degree orientation
to the axes. Using k-dops, for larger values of &, alows the bounding volume to approximate the convex hull more
closely. Of course, theimproved approximation (which tendsto lower N ,,, N, and IV,,) comes at the cost of increasing
the cost, C,,, of testing apair of k-dopsfor intersection (since C, = O(k)) and the cost, C,,, of updating k-dopsin the
flying hierarchy (since C,, = O(k?)).

To keep the associated costs as small as possible, we have been using only k-dops whose discrete orientation
normals come as pairs of collinear, but oppositely oriented, vectors. Kay and Kgjiyareferred to such pairs as bounding
dabs[29]. Thus, as an AABB bounds (i.e., finds the minimum and maximum values of) the primitivesin the z, y,
and z directions, our k-dops will also bound the primitives but in k£ /2 directions. This has the advantage in that our
(conservative) disjointness test for two k-dopsis essentially as trivial as checking two AABBs for overlap: we simply
perform & /2 interval overlap tests. Thistest is far simpler than checking for intersection between OBBs or between
convex hulls. Further, since the & /2 defining directions are fixed, the memory required to store each k-dop is only &
values (one value per plane), since the orientations of the planes are known in advance.

3An aternative name for what we call a“dop” is the term fixed-directions hull [47] (FDH)—perhaps a slightly more precise term, but a harder
to pronounce abbreviation.

Bounding spheres are another natural choice to approximate an object, since it is particularly simple to test pairs
for overlap, and the update for a moving object is trivial. However, spheres are similar to AABBs in that they can be
very poor approximationsto the convex hull of the contained object. Hence, bounding spheresyield low costs C' ,, and
C, but may result in alarge number, N, of pairs of primitives to test. Oriented bounding boxes (OBBs) can yield
much tighter approximations than spheres and AABBS, in some cases. Also, it isrelatively simple to update an OBB,
by multiplying two transformation matrices. However, the cost C', for determining if two OBBs overlap is roughly
an order of magnitude larger than for AABBs [21]. At the extreme, convex hulls provide the tightest possible convex
bounding volume; however, both the test for overlap and the update costs are relatively high.

In comparison, our choice of k-dopsfor bounding volumesis madein hopes of striking acompromise between the
relatively poor tightness of bounding spheres and AABBS, and the relatively high costs of overlap tests and updates
associated with OBBs and convex hulls. The parameter £ allows us some flexibility too in striking a balance between
these competing objectives. For moderate values of k, the cost C,, of our conservative disjointness test is an order
of magnitude faster than testing two OBBs. Also, while updating a k-dop for a rotating object is more complex
than updating some other bounding volumes, we have developed a simple approximation approach, discussed in
Section 4.1, that works well in practice.

Fig. 1 highlights the differences in some of the typical bounding volumes. Here, we provide a ssimple two-
dimensional illustration of an object and its corresponding approximations by an axis-aligned bounding box (AABB),
an oriented bounding box (OBB), and a k-dop (where & = 8).

3.3 Design Choices

Our study has included a comparison of various design choices in constructing BV-trees, including: (1) the degree, 6,
of the tree (binary, ternary, etc.); (2) top-down versus bottom-up construction; (3) the choice of the k-dops; and (4)
splitting rules.

3.3.1 DegreeoftheTree

Minimizing the height of the tree is usually a desirable quality when building a hierarchy, so that when searches are
performed, we can traverse the tree, from the root to aleaf, in a small number of steps. The degree, §, specifies the
maximum number of children any node can have. Typically, the higher the degree, the smaller the height of the tree.
Thereis, of course, atrade-off between trees of high and low degree. A tree with a high degree will tend to be shorter,
but more work will be expended per node of the search. On the other hand, alow-degree tree will have greater height,
but less work will be expended per node of the search.

We have chosen to use binary (§ = 2) treesfor all of the experiments reported herein, for two reasons. First, they
are simpler and faster to compute, since there are fewer optionsin how one splits a set in two than how one partitions
a set into three or more subsets. Second, analytical evidence suggests that binary trees are better than §-ary trees, for
0 > 2. In particular, if one considers balanced trees (with n leaves) whose internal nodes have degree § > 2, then
the amount of work expended in searching a single path from root to leaf is proportiona to f(6) = (6 — 1) - log s n,
since at most § — 1 of the § children need to be tested before we know how to descend. Simple calculus shows that
the function f(6) is monotonically increasing over the interval § € (1,00) (and f'(1) = 0). Restricting J to integer
values greater than one, we see that f(J) is minimized by 6 = 2. Of course, this analysis does not address the fact
that atypical search of aBV-treewill not consist of asingle root-to-leaf path. However, from our limited investigation
of some typical searches, we have found that our choice of § = 2 isjustified. We leave for future work the thorough
experimental investigation of the trade-offs between different values of 6.

3.3.2 Top-Down versus Bottom-Up

In constructing a BV-tree on a set, S, of input primitives, we can do so in either a top-down or a bottom-up manner.
A bottom-up approach begins with the input primitives as the leaves of the tree and attempts to group them together
recursively (taking advantage of any local information), until we reach a single root node which approximates the
entire set S. One example of this approach isthe “BOXTREE”, by Barequet et al. [6].

A top-down approach starts with one node which approximates S, and uses information based upon the entire set
to recursively divide the nodes until we reach the leaves. OBBTrees [21] are one example of this approach.

In al of our tests reported here, we aso construct our BV-trees in a top-down approach. While we have some
limited experience with one bottom-up method of tree construction, we do not have enough experience yet in com-
paring aternativesto be able to make definitive conclusions about which is better; thus, we leave thisissue for future
investigation.

3.3.3 Choiceof k-DOPs

Our investigations use 6-dops (AABBS), 14-dops, 18-dops, and 26-dops. More specifically, for our choice of 14-dop,
we find the minimum and maximum coordinate values of the vertices of the primitives along each of 7 axes, defined
by the vectors (1, 0,0), (0, 1,0), (0,0,1), (1,1,1),(1,—-1,1), (1,1, —1),and (1, —1, —1). Thus, this particular k-dop
uses the 6 halfspaces that define the facets of an AABB, together with 8 additional diagonal halfspaces that serve to
“cut off” as much of the 8 corners of an AABB as possible. Our choice of 18-dop also derives 6 of its halfspaces from
those of an AABB, but augments them with 12 additional diagonal halfspaces that serve to cut off the 12 edges of
an AABB; these 12 halfspaces are determined by 6 axes, defined by the direction vectors (1,1, 0), (1,0, 1), (0,1,1),
(1,-1,0),(1,0,—1),and (0,1, —1). Finally, our choice of 26-dop is simply determined by the union of the defining
halfspaces for the 14-dops and 18-dops, utilizing the 6 halfspaces of an AABB, plus the 8 diagonal halfspacesthat cut
off corners, plus the 12 halfspaces that cut off edges of an AABB.

We emphasize that our choice of k-dops is strongly influenced by the ease with which each of these bounding
volumes can be computed. In particular, the normal vectorsare chosen to have integer coordinatesintheset {—1,0, 1},
implying that no multiplications are required for computing them. We leave to future work the investigation of other
(larger) values of k, e.g., k-dops determined by normal vectors having integer coordinatesin the set {0, +1, +2}.

Fig. 4(a) provides an example of each of our k-dops. In the center of the picture is the input model: a“spitfire”
aircraft. The four other images of Fig. 4(a) show, from left to right, and top to bottom, the corresponding 6-, 14-, 18-,
and 26-dop which approximates the spitfire. In a BV-tree of this model, the bounding volumes shown would represent
the bounding volume, b(.S), associated with the root node (L evel 0), for each choice of k. Similarly, Fig. 4(b—d) depict
Levels 1, 2, and 5 of the corresponding BV-trees of the spitfire.

3.34 Splitting Rulesfor Building the Hierarchies

Each node v in a BV-tree correspondsto aset S, of primitive objects, together with a bounding volume (BV), b(S).
In constructing effective BV-trees, our goal isto assign subsets of objectsto each child, v, of anode v, in such away
as to minimize some function of the “sizes’ of the children, where the size is typically the volume or the surface area
of b(S,). For ray tracing applications, the objective is usually to minimize the surface area, since the probability that
aray will intersect aBV is proportional to its surface area. For collision detection, though, we minimize the volume,
expecting that it is proportional to the probability that it intersects another object.

Since we are using binary trees, the assignment of objects to children reduces to the problem of partitioning S ,,
intwo. There are £ (2S¢ — 2) different ways to do this; thus, we cannot afford to consider all partitions. Instead,
we associate each triangle of S, with asingle “representative” point (we use the centroid), and we split S, in two by
picking a plane orthogonal to one of the three coordinate axes, and assigning atriangle to the side of the plane where
the centroid lies. Thisresultsinat most 3 - (|.S,| — 1) different nontrivial splits, since there are three choices of axis
and, for each axis, thereare |S,,| — 1 different splits of the centroid points.

Choice of Axis
We choose a plane orthogonal to the z-, y-, or z-axis based upon one of the following objective functions:
Min Sum; Choose the axis that minimizes the sum of the volumes of the two resulting children.

Min Max: Choose the axis that minimizesthe larger of the volumes of the two resulting children.

Slatter: Project the centroids of the triangles onto each of the three coordinate axes and calculate the variance of
each of the resulting distributions. Choose the axis yielding the largest variance.

Longest Sde: Choose the axis along which the k-dop, b(S ,,), is longest.

The amount of time required to evaluate each of the above objective functions varies greatly, and this leads to
corresponding variation in the preprocessing timeto build aBV-tree. The“longest side” method isthefastest, requiring
only three subtractions and two comparisons to determine which axis to choose. The next fastest is the “splatter”
method which runsin linear time, O(|S,,|). The slowest methods are “min sum” and “min max”, which both require
that we calculate the volumes occupied by each of the three pairs of possible children; this requirestime O(k|S , |) to
compute the six k-dops for the candidate children, plus O(k log k) to compute the volumes of these k-dops. 4

In Section 5, we report on the results of experiments comparing these four methods of selecting the axis. (See
Tables 4 and 5.) The default method in the current software is the “splatter” method, which, while giving dightly
worse collision detection times than the “min sum” method, gives a preprocessing time that is an order of magnitude
less than “min sum”.

An interesting question for future work is to investigate the effect of allowing the axis to be chosen from alarger
set; eg., it may be beneficial to permit the axis to be in any of the k/2 directions that define the k-dops that we are
using in the BV-tree. Of course, any such potential improvement in collision detection time must be weighed against
the increased cost of preprocessing.

Choice of Split Point

Once we have chosen the axis that will be orthogonal to the splitting plane, we must determine the position of the
splitting plane, from among the |.S,,| — 1 possibilities.

We have investigated in depth two natural choices for the splitting point: the mean of the centroid coordinates
(along the chosen axis), or the median of the centroid coordinates.

In prior work of Held et al. [24], the median was always used for splitting, with the rationale that one wants to
obtain the most balanced possible BV-tree.

However, here we investigated also the option of splitting at the mean, in case this results in a tighter fitting
bounding volume approximation, while not harming the balance of the tree too severely. In fact, in earlier work of
Held et al. [25], experiments showed that the total volume of the BVs in the tree was less in the case of splitting at
the mean versus the median. Since the total volume associated with the tree may be considered to be a good indicator
of the quality of approximation, this previous work suggested that we should investigate the impact of this choice
(median versus mean) on the efficiency of collision detection.

For the datasets reported in Section 5.2, we compared the number of operations required for collision detection
(Ny, Np, and N,,) when the hierarchies were built using each of the two choices. In every test run, there were more
operations performed when using the median than when using the mean. Thus, even though the hierarchies were
usually deeper when using the mean, the overall amount of work done during the collision detection checks was less
due to the better approximations. In addition, the average collision detection time was also greater in every case
when using the median: the smallest increase being 1%, and the largest increase being 35%. It thus became clear that
the tighter approximations provided by using the mean outweighed the better balanced trees produced by using the
median. For more details on these experiments, please refer to Tables 4 and 5 in Section 5.2.

Our implementation selects between only these two possibilities (the mean or the median). We can, however,
propose some aternatives for future investigation in the optimizing of the splitting decision, depending on how much
preprocessing timeis availablefor constructing the hierarchy: We could optimize over (a) all |.S , | —1 different centroid
coordinates, or (b) arandom subset of these coordinates.

4 Collision Detection Using BV-Trees

We turn now to the problem of how best to use the flying hierarchy, BVT(F), and the environment hierarchy, BV T(E),
to perform collision detection (CD) queries. In processing these CD queries, we consider choices of: (a) the method of
updating the £-dops in the flying hierarchy as the flying object rotates, so that they continue to approximate the same
subset of primitive objects; (b) the algorithm for comparing the two BV-trees to determine if there is a callision; (c)
the depth of the flying hierarchy; and (d) the order in which to performthe k /2 interval overlap tests when testing two
k-dops for intersection.

4The volume of a k-dop can be computed by first finding the B-rep, to identify the vertices, and then summing the volumes of the O (k) tetrahedra
in atetrahedraization of the k-dop, e.g., obtained simply from the vertex information. The B-rep of the k-dop can be found in time O (k log k), as
explained in Section 4.1.

4.1 Tumbling the BV-Trees

For each position of the flying object in the scene, we will need to have a BV-tree representing the flying hierarchy, in
order to be able to perform CD queries efficiently. If the flying object were only to trandate, then the BV-tree that we
construct for itsinitial position and orientation would remain valid, modulo a translation vector, in any other position.
However, the flying object also rotates. This means that if we were to transform (translate and rotate) each bounding
k-dop, b(S,,), represented at each node of the flying hierarchy, we would have anew set of bounding &-dops, forming
avalid BV-tree for the transformed object, but the normal vectors defining them would be a different set of & vectors
than those defining the k-dops in the environment hierarchy (which did not rotate). This would defeat the purpose
of having k-dops as bounding volumes, since the overlap test between two k-dops having different defining normal
vectors is far more costly than the conservative digjointness test used for aligned k-dops. Thus, it is important to
address the issue of “tumbling” the bounding k-dopsin the flying hierarchy. The cost of each such updating operation
has been denoted by C',, in Equation 2.

One “brute force” approach to thisissue is to recompute the entire flying hierarchy at each step of the flight. This
is clearly too slow for consideration. A somewhat less brute force approach is to preserve the structure of the flying
hierarchy, with no changes to the sets .S ,,, but to update the bounding k-dops for each node of the flying hierarchy, at
each step of theflight. Thisinvolvesfinding the new maximum and minimum val ues of the primitive vertex coordinates
along each of the k/2 axes defining the k-dops. This is still much too costly, both in terms of time and in terms of
storage, since we would have to store with each node the coordinates of all primitive vertices (or at least those that are
on the convex hull of the set of verticesin S,).

So, we considered two other methods to tumble the nodes v, while preserving the structure of the hierarchy:

(1) A “hill climbing” algorithm that stores the B-rep (boundary representation) of the convex hull of S, and uses
it to perform local updates to obtain the new (exact) bounding &-dop from the bounding k-dop of S, in the
previous position and orientation. The local updates involve checking a vertex that previously was extremal
(say, maximal) in one of the k£ /2 directions, to seeif it is still maximal; thisis done by examining the neighbors
of the vertex. If a vertex is no longer maximal, then we “climb the hill” by going to a neighboring vertex
whose corresponding coordinate value increases the most. By its very nature, this algorithm exploits step-to-
step coherence, requiring less time for updates corresponding to smaller rotations. The worst-case compl exity,
though, is O(k?), and this upper bound is tight, since each of the k extremal vertices may require Q(k) loca
moves on the B-rep to update.

(11 An “approximation method” that attempts only to find an approximation (an outer approximation) to the true
bounding &-dop for the transformed S,,. This method stores only the vertices, V' (S,), of the k-dop b(S,),
computed once, in the model’s initial orientation.® Then, as S, tumbles, we use the “brute force” method
to compute the exact bounding k-dop of the transformed set V(.S ,,); this bounding k-dop still contains the
transformed S,,, but it need not be the smallest k-dop bounding it.

Fig. 2 shows atwo-dimensional example of method (I1). In this example, k£ = 8, and the original object and 8-dop
are shown in Fig. 2(a). Fig. 2(b) depicts the object rotated 30 degrees (counterclockwise) and the corresponding 8-
dop. Theresult of tumbling the original k-dop and recomputing the new k-dop is shown in Fig. 2(c). The dashed lines
represent the rotated (original) 8-dop, and the solid lines show the new 8-dop that we use to approximate the object.
Ideally, we want our approximate 8-dop to be very close to the exact 8-dop shown in Fig. 2(b). Note that a tumbled
k-dop need not be strictly larger than the exact k-dop of a rotated object (although this is typically the case). For
instance, for the 8-dop depicted in the figure, rotating the object by 45 degrees causes the tumbled k-dop to coincide
with the exact k-dop.

Both methods (1) and (I1) rely on a preprocessing step in which we compute aB-rep. In method (1), we precompute
the convex hull of the vertices of S,,, and store the result in a simple B-rep. In method (I1), we must compute the
vertices in the B-rep of the k-dop b(S,,), for the original orientation of .S,,. This means that we must compute the
intersection of £ halfspaces. Thisis done by appealing to the following fact (see, e.g., [36]): Theintersection of a set
of halfspaces can be determined by computing the convex hull of aset of points (in 3D), each of which is dual © to one

51t is important that we transform the original B-rep vertices, rather than those of the bounding k-dop at each step. Indeed, if we were to

transform the bounding k-dop, compute a new bounding k-dop, transform it, etc., the bounding volume would grow increasingly larger with each
step.

el%ln one standard definition of duality, the dual point associated with the plane whose equation is axz + by + ¢z = 1 isthe point (a, b, c). See
[36].

of the planes defining the halfspaces, and then converting the convex hull back to primal space; a vertex, edge, facet
of the convex hull corresponds to a facet, edge, vertex of the intersection of halfspaces. We compute the convex hull
of the dual pointsin 3D using asimple incremental insertion algorithm (see [36]).

(a) 8-dop (b) 8-dop of rotated object (c) 8-dop of rotated 8-dop
Fig. 2: lllustration of the approximation method of handling a rotating object.

We have considered some of the trade-offs between methods (1) and (11). The nodes closest to the root of the flying
hierarchy are the most frequently visited during searching. Thus, it is important that the bounding k-dops for these
nodes be as tightly fitting as possible, so that we can hopefully prune off a branch of the tree here. This suggests that
we apply method (1) at the root node, and at nodes “close” to the root node of the flying hierarchy.

We implemented and tested our algorithm using both methods, and conducted experiments to determine if the
extra cost of method (I) was worth it for nodes near the root of the hierarchy. In al cases, it was worthwhile spending
the time to compute the exact bounding %-dop at the root node; the time saved due to pruning greatly outweighed
the additional time spent doing the hill-climbing. We also performed experimentsin which we applied method (1) to
nodes on levels of the tree close to the root. However, we found that this additional overhead was not justified; the
time saved due to additional pruning did not outweigh the extra time required to perform the hill-climbing. In fact,
the total running time increased when using method (1) for any nodes other than the root node. Consequently, we are
currently using the approximation method (I1) for all nodes in the hierarchy, except the root node, where we perform
hill-climbing (1).

An interesting future research question is also suggested here. The flying hierarchy is constructed according to
the object’s initial position and orientation, as it is given to us. An dternative to thisis to try finding an “optimal”
orientation for the flying object, where “optimal” could possibly be interpreted as the orientation that minimizes the
total volume of the hierarchy or that allows for the most efficient collision checks.

4.2 TreeTraversal Algorithm

Given the environment hierarchy, BVT(E), and the flying hierarchy, BVT(F’) (after tumbling), we must traverse the
two trees efficiently to determine if any part of the flying object collides with some part of the environment. The
algorithm we useis outlined in Algorithm 1. It consists of arecursive call to TraverseTrees(v i, vg), Where vy isthe
current node of the flying hierarchy and v g is the current node of the environment hierarchy. Initialy, we set v p and
vg to be the root nodes of the hierarchies.

At a general stage of the traversal algorithm, we test for overlap between the bounding volume b(S ,,.) and the
bounding volume b(S,,). If they are digjoint, then we are done with this call to the function. Otherwise, if v g is
not a leaf, we step down one level in the environment hierarchy, recursively calling TraverseTrees(v g, v.) for each
of the children v, of vg. If vy isaledf, then we check if vy isaleaf: if itis, we do triangle-triangle intersection
tests between each triangle of v and each triangle of v ; otherwise, we step down one level in the flying hierarchy,
recursively calling TraverseTrees(v, vg) for each of the children v of vp.

7Although this algorithm has worst-case quadratic (O(k?)) running time, it works well in practice, is only used during preprocessing, and k is
small. Worst-case optimal O(k log k)-time agorithms are known for this problem; see [39].

Algorithm TraverseTrees(vy, vg)
Input: A node vp of the flying hierarchy, anode v g of the environment hierarchy
if b(vrp)Nb(rvg)#0 then
if vgisaleaf then
if vpisaleaf then
for eachtriangletg of S,
for eachtriangletr of S,,.
check test triangles ¢z and ¢ for intersection
else
for each child vy of vp
TraverseTrees(vy, Vg)

BoOooNoOk~WNE

©

else
11. for eachchild v, of vg
12. TraverseTrees(v g, V)
13. return

Algorithm 1: Pseudo-code of the tree traversal algorithm.

For comparison purposes, we have also implemented a variant of this traversal algorithm in which line 9 of the
agorithm is replaced by TraverseTrees(v ¢, root of the environment hierarchy). The rationale for this variant is that
it may be that the bounding volume at a node v of the flying hierarchy intersects a large number of leaves in the
environment hierarchy, BVT(E), while the children of v » form amuch tighter approximation and intersect far fewer
leaves of BVT(E). (This is especialy true for nodes of the flying hierarchy, since our approximation method of
tumbling k-dops results in “looser” fitting bounding volumes.) Thus, by restarting the search at the root of BVT(E),
for each child of vy, we may actually end up with fewer overlap checks in total. We have found experimentally,
though, that this variant does not perform as well in practice as what we describe in Algorithm 1. While there are
cases in which this variant is better, yielding a dightly lower (by about 5%) average CD time, overal it usualy is
inferior. In particular, for the suite of experiments reported in this paper, the variant is almost always slower, in some
cases by as much as 10-20%.

4.3 Depth of the Flying Hierarchy

The depth of the flying hierarchy has a significant impact upon the total cost, T, associated with performing a collision
detection query, since it can affect the values N, IV,,, and N,, in Equation 2. A deeper hierarchy will tend to increase
the number of bounding volume overlap tests (IV,,) and the number of nodes that have to be updated (V,,), but to
decrease the number of pairs of primitives (triangles) which will be checked for contact (IV,). A shallower tree will
tend to have the opposite effect.

The problem of selecting the optimal depth is difficult to address in general because it is highly data-dependent,
as well as dependent upon the costs C,, C,, and C,,. At the moment, we have “ hard-coded” a threshold 7; once the
number of triangles associated with a node falls below 7, we consider this node to be a leaf of the tree. For all of the
experiments reported in this paper, we used a threshold of 7 = 1 for the environment hierarchy, and a threshold of
T = 40 for the flying hierarchy. These values were determined to work well on a large variety of datasets. We leave
it as an open problem to determine effective methods of automatically determining good thresholds, or of allowing
variable thresholds at different nodes within a hierarchy.

4.4 Overlap and Intersection Tests

While processing a CD query, the most frequently called function is usually that of testing whether or not two &-dops
overlap. The cost of this operation has been denoted by C',, in Equation 2. Recall that all our k-dops are defined by the
same fixed set of directions for any particular k. Thus, a k-dop is completely defined by /2 intervals describing the
extents along those directions. Two k-dops D, D» do not overlap if at least one of the k/2 intervals of D, does not
overlap the corresponding interval of D. If the k-dops overlap along all k/2 directions, then we conclude that they
may overlap. They may be disjoint, separated by a plane parallel to one edge from each k-dop; however, for efficiency,

10

we use a conservative digointness test based on only the k/2 directions. Thus, we need at most % floating-point
comparisons, and no arithmetic operations, in our overlap test.

In performing this overlap test, the order in which we check the & /2 intervalsmay have an effect upon the efficiency
of the primitive. For example, it seems likely that if the intervals defined by one direction overlap, then the intervals
defined by another direction, whichisfairly “close” to the first one, will also result in an overlap. Thus, wewould like
to order the interval tests so that we test intervalswith largely different directions (one after the other). In doing so, we
hope quickly to find adirection (if one exists) along which the given intervals do not overlap, and thus exit the routine.
Thisisan interesting question for further study.

Finally, at the lowest level of our CD query agorithm, we ultimately must be able to test whether or not two
primitives (triangles) intersect. The cost of this operation has been denoted C'p; it involves arithmetic operations on
floating-point numbers. We have devel oped a collection of efficient intersection tests for pairs of primitive geometric
elements; see Held [23] for details on the triangle-triangl e intersection test that we use.

5 Implementation and Experimentation

Our agorithms have been implemented in C and tested upon a variety of platforms (SGI, Sun, PC). They run on
general polygonal models (often called “ polygon soup”), and can easily handle cracks?®, (self-)intersections, and other
deficiencies of the input data. We assume that the input consists simply of a list of vertices and a list of triangles
without any adjacency information®.

Our BV-tree construction and collision detection algorithms are robust and relatively simple; they do not make any
decisions based upon the topology of the data, so cannot run into inconsistency problems (due to floating-point errors)
when searching (or building) the BV-trees. To avoid missing collisions between objects, we use an epsilon threshold,
€, which can be specified by the user.

In order to maintain efficiency in theimplementation of k-dops, we have“hard-coded” the logic for each of the four
choices of k. Therefore, we choose the value of & (and the appropriate code) at compile time by means of compiler
switches.

Throughout this section, we report on some comparisons with the system called “RAPID” (Rapid and Accurate
Polygon I nterference Detection), which has been made publicly available by the University of North Carolinaat Chapel
Hill'°. Thislibrary utilizes oriented bounding box trees (OBBTrees) [21].

Memory Requirements For an environment dataset of n input triangles, we store in one array (72n bytes) the
vertices of the triangles (whose coordinates are 8-byte floating point numbers), and in another array (12n bytes) the
integer indices into the vertex array, indicating for each of the . triangles which three vertices compriseit 1.

For each node of the environment hierarchy, we need to store the k& numbers that define the bounding k-dop (8%
bytes), two pointers to the children of the node (8 bytes), and an integer index to indicate which triangle is stored in
each leaf (4 bytes). Thus, we need 8% + 12 bytes per node. There are approximately 2n (2n — 1, to be exact) nodesin
the hierarchy, since it is a complete binary tree, with each leaf containing just one triangle.

In total, we will therefore need (16k + 108)n bytes to store al n triangles of the environment, together with the
hierarchy. Substituting & = 6, 14, 18, and 26, we see that we need 204, 332, 396, and 524 bytes per input triangle,
respectively. For comparison, it has been reported in [21] that the RAPID implementation requires 412 bytes per input
triangle.

The memory used to store aflying object of m trianglesisidentical to that of storing the environment (84m bytes).
However, the memory needed for the flying hierarchy is more difficult to put into a closed-form expression, since it
is highly data dependent. In particular, our threshold, 7, for stopping the construction of the hierarchy (as discussed
in Section 4.3) is 7 = 40, which means that instead of having 2m — 1 nodesin the hierarchy, we will have 2m ' — 1,
where m’ denotes the number of leaves, which can vary between 1 and m. Also, we need to store the original B-rep
vertices of the initial k-dops (Section 4.1) with each node, and these numbers vary for each choice of flying object.

8“Cracks’ are gaps on the surface of a polygonal model caused by an edge having only one incident face.
9For this reason, we can only report surface intersections, rather than volumetric intersections.
10Thelibrary can be found on the web at http://www.cs.unc.edu/"geom/OBB/OBBT.htm
1 These indices are not absolutely necessary: however, since most triangles do share vertices, it is more memory efficient to do so, at the expense
of appearing wasteful in our memory calculations here.

11

We can, however, compute worst-case upper bounds on the number of verticesin the B-rep of each of our k-dops: for
k = 6,14, 18, 26, the maximum possible number of verticesin a k-dop is 8, 24, 32, and 48, respectively.

For each node of the flying hierarchy, we store the &k numbers that define a k-dop (8% bytes), two pointers to the
children (8 bytes), the number of triangles bounded by the k-dop (4 bytes) — since the threshold is not 1 in this case,
the list of triangle indices bounded by this node, the number of original B-rep vertices (4 bytes), alist of the B-rep
vertices, and an integer to indicate when the node was last “tumbled” (4 bytes) —to avoid re-tumbling the node if it is
accessed more than once during the CD query for one step of the flight.

In addition, we also need to store the B-rep for the convex hull associated with the root node of the flying hierarchy
(Section 4.1). In the experiments reported here, the flying “Pipes’ dataset required the most memory, almost 1.65
megabytes, to store its convex hull.

5.1 Experimental Set-up

Our experiments have used real and simulated datasets of various complexities, ranging from tens of trianglesto afew
hundred thousand triangles. We made a special effort to devise datasets that were particularly difficult for our method
and others. For instance, we considered “swept volume” datasets, in which a moving object is swept through space
on a random motion, then numerous obstacles are randomly placed close to, but not penetrating, the swept volume;
finally, we fly the object on the origina path, causing it to come very close to collision with thousands of nearby
obstacles, without it actually hitting any of them. While these “challenging” datasets are unlikely to arise in practice,
agoal of our study was a systematic comparison of aternative methods and alternative choices of parameters within
our own methods.

For all of the results reported here, we used a Silicon Graphics Indigo?, with a single 195 MHz |P28/R10000
processor, 192 Mbytes of main memory, and a Maximum Impact Graphics board. The code was compiled with GNU
gcc (respectively, g++ for RAPID). All timings were obtained by adding the system and user times reported by the C
library function “times’. In order to smooth out minor variationsin thetimings, all tests have been run repeatedly, and
we report average times.

Although we ran RAPID on the same machine and with the same timing command, we appreciate the difficulty
that exists in making comparisons between different algorithms implemented by different people. Many issues, such
as tolerances (for overlaps) and what geometric primitives to use and how they are tested for intersection, can play
acrucia role in an agorithm'’s performance. Also, we do not know to which extent RAPID has been optimized to
achieve efficiency. (However, RAPID does use assembler code in order to speed up computations, which serves as an
indication that it has certainly been optimized to some extent.)

5.2 Experimental Results
Average Costsof C),, C,,, and C,,

We begin by reporting results of an experiment to determine the average cost of testing two primitives (triangles) for
intersection, using our code. For 100,000 triangle-triangleintersection queries, al of which had their bounding boxes
overlap, in order to avoid simple rejections, the average query time per test, C',,, was 0.0035 milliseconds (ms).

Next, we investigate how the costs C', and C,, vary with choice of k. In Table 1, we show experimental results
comparing the average cost, C',, of testing two k-dopsfor overlap. The table also showsthe averagetime, C',,, required
to perform updates on the k-dops, using the approximating k-dops method described in Section 4.1. The k-dops used
in these tests were taken directly from the experiments (flights) described later in this section.

[| 6-dop | 14-dop | 18-dop | 26-dop ||
C, | 0.0008 | 0.0016 | 0.0020 | 0.0028
C, | 0.0045 | 0.0174 | 0.0235 | 0.0509

Table 1: Average costs of C,, and C, (in ms), for different choices of &.

12

Aver age Collision Detection Query Times

Table 2 shows timing data on four typical datasets. (1) Pipes. an interweaving pipeline flying among alarger copy of
the same system of pipes; (2) Torus: a deformed torus flying in the presence of stalagmites'?; (3) 747: aBoeing 747
model flying among 25,000 random digjoint tetrahedral obstacles; and (4) Swept: an “axis-shaped” polyhedron flying
through a swept volume surrounded by 10,000 random tetrahedral obstacles.

In order to simulate motion of these “flying” objects, we implemented aform of “billiard paths’: aflying objectis
moved aong a random path, “bouncing” off of obstaclesthat it hitsin the environment. We do not attempt to simulate
areal “bounce’; rather, we simply reversethetrajectory when acollision occurs. For amore detailed |ook at accurately
handling collision response, please refer to the work by Moore and Wilhelms [33], Bouma and Vanétek [8], and the
large collection of work by Baraff [3, 4, 5].

Timing results for a fifth dataset, Interior, are also listed in Table 2. Images of this particular flight are shown in
Figures 5(a) and 5(b). Thisindustrial dataset was provided to us by The Boeing Company and models a small section
of the interior of an airplane. The flying object in this case is amodel of a*“hand”, whose path was generated by an
engineer at Boeing, using a data-glove, as an example of how onewould like to use collision detection when immersed
on avirtual environment. Our collision detection algorithms were applied to this flight in order to detect all of the
contacts, i.e., al pairs of trianglesthat are in intersection, during the flight. As seenin Table 2, there were many such
contacts for thisflight, with an average of 33 contacts per step, over the 2500 steps; it was the intention of the engineer
generating the data to provide a “rigorous workout” for CD algorithms.

For comparison, we have recorded the results obtained by using the collision detection library RAPID.

All of the timings reported here give the average CPU-consumption per check for collision, exclusive of rendering
and of motion simulation.

[| Pipes | Torus | 747 | Swept | Interior

Env. Size (no. tri.) 143,690 | 98,114 | 100,000 | 40,000 | 169,944
Object Size (no. tri.) 143,690 | 20,000 | 14,646 36 404
No. of Steps 2,000 | 2,000 | 10,000 | 1,000 2,528
No. of Contacts 2,657 | 1,472 7,906 0| 84931
Hier. Method (ms per check)

6-dop 0.487 | 0.294 1.639 | 0.582 4.375
14-dop 0.392 | 0.191 0.760 | 0.153 2.701
18-dop 0.366 | 0.184 0.356 | 0.109 2.754
26-dop 0525 | 0.210 0.415 | 0.076 2.639

| RAPID | 0934] 0242] 0494 | 0556 | 4.375 |

Table 2: Average CD Time (in ms), using our “ Splatter” splitting rule.

Based solely upon these times, our 14-, 18-, and 26-dop methods perform well in comparison with RAPID’s OBB
method, running faster on al five of the datasets; the only exception being the 14-dop method during the 747’ sflight on
our own generated data. As expected, the 6-dop method (i.e., axis-aligned bounding boxes), did not perform as well as
these other methods, nor as well as when using OBBs in the RAPID implementation. Out of al of our methods, using
an 18-dop for our bounding volume in the BV-trees, appears to be the best. In addition, most of the collision detection
times are below 2 milliseconds (many are even below 1 millisecond), which alows us to perform these queries at
real-time rates.

For the resultsin Table 2, al of our hierarchies were built using one of our fastest construction algorithms, based
upon the “ splatter” splitting rule discussed in Section 3.3.4. We chose this a gorithm because of its speed, and because
of the fast CD query times which were obtained. As our 18-dop method appears to be the best, we have provided
the following tables which highlight the amount of preprocessing time required for all of the construction methods
(longest side, min sum, min max, and splatter), as well as the CD query times which each method generated.

Table 3 highlights the amount of time (in minutes) it takes to preprocess (build) the environment hierarchy for our

2Datasets 1 and 2 were graciously provided by the University of North Carolina at Chapel Hill.

13

[Construction Method | Pipes | Torus | 747 | Swept | Interior

Longest Side 361 161] 169] 031] 578
Min Sum 2675 | 19.12 [2098 | 7.7 | 3103
Min Max 2803 | 19.16 | 2087 | 7.19 | 3113
Splatter 363 162| 171 | 032| 571
[RAPID [105] 069 071] 026 131 |

Table 3: Preprocessing Time (in minutes), using our 18-dop method.

18-dop method, for each of the four construction rules: longest side, min sum, min max, and splatter 3. Our fastest
methods are clearly the “longest side” and “splatter” algorithms, which are essentially equa for all of the datasets.
Likewise, the “min sum” and “min max” methods both require about the same amount of work; however, these two
methods are typically an order of magnitude slower than the others. The fastest method, in terms of preprocessingtime,
isRAPID, which requires only about 30-40% of the time required by the“ splatter” method. Thelongest preprocessing
time that we have witnessed (45 minutes) occurred when using the “min max” method on the Interior dataset for the
26-dop method. In order to avoid alengthy wait each time the code is run on a standard dataset, our software has the
option to store the environment hierarchy to a binary file. For this dataset, having 169,944 input triangles, the binary
file to store the 26-dop hierarchy is roughly 69 megabytesin size and takes just under 10 seconds to load.

| Construction Method | Pipes | Torus | 747 | Swept | Interior |

Longest Side 0.384 | 0.192 | 0.366 | 0.111 3.036
Min Sum 0.356 | 0.185 | 0.330 | 0.108 2.667
Min Max 0.391 | 0.191 | 0439 | 0.111 2.783
Splatter 0.366 | 0.184 | 0.356 | 0.109 2.754

Table 4: Average CD Time (in ms), using our 18-dop method, dividing at the mean.

In conjunction with Table 3, Table 4 highlights the corresponding CD query times for each of the construction
methods. From this table, it becomes clear that the “min sum” method is typicaly the best; however, unless one
can afford to spend a great deal of additional time preprocessing the environments, the best choice appears to be the
“splatter” method, as it takes considerably less time to preprocess and provides CD query times that are nearly as
good.

In addition to the four construction methods that we have been mentioning, we also discussed in Section 3.3.4 the
option of splitting based on the mean versus the median of the centroid coordinates along the selected axis. In the
preceding tables, we have always used the mean. To provide some justification for our using the mean by default, we
have included Table 5, which shows the average CD query time for the 18-dop method for each of the four splitting
rules when we use the median instead of the mean.

[Construction Method | Pipes | Torus | 747 | Swept | Interior |

Longest Side 0476 | 0.193 | 0412 | 0.116 3.164
Min Sum 0.450 | 0.192 | 0.359 | 0.111 2.822
Min Max 0.530 | 0.196 | 0.450 | 0.114 3.080
Splatter 0481 | 0.194 | 0.396 | 0.113 2774

Table 5: Average CD Time (in ms), using our 18-dop method, dividing at the median.

In comparing Tables 4 and 5, we see that using the median never results in faster query times. In quite a few
cases, the median method is at least 5% slower than the mean method, and in the “Pipes’ dataset, the median method

13|n each of these cases, we split at the mean rather than the median.

14

is between 24% and 35% dslower for al of the entries. The preprocessing times required for the median method are
amost identical to those of the mean. In some casesit is dightly faster, in others, slightly slower.

As Tables 2— 5 report on (random) flight paths which we ourselves have generated (with the exception of the
Interior flight), we have also tried to design experiments in which other methods will perform well, in order to make
this afair comparison. In particular, the OBBTrees in RAPID are reported to perform especialy well in situationsin
which there exists “ parallel close proximity” between the models[21]. This situation occurs when many points on the
flying object come close to severa pointsin the environment, and a large number of the nodes of the hierarchies will
have to be searched in order to resolve all of the conflicts. Examples of this situation are in virtual prototyping and
tolerance analysis applications[21]. Therefore, we have run an experiment similar to onerunin [21], in order to seeif
our methods based on k-dops are competitive in this situation.

We have generated datasets consisting of polygonal approximations to two concentric spheres, with the outer
sphere having radius 1.0, and the inner sphere being a scaled copy of the outer sphere, having radius 1.0 — «, for small
positive values of . In this*“parallel close proximity” situation, al of the points of the inner sphere are very closeto
points on the outer sphere, yet there is no intersection between the inner and the outer surfaces.

Here, asin [21], our objectivesis to determine how many bounding volume overlap queries, N ,,, are required to
process the collision detection query: Does the inner surface intersect the outer surface?

Now, as previously discussed, our default implementation uses athreshold of 7 = 40 to terminate the construction
of the flying hierarchies. However, RAPID uses no such threshold; it always builds a complete binary tree. Thus, in
order to make a fair comparison, we modified our code for this particular experiment to be consistent with RAPID,
by using a threshold = = 1 for the flying hierarchy. Then, both methods produce trees having an identical number
of internal nodes and leaf nodes. (The structures of the hierarchies, and in particular their heights, can, of course, be
different.)

Hier. apha

Method | 055| 01] 0.055 | 001 | 0.0055 [0.001 [0.00055 | 0.0001
6-dop 388 | 49,494 | 76,506 | 109,086 | 113,200 | 116,340 | 116,710 |116,948
14-dop 32 | 16,888 | 41,782 | 85,656 | 90,896 | 95,150 | 95,564 | 96,056
18-dop 46 | 11,236 | 34,744 | 79,968 | 86,036 | 91,482 | 92,124 | 92,684
26-dop 22 | 4,652 | 23,774 | 74,052 | 81,160 | 87,622 | 88,322 | 88,968
RAPID | 121 | 3,333 | 7,479 | 41,645 | 60,327 | 91,983 | 95,717 | 100,047

Table 6: Numbers of overlap queries among k-dops of the 2,000-faceted nested spheres, for different values of apha
and k.

Hier. alpha
Method | 0565] 01]| 0.055 | 001 [00055 | 0001 | 000055 | 0.0001
6-dop 278 | 289,126 | 494,278 | 1,129,398 | 1,223,900 | 1,320,158 |1,329,154 |1,337,116
14-dop 14 | 85,012 | 239,884 | 831,528 | 960,952 | 1,102,260 | 1,115,030 |1,127,908
18-dop 46 | 55390 | 194,414 | 762,668 | 903,056 | 1,063,346 |1,079,676 |1,095,868
26-dop 14 | 12,218 | 119,556 | 675,152 | 831,104 | 1,019,272 |1,038,126 |1,058,072
RAPID | 117 2,441 5,495 43,589 87,071 | 428,027 | 609,843 | 932,561

Table 7: Numbers of overlap queries among k-dops of the 20,000-faceted nested spheres, for different values of alpha
and k.

Tables 6 and 7 report our results for spheres of 2,000 triangles each, and spheres of 20,000 triangles each 14, It
came as no surprise that the RAPID implementation of OBBTrees requires fewer bounding volume comparisons than
the axis-aligned bounding boxes (6-dops). In fact, for the nested spheres of 20,000 triangles, the OBBs often require
over an order of magnitude fewer queries; this is consistent with the conclusion drawn from the similar experiment
in[21].

14For these runs, we used one of our fastest construction algorithms, based on the “splatter” splitting rule.

15

Our goal here, though, was to compare the OBB method to the k-dops methods. As the tables show, for both of
the datasets, our 14—, 18—, and 26—dop methods performed fewer bounding volume overlap queries for the largest
value of «, 0.55, when the nested spheres are relatively well separated. For the remaining values of «, however, the
OBBTrees perform considerably fewer overlap queriesin the spheres dataset having 20,000 triangles. Also, OBBTrees
perform fewer queries in the smaller dataset, although not by the same magnitude. Once o becomes small enough
(0.001), which happens when the nested spheres are very close to one another, the k-dop methods start to overtake the
OBB method.

Behavior of CD Time over Flight

Whilewe have compiled our results primarily using the statistic of average-case collision detectiontime, it isimportant
in some applications to study the worst-case collision detection time for the flight of a moving object. On atypical
flight (that of the “Pipes’ being flown within the larger system of “Pipes’), we show aplotin Fig. 3 of how the CD time
varies with position along the flight, over the 2,000 steps in the simulation. One can see that the CD time increases
substantially at various positions aong the flight; these correspond to when the flying object comes in very close
proximity to the environment. In this particular example, the maximum CD query time is roughly 18 milliseconds.

Time per Collision Detection Query

| | | |
1500 — _

Time (ms)

10.00 — —

500 — —

0.00 — —

Steps
0 500 1000 1500 2000

Fig. 3: Individual collision detection query times for the “Pipes’ dataset.

Putting an upper bound on worst-case CD time is especially important in VR applications, where one needs to
perform time-critical collision detection [28]. In such situations, our agorithms can be applied, and terminated early
(according to the time budgeted for each CD test), resulting in an answer of “maybe’: The flying object might be
intersecting the environment at this instant. The goal, then, in using the BV-tree is to use the information present in
the search of the BV-tree, at the time of early termination, to obtain bounds on how much penetration there can be (if
at al) between the flying object and the environment. (See, e.g., [47].) This problemisleft for future investigations.

6 Conclusion

We have proposed a method for efficient collision detection among polygona models, based on a bounding volume
hierarchy (BV-tree) whose bounding volumes are k-dops (discrete orientation polytopes). Our k-dops form a natural
generalization of axis-aligned bounding boxes, providing flexibility through the choice of the parameter k. We have
studied the problem of updating an approximate bounding &-dop for moving (rotating) objects, and we have studied
the application of BV-trees to the collision detection problem.

Our methods have been implemented and tested, for a variety of datasets and various choices of the design pa-
rameters (e.g., k). Our results show that our methods compare favorably with aleading system (“RAPID”, presented
at ACM SIGGRAPH’96 [21]), whose hierarchy is based on oriented bounding boxes. Further, our algorithms are ro-
bust, relatively simple to implement, and are applicable to general sets of polygonal models. Experiments have shown

16

that our algorithms can perform at interactive rates on real and simulated data consisting of hundreds of thousands of
polygons.

Extensions and Future Wor k

Throughout the paper, we have mentioned several possible extensions of our work, including some alternative methods
for constructing BV-trees, such as

using values of k larger than 26 for our k-dops (Section 3.3.3),
using alternative “ splitting rules’ (Section 3.3.4), and
using a bottom-up method to construct BV-trees (Section 3.3.2).

We have al so suggested some possible future investigationsthat could lead to faster collision detection queries, includ-
ing

finding an “optimal” orientation of theinitial flying hierarchy (Section 4.1),
avoiding a hard-coded threshold to control the depth of the hierarchies (Section 4.3), and
using a specialy designed ordering when performing interval overlap queries (Section 4.4).

In addition to these “design” alternatives, we plan to investigate further extensions of our BV-tree methods, including:

Use of temporal coherence: From onetime step to the next, the flying object will occupy roughly the same area of
our workspace and, thus, overlap roughly the same set of nodes of the environment hierarchy. It should be possible
to give our search algorithm a “hot start” at each step, thereby (potentially) greatly reducing the number of bounding
volume overlap calls. The use of coherence may aso help address the problem raised at the end of the last section
— that of bounding the worst-case query time, and providing an estimate of depth of possible penetration, should the
query be terminated before completion.

Multiple flying objects. Currently, our collision detection software is programmed to handle only one flying object.
Incorporating multiple objectsis particularly trivial if we use a brute-force approach, quadratic in the number of flying
objects: check each flying hierarchy against the environment hierarchy, and check every pair of flying hierarchies. If
the number of flying objects is relatively small, this approach may be acceptable. However, if the number of flying
objects is large, one can apply a “sweep and prune” technique, similar to the one used in [11], or possibly design
effective new strategies.

Dynamic environments. Allowing the environment to change viainsertions and deletions of objectsis animportant
extension for work on environmentsthat are constantly being modified, e.g., a CAD model that is under development
and is being edited on a daily basis. The interesting research issue is that of efficiently rebalancing the BV-tree
hierarchies under a sequence of insertions and deletions.

Deformableobjects: In addition to allowing dynamic environments, we would also like to extend our hierarchiesto
handl e deformable objects. By “buffering” (enlarging slightly) the £-dopsin our BV-trees, we can continue to approx-
imate the deformed objects over a short period of time (depending on the velocity of deformation). But rebalancing
or rebuilding sections of the hierarchy will also be necessary over the course of time, and it is an interesting topic for
future investigation to devise efficient means for doing so.

NC verification: Our methods may be applied to the task of verifying tool pathsin NC (Numerically Controlled)
machining, where it is important to check whether a tool penetrates (beyond a specified threshold) the surface of a
part to be machined, at any position along the tool’s motion. This problem constitutes quite a challenge for a general -
purpose CD code since, by the very nature of the tool motion, which is designed to sculpt the part, the tool will bein
constant contact with the part’s surface. Further, this application requires an extension of our CD code in order to be
able to handle spheres and cylinders (without using polyhedral approximations), and (approximate) swept volumes.

17

Acknowledgments

Our work has greatly benefited from the support of the VR group at Boeing, including Jeff Heisserman, William
McNedly, and David Mizell. We a so thank Claudio Silvafor valuable assistance.

Some of the datasets used during this research were provided by the University of North Carolina at Chapel Hill
and Boeing Computer Services. Some datasets were al so obtained from the ftp-site of Viewpoint Datalabs.

We are indebted to five anonymous referees, whose valuable comments greatly helped in the presentation and
content of this paper.

References

[1] J. Arvoand D. Kirk. A survey of ray tracing acceleration techniques. In A.S. Glassner, editor, An Introduction to
Ray Tracing, pages 201-262. Academic Press, 1990. ISBN 0-12-286160-4; 3 "¢ printing.

[2] D.H.Bdlard. Strip trees: A hierarchical representation for curves. Comm. ACM, 24(5):310-321, May 1981.

[3] D. Baraff. Curved surfaces and coherence for non-penetrating rigid body simulation. In Comput. Graphics
(S GGRAPH '90 Proc.), volume 24, pages 19-28, Dallas, TX, USA, Aug 1990.

[4] D. Baraff. Fast contact force computation for nonpenetrating rigid bodies. In Comput. Graphics (S GGRAPH ' 94
Proc.), volume 28, pages 23—-34, Orlando, FL, USA, Jul 1994,

[5] D. Baraff. Interactive simulation of solid rigid bodies. Comput. Graph. Appl., 15(3):63-75, May 1995.

[6] G.Barequet, B. Chazelle, L.J. Guibas, J.S.B. Mitchell, A. Tal. BOXTREE: A Hierarchical Representation for Sur-
facesin 3D. EuroGraphics 96, J. Rossignac and F. Sillion, eds., Blackwell Publishers, Eurographics Association,
Volume 15, (1996), Number 3, pages C-387-C-484.

[7] N.Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust access method for
points and rectangles. In Proc. ACM SGMOD International Conference on Management of Data, pages 322—331,
1990.

[8] W. Boumaand G. Vanétek, Jr. Collision detection and analysisin a physical based simulation. In Eurographics
Workshop on Animation and Smulation, pages 191-203, Vienna, Austria, Sep 19.

[9] S. Cameron. Collision detection by four-dimensional intersection testing. |EEE Trans. Robot. Autom., 6(3):291—
302, 1990.

[10] J. Canny. Collision detection for moving polyhedra. |EEE Trans. Pattern Anal. Mach. Intell., PAMI-8(2):200-
209, March 1986.

[11] J.D.Cohen, M.C. Lin, D. Manocha, and M.K. Ponamgi. I-COLLIDE: Aninteractiveand exact collision detection
system for large-scale environments. In Proc. ACM Interactive 3D Graphics Conf., pages 189196, 1995.

[12] International Business Machines Corporation. User's Guide, IBM 3D Interaction Accelerator 7, Version 1
release 2.0, IBM T.J. Watson Res. Center, Yorktown Heights, NY, September 1995.

[13] A. Crosnier and J. Rossignac. T-BOX: The intersection of three mini-max boxes. Internal report, IBM T. J.
Watson Res. Center, Yorktown Heights, NY, 1995

[14] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri. Computing the intersection-depth of polyhedra. Algo-
rithmica, 9:518-533, 1993.

[15] D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral intersection. Theoret. Comput. Sci., 27:241-253,
1983.

[16] D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation of convex polyhedra. J.
Algorithms, 6:381-392, 1985.

18

[17] D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed polyhedra— a unified approach. In
Proc. 17th Internat. Collog. Automata Lang. Program., volume 443 of Lecture Notes in Computer Science, pages
400-413. Springer-Verlag, 1990.

[18] K. Dobrindt, K. Mehlhorn, and M. Yvinec. A complete and efficient algorithm for the intersection of a general
and a convex polyhedron. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in
Computer Science, pages 314-324, 1993.

[19] A. Garcia-Alonso, N. Serrano, and J. Flaguer. Solving the collision detection problem. |IEEE Comput. Graph.
Appl., 14:36-43, May 1994.

[20] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphics
and Applications, 7:14-20, 1987.

[21] S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree: A hierarchical structure for rapid interference detection.
In Comput. Graphics (S GGRAPH '96 Proc.), volume 30, pages 171-180, New Orleans, LA, USA, Aug 1996.

[22] N. Greene. Detecting intersection of a rectangular solid and a convex polyhedron. In P.S. Heckbert, editor,
Graphics Gems |V, pages 74-82. Academic Press, 1994. ISBN 0-12-336155-9.

[23] M. Held. A library of efficient and reliabl e intersection routines. Technical Report, Dept. of Applied Mathematics
and Statistics, University at Stony Brook, 1997. http://www.ams . sunysb.edu/ “held/

[24] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evaluation of collision detection methods for virtua reality fly-
throughs. In Proc. 7th Canad. Conf. Comput. Geom., pages 205-210, 1995.

[25] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Speed Comparison of Generalized Bounding Box Hierarchies.
Technical Report, Dept. of Applied Math, SUNY Stony Brook, 1995.

[26] M. Held, J.T. Klosowski, and J.S.B. Mitchell. Real-time collision detection for motion simulation within complex
environments. In SGGRAPH’ 96 Visual Proc., page 151, New Orleans, LA, USA, Aug 1996

[27] PM. Hubbard. Collision detection for interactive graphics applications. |EEE Trans. Visual. Comput. Graph.,
1(3):218-230, Sep 1995.

[28] PM. Hubbard. Approximating polyhedrawith spheresfor time-critical collision detection. ACM Trans. Graph.,
15(3):179-210, July 1996.

[29] T.L.Kay and J.T. Kgjiya. Ray tracing complex scenes. In Comput. Graphics (S GGRAPH ' 86 Proc.), volume 20,
pages 269-278, Aug 1986.

[30] M. Lin. Efficient Collision Detection for Animation and Robotics. Ph.D. thesis, Dept. Elec. Engin. Comput. Sci.,
Univ. Cdlifornia, Berkeley, CA, 1993.

[31] M. LinandJ. Canny. Efficient algorithms for incremental distance computation. In Proc. |EEE Internat. Conf.
Robot. Autom., volume 2, pages 1008-1014, 1991.

[32] M. Linand D. Manocha. Fast interference detection between geometric models. Visual Comput., 11(10):542—
561, 1995.

[33] M. Moore and J. Wilhelms. Collision detection and response for computer animation. In Comput. Graphics
(SSGGRAPH ' 88 Proc.), volume 22, pages 289-298, Aug 1988.

[34] B. Naylor, JA. Amatodes, and W. Thibault. Merging BSP trees yields polyhedral set operations. In Comput.
Graphics (S GGRAPH ' 90 Proc.), volume 24, pages 115-124, Dallas, TX, USA, Aug 1990.

[35] H. Noborio, S. Fukuda, and S. Arimoto. Fast interference check method using octree representation. Advanced
robotics, 3(3):193-212, 1989.

[36] J. O’ Rourke. Computational Geometry in C. Cambridge University Press, New York, 1994. ISBN 0-521-44592-
2.

19

[37] 1. PAmer and R. Grimsdale. Collision detection for animation using sphere-trees. Comput. Graph. Forum,
14(2):105-116, June 1995.

[38] M. Ponamgi, D. Manocha, and M. Lin. Incrementa algorithms for collision detection between general solid
models. In Proc. ACM Sggraph Sympos. Solid Modeling, pages 293-304, 1995.

[39] F.P. Preparataand M.l. Shamos. Computational Geometry — An Introduction. Springer-Verlag, New York, 1985.
ISBN 0-387-96131-3.

[40] E. Schomer. Interaktive Montagesimulation mit Kollisionserkennung. Ph.D. thesis, Universitét des Saarlandes,
Germany, 1994.

[41] E. Schomer and C. Thiel. Subquadratic algorithms for the general collision detection problem. In Abstracts of
the 12th European Workshop on Computational Geometry (CG’ 96), pages 95-101, 1996.

[42] G. Vanétek, Jr. Brep-index: A Multidimensional Space Partitioning Tree. Internat. J. Comput. Geom. Appl.,
1(3):243-261, 1991.

[43] S. Suri, P. M. Hubbard, and J. F. Hughes. Collision Detectionin Aspect and Scale Bounded Polyhedra. Proc. 9th
ACM-S AM Sympos. Discrete Algorithms, to appear, Jan 1998.

[44] H. Weghorst, G. Hooper, and D.P. Greenberg. Improved Computational Methods for Ray Tracing. ACM Trans.
Graph., 3(1):52-69, Jan 1984.

[45] G.Zachmann. Exact and Fast Collision Detection. Diplomathesis, Fraunhofer Institute for Computer Graphics,
Technische Hochschule Darmstadt, Fachbereich Informatik, Germany, 1994.

[46] G. Zachmannand W. Felger. The BoxTree: Enabling real-time and exact collision detection of arbitrary polyhe-
dra. Proc. SIVE' 95, pp. 104113, 1995.

[47] K. Zikan and P. Konetny. Lower bound of distance in 3D. In Proc. of Winter School
of Computer Graphics (WSCG'97), Vol. Ill, pp. 640-649, 1997. Available as Technical Re-
port FIMU-RS-97-01, Faculty of Informatics, Masaryk University, Czech Republic, January 1997.
(http://www.fi.muni.cz/informatics/reports/)

20

(3 Level O (b) Level 1

(c) Level 2 (d) Level 5

Fig. 4. A spitfire aircraft, and the corresponding k-dops at different levels of the hierarchy.

21

(a) Interior (b) Close-Up

Fig. 5: A hand moving within the “Interior” dataset. The contact region is highlighted in red.

22

