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Abstract. We present a method for approximate rational parameteriza-
tion of algebraic surfaces of arbitrary degree and genus (or more general
implicitly defined surfaces), based on numerical optimization techniques.
The method computes patches of maximal size on these surfaces subject
to certain quality constraints. It can be used to generate local low de-
gree approximations and rational approximations of non-parameterisable
surfaces.

1 Introduction

In geometric modelling and computer aided design, various different represen-
tations for curves and surfaces exist, such as implicitly defined curves and sur-
faces, parametric representations by (piecewise) rational functions, procedurally
defined surfaces, or triangular meshes. The duality of implicit and parametric
representations makes each of them especially well suited for certain applications,
cf. [3].

Parametric descriptions are suitable for fast generation of point meshes, fast
visualization and interactive modeling. On the other hand, the use of implicitly
defined surfaces provides simple criteria to decide whether points are located on,
inside or outside a surface. These surfaces support simple techniques to define
blend surfaces between objects, and they can easily be intersected with lines.
Moreover the class of algebraic surfaces is closed under geometric operations
such as intersection and offsetting (although this is a more theoretical advantage,
since the resulting degrees are rather high).

Most computational applications yield optimal performance for one particular
representation. Regardless, there exist some areas where it is crucial that both
descriptions are available. An example is surface-surface intersection. Ideally,
one of the surfaces should be given in implicit form, and the other in parametric
form. In the case of the detection of self–intersections, both representations of
the same surface should be available.
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This paper is devoted to the problem of converting an algebraic surface (or,
more generally, an implicitly defined surface) to a (rational) parametric repre-
sentation, which we shortly refer to as parameterization.

Several exact methods based on algebraic techniques are known. Most of them
are constrained to special curves and surfaces (e.g., of low degree) [1, 2, 5, 12, 18].
Algorithms for solving the general parameterization problem are available [17].

Clearly, the algebraic techniques can be used only if an exact rational param-
eterization exists. In the surface case, both the arithmetic genus and the second
plurigenus have to be equal to 0.

Alternatively, one may use approximate methods, which should be able to
generate patches on any input surface. Also, we expect them to be computation-
ally less expensive than exact methods.

In [4], a combination of algebraic and numerical techniques is used to con-
struct G1 spline approximations of algebraic surfaces. The algorithm starts with
the computation of the singular points and curves. Later, Padé approximation
and Taylor expansion are used to generate an approximation. The resulting
surface maintains differential properties of the input surface and preserves the
singularities.

The numerical parameterization method investigated in [8] uses the so called
normal-form of a curve/surface. The output is a procedurally defined parameter-
ization, i.e., an algorithm that maps a parameter (pair) to a point on the curve
or surface C. First a parametric patch relatively close to C is generated and then
a parameter (pair) can be mapped to the according footpoint on C. Note that C
needs to be free of singularities in the area of interest.

In the remainder of this paper we present a numerical method for generating
an approximate rational parameterization of an algebraic surface. We combine
nonlinear minimization techniques with a region growing approach, in order to
obtain good initial solutions for the nonlinear minimization.

The paper is organized as follows. Section 2 describes the objective function.
Its main ingredient is a distance functional, measuring the deviation of the ra-
tional surface patch from the given algebraic surface. Section 3 discusses the
actual minimization procedure and the region growing process. Starting with a
small initial patch we alternate minimization and extrapolation steps to obtain
an approximation of maximal size subject to certain quality criteria. Various
examples are described in section 4. Finally we conclude this paper.

2 Rational Parameterization as Nonlinear Optimization

A parameterization of a given surface is generated by computing a (possibly
local) minimizer of an objective function of the form

S = I + ωJJ + ωLL + ωRR + ωEE (1)

among all rational surface patches of a given degree. The next section describes
the space of rational patches, while the different contributions to the objective
function will be explained in subsections 2.2–2.5.
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2.1 Preliminaries

Consider an algebraic surface F of degree d. It consists of all points satisfying
F (x, y, z) = 0, where F is a polynomial of total degree d in x, y and z with
coefficients gijk,

F (x, y, z) =
d∑

i=0

d−i∑
j=0

d−i−j∑
k=0

xiyjzkgijk. (2)

For reasons of numerical stability, F should be represented in Bernstein–
Bézier form. The techniques described below can be applied to any implicitly
defined surface, provided that the function F is C2.

We generate a rational surface patch P which approximates F . It is repre-
sented as

P : p(u, v) =
(

x(u, v)
w(u, v)

,
y(u, v)
w(u, v)

,
z(u, v)
w(u, v)

)T

(u, v) ∈ [0, 1] × [0, 1] .

The three numerators x(u, v), y(u, v), z(u, v) and the common denominator
w(u, v) are tensor–product polynomials of degree (m,n) in the parameters (u, v).
Using the Bernstein polynomials Bl

k(.), and homogeneous coordinates, we may
represent it as a tensor-product Bézier patch p∗ in �4 (cf. [10]),

P∗ : p∗(u, v) = (x(u, v), y(u, v), z(u, v), w(u, v))T

=
m,n∑
i,j=0

Bm
i (u)Bn

j (v)cij (u, v) ∈ [0, 1] × [0, 1] .

The control points cij consist of four coordinates cx
ij , cy

ij , cz
ij and cw

ij . Note
that a parameterization p(u, v) in �3 corresponds to a one dimensional space of
parameterizations p∗(u, v) in �4, since multiplying all control points cij with a
constant factor changes p∗(u, v), but the related parameterization p(u, v) remains
invariant.

2.2 Distance Measure

The main objective is to approximate F by a patch P. Hence, we need to measure
the approximation quality, which is given by the distance of the two surfaces.
As a measure for the approximation quality, we consider the integral

I =
∫ 1

0

∫ 1

0

F 2(p(u, v))
‖∇F (p(u, v))‖2

du dv, (3)

whose integrand is the so-called squared “Sampson distance” [16]. I is a positive
rational functional in the control points cij . A local minimum represents a local
best approximation of F by a patch P.

Unfortunately, simple minimization of I is a task that is not well posed. The
patch P is neither constrained in size nor position. Consequently, we obtain a



Approximate Rational Parameterization of Implicitly Defined Surfaces 437

local minimum for any patch P degenerating to a single point located on F .
This means (3) yields an infinite number of local minima. In order to obtain a
unique solution, additional constraints have to be introduced.

2.3 Constraining the Weights

As described in the previous section, multiplying all control points cij with a
constant factor leaves p(u, v) invariant. Hence, we have to introduce a normal-
ization in the linear space of the m × n homogeneous control points.

In addition, a point p(ũ, ṽ) with vanishing denominator (weight) w(ũ, ṽ) = 0
corresponds to a point at infinity, or to a base point (if the three numerators
vanish, too). Since we are only interested in regular patches p(u, v) without
points at infinity, we have to satisfy the side–condition w(u, v) �= 0.

Both requirements can be taken into account by introducing the auxiliary
term

J =
∫ 1

0

∫ 1

0

(w(u, v) − 1)K du dv,

where K is an even number K, in the objective function. (We chose K = 8.)
J is a non-negative functional that measures the deviation of the weight

coordinates cw
ij from 1. Let ωJ be a small positive weight factor. By adding

ωJJ to the objective function, we obtain a patch P close to F , with its weight
coordinates cw

ij being close to 1. This approach controls the weight coordinates
of the control points. By choosing the weight ω ‘sufficiently small’, points at
infinity (poles) can be avoided (see Section 3.3 for more information).

2.4 Controlling the Inner Geometry

Despite the additional term J , the minimization problem still does not have
a unique solution. For instance, shrinking a patch P will usually decrease the
values of I and J . Consequently, we have to constrain the size and shape of P.
For this purpose we use additional terms which are related to the inner geometry
of the surface patch, in the sense of differential geometry [13].

Let g11, g12 and g22 denote the first metric fundamental forms,

g11 = 〈pu, pu〉, g12 = 〈pu, pv〉, g22 = 〈pv, pv〉,

where pu = (∂/∂u) p(u, v) and pv = (∂/∂v) p(u, v) are the partial derivative
vectors and 〈·, ·〉 denotes the inner product. For any pair of positive constants
(l1, l2), the integral

L =
∫ 1

0

∫ 1

0

(g11 − l1)2 + (g22 − l2)2 du dv

measures the deviation of the length of the first derivatives pu and pv from
√

l1
and

√
l2.

We choose another small positive weight ωL and add the term ωLL to the
objective function. This leads to a more uniformly parameterized surface patch:
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in the limit ωL → ∞, the parameter lines are traced with the constant speed√
l1 and

√
l2.

The term L does not take the angle between the parameter lines into account.
This can be achieved by introducing the term

R =
∫ 1

0

∫ 1

0

g2
12 du dv .

It penalizes the deviation of the angle between the parameter lines of p(u, v) from
a right angle. By adding ωRR to the objective function (where ωR is another
non–negative constant), one obtains a patch that approximates the given implicit
surface and has almost orthogonal parameter lines. More precisely, in the limit
ωL, ωR → ∞, the surface patch becomes an isometric embedding of a rectangle
of size

√
l1 ×

√
l2.

Remark 1. Another functional, which has a similar effect to L and R, can be
obtained by considering the length of all tangent vectors at a point. If a linear
parameterization q maps the parameter domain [0, 1]2 into a rectangle with
lengths

√
l1 ×

√
l2, then the directional derivative vectors

|| d
dt

q(u0 + t
√

l2 cos(φ), v0 + t
√

l1 cos(φ))
∣∣∣∣
t=0

|| (4)

at all points (u0, v0) are unit vectors. Hence, for a general surface p, one might
consider the functional∫ 2π

0

(|| d
dt

p(u0 + t
√

l2 cos(φ), v0 + t
√

l1 cos(φ))||2 − 1)2dφ

= (2 + + 3
4g2

11l
2
2 − 2g11l2

3
4g2

22l
2
1 − 2g22l1 + 1

2g11g22l1l2 + g2
12l1l2)π.

(5)

As a potential advantage, this approach gives functionals which provide cer-
tain invariance properties with respect to transformations of the parameter do-
main. However, this may not be so important, since the space of functions which
we are using (tensor–product polynomials) does not have such invariance proper-
ties anyway. In contrast with this, the space of all polynomials of certain degree
would be invariant.

2.5 Controlling the Position

While the size and the inner geometry of the patch has now been constrained, its
position on the given surface F is still variable, i.e., the patch can still “float” on
the surface. We resolve this by pulling the points p(ui, vi) of one or more parame-
ter pairs (ui, vi) towards user– (or automatically) chosen positions Pi(px

i , py
i , pz

i ).
The sum of the squared Euclidean distances of the points p(ui, vi) and points Pi

is given by

E =
∑

i

‖ 1
w(ui, vi)

⎛
⎝x(ui, vi)

y(ui, vi)
z(ui, vi)

⎞
⎠ −

⎛
⎝px

i

py
i

pz
i

⎞
⎠ ‖2

2 (6)



Approximate Rational Parameterization of Implicitly Defined Surfaces 439

By adding ωEE to the objective function, where ωE is another non–negative
constant, the points p(ui, vi) will be tied to the points Pi on the surface. As a
consequence, the position of the resulting patch is approximately determined. In
the examples in section 4 we prescribe the position of the four corner points of
the parametric patch.

Note that specifying more than one triple (ui, vi, Pi) also affects the inner
geometry of the resulting patch. In this case one has to pay attention concerning
the term L, i.e., the values l1 and l2 need to be chosen suitable to prevent possible
conflicts in the constraints.

3 Finding a Solution

The objective function (1) is obtained as the weighted sum of the terms described
in the last section. It is a positive rational functional in the control points cij of
P. As a necessary criteria for a local minimum of S, the first partial derivatives
have to vanish. This leads to a system of M =4(n+1)(m+1)nonlinear equations

∂S

∂α
= 0 where α ∈ {cx

ij , c
y
ij , c

z
ij , c

w
ij , }i=0,...,m

j=0,...,n
. (7)

We solve it using Newton’s algorithm ([7]), which guarantees fast convergence,
provided that a good initial solution is available.

Alternatively, this can be seen as sequential quadratic programming, applied
to the problem S → min. In each step, the objective function is replaced with a
local quadratic approximation.

3.1 Computational Details

For each step of Newton’s algorithm we need to solve a system of linear equations
of size M × M . The elements of the according matrices are the second partial
derivatives of S,

∂2S

∂α∂β
where α, β ∈ {cx

ij , c
y
ij , c

z
ij , c

w
ij , }i=0,...,m

j=0,...,n
. (8)

In order to generate this system, we need to compute 1
2M(M + 1) integrals for

each of the terms I, J , L, R, and E. For instance, related to I, we have to
evaluate the integrals

∫ 1

0

∫ 1

0

∂2

∂α∂β

F 2(p(u, v))
‖∇F (p(u, v))‖2

du dv ,

Though possible, the exact evaluation of the integrals is quite expensive. A simple
alternative is to use Gaussian quadrature ([7]). As the integrands related to I and
E are rational expressions, Gaussian quadrature will yield only approximations
of these integrals. The integrals related to J , L, and R will be evaluated exactly,
provided that the order of the numerical quadrature is sufficiently high.
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Remark 2. In order to facilitate the evaluation of integrals, one may also use
polynomial alternatives to the rational integrands in I and E. According to our
numerical experience, however, the rational functionals give better results.

3.2 Choice of the Initial Solution, Extrapolation and Iteration

Convergence. The convergence of any Newton–type method depends strongly
on the choice of a suitable initial solution. If the initial solution is sufficiently
close to the minimum, then the algorithm converges quadratically.

In our situation, we may construct a good initial solution by a geometric
approach. If we start with a sufficiently small planar patch which is part of the
tangent plane to F at a point, then the iteration process can be expected to
converge.

Patch Growing. Clearly, starting with a small planar patch we will obtain
only a small resulting patch. Hence, we consider an iterative process to generate
larger patches.

We start with a small patch, which has been obtained after several iterations
of the Newton method. This patch is extrapolated in order to obtain a larger
patch, which is then used as starting patch for a new cycle of Newton’s algorithm.
The extrapolation is restricted by the distance error, by the weights and by the
inner geometry of the obtained bigger patch. This can be expressed by certain
thresholds for the resulting value of the objective function.

The feasible values of the extrapolation parameters can be found by a simple
bisection procedure.

Note that after each extrapolation step we need to reassign the values l1,
l2 and the points Pi. The new locations of the Pi (typically representing the
expected vertices) can be found by projecting the vertices of the extrapolated
patch back onto the surface.

Termination Criteria. As termination criteria for both Newton and extrap-
olation steps we use the properties of the current patch, which are expressed
by the values of the various contributions to the objective function. The overall
process is controlled by user defined global limits and thresholds for single steps.

3.3 Adaptation of the Objective Function

Automatic Choice of Points and Lengths. The quantities l1, l2 and the
points Pi specify the position of the patch and the expected parametric speed√

l1 and
√

l2 of the parameter lines. These values have to comply with the cur-
rent patch in the iteration process, in order to avoid chaotic behaviour. In our
implementation we choose

√
l1 and

√
l2 to be equal to the lengths of the current

patch. The points Pi are chosen as the footpoints of the points p(ui, vi) on F ,
where p is the current patch.

Automatic Adaptation of the Weights. The sum S and the resulting patch
are affected crucially by the choice of the weights ωJ , ωL, ωR and ωE . Of course,
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Table 1. Examples: degrees, computing time, # steps

Surface d m,n Time Extrapolation Newton
(sec.) steps steps

Sphere 2 2,2 1.1 14 46
Minimal Surface 12 3,3 32 10 50
Self-intersecting 8 3,3 10 18 57
Whitney Umbrella 3 3,3 14.91 18 113

Table 2. Values of the weights

ωJ ωL ωR ωE

start 100 1 1 10−2

lower threshold 10−1 10−5 10−5 10−4

optimal values are not known a priori. Our implementation bypasses this prob-
lem by using an automatic adjustment of the weights according to the current
contributions to the objective function. During the first steps of the algorithm,
higher weights may be necessary in order to stabilize the algorithm, while they
may later spoil the approximation quality.

Our main objective is to minimize the distance part I. The other terms are
considered as secondary objectives. Let us assume that during the algorithm one
of the values ωJJ , ωLL, ωRR or ωEE is getting larger than I. This means that
we spend most of the effort on minimizing that term instead of I. By lowering
the corresponding weight the focus is shifted again to the Sampson distance.

Our implementation uses initial values for the weights ωJ , ωL, ωR and ωE

and additional lower thresholds. A weight ωT is reduced if ωT T gets larger than
I, and ωT is larger than the threshold. This approach guarantees a minimal
influence of each term.

4 Examples

In order to demonstrate the capabilities and possible applications of the algorithm,
we have chosen four examples ranging from very simple to quite challenging.

A summary of the computation time and the performed extrapolation and
Newton steps is given in Table 1. Note that these examples all have been com-
puted with the same parameters. The starting values and lower bounds for the
weights are shown in Table 2. The upper bound for the total error S was 10−6.
In all figures, the size of the bounding cube is 1. In all cases, the algorithm was
stable and we obtained satisfying results.

4.1 The Sphere

Our first example is the approximation of a sphere by a rational biquadratic
patch. Figure 1 shows the planar starting patch (left), the approximation after
the first round of Newton steps (center), and the final approximation (right). Our
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Fig. 1. Biquadratic patch approximating a sphere
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Fig. 2. Contributions to the objective function during the iteration steps

method generates an approximating patch whose parameter lines are nearly iso-
parametric and approximately orthogonal. The distribution of the parameter
lines is visualized by the checkerboard pattern on the surface.

These properties can be enforced by increasing the (lower bounds of the)
corresponding weights. On the other hand, the resulting patch will then stay
smaller. Figure 2 displays the graphs of the total error S, the approximation error
I, and the position error E during the 46 Newton steps. The 14 extrapolation
steps correspond to the small peaks. They are also marked by small plus signs
on top of the three graphs.

Finally, Figure 3 shows the squared Sampson distance of the final patch
with respect to the implicitly given sphere as graph of the domain [0, 1]2. Due
to the terms controlling the inner geometry, which tend to flatten the surface,
the maximal error is present at the four vertices of the patch. Note that the
approximation is highly accurate, since the squared Sampson distance (which is
a good approximation of the squared distance) is in the order of 10−5, while the
radius of the sphere equals 1.
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Fig. 3. The Sampson Distance of the final patch

Fig. 4. Parameterization of an algebraic approximation of a minimal surface

4.2 An Approximate Minimal Surface

The second example, which is shown in Figure 4, is the approximation of a
minimal surface taken from the Costa-Hoffman-Meeks surface family (see [6, 9]).
Note that the upper part of the surface has been cut away, in order to get a
better insight into the structure of the surface.

An exact rational parameterization cannot be found for this surface, since its
topological genus is 1. Using our numerical method we can still generate finite
patches approximating the surface with a high accuracy. Similar to the sphere
case, the figure shows the initial solution and the final result.
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4.3 Surfaces with Singularities

The remaining two examples (Figures 5 and 6) demonstrate that the method is
able to handle self-intersections. We start with a small patch on one side of the
self-intersection curve and finally get an approximation that ‘dives through’ the
singularity and continues on the correct branch of the surface.

Once again, the figures shows the initial solution and the final result.

Fig. 5. Self-intersecting surface of degree 8

Fig. 6. Whitney Umbrella
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5 Concluding Remarks

We presented a method for the approximation of an implicitly defined surface
by a rational patch. The main ingredient is the minimization of the Sampson
distance of the two surfaces, while additional side constraints are used to deter-
mine the inner geometry and the position of the parametric patch. The objective
functional is minimized using of Newton’s algorithm and Gaussian quadrature.
In order to maintain a good initial solution, we alternate extrapolation steps and
approximation steps, producing surface patches of optimal size, according to the
specified criteria.

As a matter of future research, we plan to consider the problem of covering
the whole implicitly defined surface. This can be achieved either by collecting
several patches, which have been obtained starting from several seed points, or
by parameterizing the surface not with a single patch, but with a spline surface.
In order to use the latter approach, the extrapolation step should be modified
so as to permit adding new segments to the spline surface.

The possible applications of the parameterization technique include the con-
struction of rational surface patches from unorganized point data. As a first step,
one may fit an algebraic spline surface to these data, e.g., using techniques as in
[11]. In a second step, the implicitly defined surface can then be parameterized,
using the technique described in this paper.

While other methods either have to address the parameterization problem
[10] or depend on an initial solution [15], the combination of implicit fitting and
approximate parameterization may help to circumvent both problems. Moreover,
it allows for fully exploiting the weights of the rational surface representation.
This can be highly useful for generating exact descriptions of many important
classes of surfaces, such as natural quadrics. In addition, the use of the additional
term controlling the inner geometry may – in combination with the error term –
help to generate a segmentation of the surface.

Preliminary results are shown in Figure 7. We start from a point cloud with
11, 366 points, which represents a cylinder with a cylindrical hole. The point
cloud is the input data for the approximate implicitization algorithm described
in [19]. The result, shown in figure 7 (middle), is a piecewise algebraic surface,

Fig. 7. Surface Reconstruction: Point cloud (left), piecewise implicit approximation

(middle), parametric approximation (right)
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which consists of 214 subpatches of tri-degree 3. One peculiar disadvantage of
this implicit approximation is that it introduces additional branches.

We use the implicit approximation as input for the approximate rational
parameterization algorithm described in this paper. Figure 7 (right) shows the
results for three different starting patches on different sides of the object. As
a byproduct of the procedure, we may identify the cylinder, the hole and the
planar top. (Clearly, similar results can be obtained using existing techniques
for automatic segmentation, which are often based on the analysis of the surface
normals [14].) Note that the algorithm stops from growing the patches near
regions of high curvature. This is due to the terms controlling the inner geometry.
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19. Wurm E., Jü ttler B.: Approximate Implicitization via Curve Fitting, in Sympo-
sium on Geometry Processing (L. Kobbelt, P. Schröder, H. Hoppe, eds.), Euro-
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