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Given two planar curves, their convolution curve is defined as the
set of all vector sums generated by all pairs of curve points which
have the same curve normal direction. The Minkowski sum of two
planar objects is closely related to the convolution curve of the two
object boundary curves. That is, the convolution curve is a super-
set of the Minkowski sum boundary. By eliminating all redundant
parts in the convolution curve, one can generate the Minkowski
sum boundary. The Minkowski sum can be used in various im-
portant geometric computations, especially for collision detection
among planar curved objects. Unfortunately, the convolution curve
of two rational curves is not rational, in general. Therefore, in prac-
tice, one needs to approximate the convolution curves with poly-
nomial/rational curves. Conventional approximation methods of
convolution curves typically use piecewise linear approximations,
which is not acceptable in many CAD systems due to data pro-
liferation. In this paper, we generalize conventional approximation
techniques of offset curves and develop several new methods for ap-
proximating convolution curves. Moreover, we introduce efficient
methods to estimate the error in convolution curve approxima-
tion. This paper also discusses various other important issues in the
boundary construction of the Minkowski sum. @ 1998 Academic Press

Key Words: convolution curve; offset curve; Minkowski sum;
C-space obstacle; sweeping; curve approximation; Bézier curve;
B-spline curve.

1. INTRODUCTION

their Minkowski sumO; & O is defined as the set of all vector
sums generated by all pairs of pointsdaandO,, respectively:

0,@ 0, ={a+blac Oy, be Oy 1)

In Fig. 1, the gray area of each object represents the object ir
terior. The Minkowski sum of two planar objects considers all
points in the interiors as well as on the boundaries of the twc
objects. In this paper, for the sake of computational efficiency
and representational compactness, we are more concerned w
constructing the boundary of the Minkowski sum.

Let O; andO; be two planar curved objects which are bounded
by the planar curve€; andC,, respectively. The problem of
computing the Minkowski sum boundary, denoteddé®, &
O,), can be transformed into the problem of computing the curve
convolution ofC; andC,, denoted a€; * C, [3]. In the convo-
lution operation, the vector sums are applied only to the pairs o
curve points that have the same curve normal direction:

DerinmioN 1.1, LetCy(t) = (X1(t), ya(t)) andCy(s) = (xa(s),
Y2(s)) be two planar regular parametric curves. The convolution
curveC; x C, is defined by

Convolution is a classic operation which has been used agfy
tool for computing collision-free paths in robot motion planning

[3, 19, 27, 33]. Convolution is closely related to the notion of

Minkowski sumGiven two planar curved object3; and Oy,

(C1 % Co)(t) = Ca(t) + Ca(s(t)), 2

where
Ci(t) 1 C4(s(t)) 3)
(C1(D), Cy(s(V)) > O, (4)

for a reparametrizatios = s(t).

When bothO; and O, are convex objects, the convolution

1 The research was supported in part by the Korean Ministry of Science and . . .
Technology under Grants 96-NS-01-05-A-02-A and 96-NS-01-05-A-02-B &HIVEC1 * C2 is exactly the same as the Minkowski sum bound-

STEP 2000, and by KOSEF (Korea Science and Engineering Foundation) undy 9(O1 © Oy) (see Fig. 1). Howevef (O, © O,) is a subset of
Grant 96-0100-01-01-2. C1 % C, in general [3]. Thus, the convolution cuné * C,
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FIG. 1. Minkowski sumO; @ O, of two planar convex object®; and O;.

<

C

Cy
may have some redundant parts which do not contribute to tt
Minkowski sum boundary (see Figs. 2(c) and 2(d)). To construc
9(01 & O,), we need to follow two steps: (i) compute the con-
volution curveC; * Cy, and (i) eliminate the redundant parts of
C; * C, which do not contribute t8(O; & O,).

The convolution curveC; x C, is an envelope curve which
is obtained by sweeping one cur@e (with a fixed orientation)
along the other curv€; [3]. The constant radius offset curve is
a special case of convolution curve in which the swept curveasientation) along a skeleton curve [1, 15, 16]. The Minkowski
restricted to being a circle of a fixed radiusFigure 3 shows sum can be used in shape transformation (i.e., metamorphos
the offset and convolution curves of planar curves. In Fig. 3(a); morphing) between two objects [24]. Figure 6 shows such ar
an offset curve is obtained by sweeping a cirtClealong the example of shape transformation between two planar objects
other curveC; and taking only the outer envelope curve. IIThe intermediate shapes are the Minkowski sums of the charac
Fig. 3(b), a convolution curve is generated by sweeping of®r shapes “T” and “M” while scaling the T shape from 100%
curveC, along the other curv€; and similarly taking the outer to 0% and the M shape from 0% to 100%, simultaneously.
envelope curve. Most CAD/CAM systems today represent curves and sur-

The Minkowski sum has been used as an important tool ftaices in polynomial/rational spline forms as#&ér or NURBS
computing collision-free paths in robot motion planning [3, 19nonuniform rational B-spline) curves and surfaces. Polyno-
27, 33]. Figure 4(a) shows the Minkowski su®y @& O, of mial/rational curves and surfaces have many advantages (in ret
two planar curved object®; andO,. In Fig. 4(b), we compute dering and geometric computations) over other representatio
the Minkowski sumO; @ (—O,), where—O; is the symmetric methods such as implicit curves and surfaces [11]. Therefore
object of O, with respect to the local reference point (which ignany conventional geometric modeling operations have bee
located at the origin). There is no collision betweg@nandO, designed to deal with polynomial/rational curves and surfaces.
as long as the reference point©f does not penetrat{ O; ® Given two planar algebraic curves, their exact convolution
(—05)) (see Fig. 4(c)). The objedd; @ (—O,) is called the curve is also algebraic. Unfortunately, the convolution curve is
configuration-spacéC-spacé obstacleof O; with respect to not polynomial/rational, in general. Moreover, the convolution
the moving objecDs,. curve has a high algebraic degree. For example, the exact offst

The Minkowski sum has many other applications. In Fig. %a special case of the convolution) of a cubezr curve has an
an outline font is designed by sweeping an ellipse (with a fixedgebraic degree of 10 [14]. These undesirable properties hav

FIG. 3. Offset and convolution curves: (a) offset and (b) convolution.
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FIG.2. Minkowski sumO; @ O, of two planar object®©; andO,: (a) convex objec®; bounded byC1, (b) nonconvex objedd, bounded byC,, (c) convolution
curveCs * Cp, and (d) the Minkowski sun®; & O;.
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FIG. 4. Minkowski sum andC-spaceobstacle.

led offset and convolution research to develop various approgbmposition technique [8, 11, 13]. However, Eq. (5) may nof
mation techniques that generate low degree polynomial/ratiohalve a unique rational solution sft) when the curve,(s) has

curves [10]. degree higher than two.
Consider Eg. (3) which can be rewritten as follows: A simple way of approximating the convolution cur@; (x
C,)(t) with a rational curve is to approximate either (i) the
Yo(S(t))x1(t) — x5(s(t))y;(t) = 0. (5) curveCy(s) by a quadratic polynomial curve [30, 31], or (ii)
the reparametrizatios(t) by a rational function [31]. Leet al.
When the curveC,(s) is a quadratic polynomial curve, [30] applied the first approach to the planar curve offset probler
in which the curveC,(s) is an exact circle. Note that the circle
Co(S) = (%2(5), Y2(s)) = (@ + bs+ ¢, d2 + es+ f), can be represented exactly by a rational quadratic curve, bl

no polynomial curve can represent an exact circle. Therefore
Leeet al.[30] approximated the offset circle by a sequence of
guadratic polynomial Bzier curves and approximated the off-
/ Sy set curve by computing the convolution curves of the given bas
(20ds(t) +€)x (1) — ast) + byt =0, curve and the Bzier curves approximating the offset circle. Lee
et al.[31] suggested convolution curve approximation method:
based on the two approaches (i) and (ii) above and compare
their experimental results.
s(t) = by}(t) —ex(t) . In Section 4, the methods of Lest al. [31] are classified
2dx(t) — 2ay(t) according to approaches based on (i) quadratic curve appro»
) ) ) mation, (ii) reparametrization, and (iii) tangent field matching.
When the curveC,(t) is rational, the convolution curveCq +  gection 4 also presents other methods corresponding to a
C,)(t) can be computed as a rational curve using & symbofit,aches based on (iv) control polygon and (v) interpolation
Elberet al.[10] surveyed conventional offset curve approxima-
tion methods and made detailed (qualitative and quantitative
comparisons of them. The approaches of Section 4 are gener
izations of similar approaches in the offset curve approximatiot
methods surveyed and compared in Eleieal. [10].
Conventional convolution curve approximation methods us
piecewise linear approximations to represent the convolutio
curves (see Section 2), which may not be acceptable in mar
CAD systems due to data proliferation. Based on generalizatior
of conventional offset curve approximation methods, all the con
volution curve approximation methods presented in this pape
approximate the convolution curves with polynomial/rational
FIG.5. Outline font generation using the Minkowski sum. curves. Each of our methods also provides appropriate err

Eqg. (5) becomes

which produces a unique solution fgt); namely, we have
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FIG. 6. Shape transformation by a sequence of Minkowski sums.

analysis mechanism(s). (No previous method suggested a wdych may not be acceptable in many CAD systems due tc
to measure approximation error.) data proliferation. Moreover, error analysis has not been seri
This paper also discusses various other important issueusly considered in the conventional approximation methods
the construction of the Minkowski sum boundary; e.g., a confhe Minkowski sum boundary construction requires an algo-
patible subdivision of input curves in a preprocessing step, thithm which can determine the global arrangement of convolu-
approximation of convolution curves with polynomial/rationalion curve segments in the plane; after that, it must eliminate
curves, and the extraction of the Minkowski sum boundary froail the redundant parts which lie in the Minkowski sum interior.
the planar graph of convolution curves. For the elimination dfnfortunately, there has been no known implemented algorithr
redundant parts in untrimmed convolution curves, we demathat can determine the curve arrangement in a robust way. /
strate a method based on a plane sweep algorithm [34] and applysonable approximate solution may be based on using polyc
the algorithm to piecewise linear approximations of the comnal approximation of the convolution curves. These important
volution curves. (There is no known implemented algorithissues have not been thoroughly considered in the previous wor}
which can determine the arrangement of planar curve segmes present more details in the following subsections. The latel
robustly; therefore, we use a robust algorithm that can determections of this paper suggest some (partial) solutions to remed
the arrangement of approximating line segments.) Experimerdahwbacks of the previous work.
results of this new trimming algorithm are promising.
The rest of this paper is organized as follows. In Section 2, 2.1. The Minkowski Sum Computation
We TEVIEW previous W.Ork for th.e Mmkowslg sum and convo- Lozano-Rrez [32, 33] used the Minkowski sum operation to
lution curve computation. Section 3 describes a general alq:o—
) . . . . construct the C-space obstacles for polygonal/polyhedra
rithm for constructing the Minkowski sum boundary. In Section, . o . S
. quects. To simplify the computation, each nonconvex object is
4, we present several new methods that approximate convolu: ~ "™ ) . . :
subdivided into convex objects and a convex Minkowski sum

tion curves with polynomial/rational curves. Detailed qualitative X .
oy / g computed for each pair of convex objects. After that, the

and quantitative comparisons of these approximation methc'ias : . : . .
. ; . : . Minkowski sum of the original objects is represented as a union
are made in Section 5. In Section 6, we consider how to elimiz

. .0f all these convex Minkowski sums. When the objedtsand
nate redundant parts of convolution curves for the constructi

of the Minkowski sum boundary. Some interesting experimenta are subd|y|ded inten and_n convex Objethl*i.(l == m)
2 . . . ; dOy (1< j <n), respectively, the resulting Minkowski sum

results are also demonstrated in this section. Finally, in Sectio '@ O i a Union ofnnconvex Minkowski SUms.Jx . _

we conclude this paper and suggest further research problems.” ~2 SJisi<m 1<j<n

The implementation of all algorithms and comparisons pre-l’i ® 0, the representation of which requires atI@glnn)
sented in this paper are based on the IRIT solid modeling libr edges/faces. Nevertheless, the number of edges/facesinthe po

agﬁ}énallpolyhedral boundad(O; & O,) may end up to be only
(31 a small fraction ofO(mn). Moreover, the convex decomposi-
. , posi
tion can be applied to polygonal/polyhedral objects only. When
2. PREVIOUS WORK a nonconvex curved object has a concave edge/face, it is im
possible to decompose the object into a finite union of convex
In spite of the paramount importance of the Minkowski surabjects. For handling curved objects as well as improving spac
operation in practice, conventional convolution curve compefficiency, it is necessary to develop an algorithm which can
tation methods have many limitations. Exact methods [3, 1&ompute the Minkowski sum boundary without using the con-
27] generate convolution curves which are algebraic/analytiex decomposition of input objects.
curves; however, they are not rational, in general. Approxima-Guibaset al.[19] suggested such an algorithm for polygonal
tion methods [1, 25, 29] generate polygonal approximationshjectsinthe plane. They investigated some important propertie



140 LEE, KIM, AND ELBER

of the planar graph of convolution edges. The graph is compogation time and the resulting curve/surface equations may hay
of closed loop(s) which may self-intersect; that is, there is moany redundant components. Therefore, the convolution curve
dangling convolution edge in the graph. The planar convolaurfaces must be trimmed to represent only the portions of cury
tion graph subdivides the plane into many disjoint regions. Eashgments and surface patches which appear on the Minkows
region has a winding number that is defined by the tracing of allm boundary. This trimming procedure is nontrivial for implicit
closed loops along appropriate directions. The Minkowski suaurves/surfaces especially when they have high degree, which
boundary is defined as the set of convolution edges which @mneeed the case for convolution curves/surfaces. Consequent
adjacent to a region with winding number zero. An importarthe convolution curves/surfaces must be approximated by par
problem is how to define the directions of convolution edges seetric curve segments and surface patches for further constru
that each closed loop has a well-defined direction. However, thiisn of the Minkowski sum boundary. This paper presents sev
problem has not been seriously considered, yet. Moreover, gral methods to approximate the convolution curves with plang
winding number classification seems not to work properly fgrolynomial/rational curve segments.

the detection of the Minkowski sum boundary when an input

object has small interior holes. In this paper, we consider two 2.2. Exact Convolution Curve Computation

planar curved objects and construct their convolution graph as g;posh [15] demonstrated that Eq. (5) has a closed-form solt

union of closed loops. Each convolution edge has a well-defingg, iy some special cases. One such case is shown in the f
direction and each convolution loop also has a well-defined Oré)Wing example:

entation whichis compatible with the directions of its component

convolution edges' ExampPLE 2.1. LetCl(t) and CQ(S) be two ellipses defined
Ghosh [16-18] presented in great detail the concepts, aldd-

rithms, and data structures that support the Minkowski sum

and decomposition for polygonal/polyhedral objects. Assumindg-1(t) = (acost, bsint) and Cx(s) = (pcoss, gsins). (6)

exact computation of line/line, plane/line, and plane/plane inter-

sections, the Minkowski operations can be implemented bad8dhis case, Eq. (5) is represented as follows:

on the algorithms presented in Ghosh [16—18]. Rational arith- ) )

metic can be used to support such exact computation. How- aqcosssint = bpsinscost. @)

ever, when we use floating point arithmetic (which introduces ) L

numerical errors), it is nontrivial to implement Ghosh’s aIgoWe have two solutions for the reparametrizatsgr):

rithms robustly. Moreover, in the curved case, it is impossible to

support exact computation of the curve/curve, curve/surface, anﬁ‘(t) = arctanktant) and s(t) = = + arctanktant), (8)

Therefore there are sl many challonging problens hat migjeTek = a0/0p. Thereare two possibl candidatesTas()

be resolved for the realization of the very important Minkowski tare reparametrized s(t) andsy(t), respectively:

operations of Ghosh [16—18] in practical situations. That is, we

need to develop robust and efficient algorithms that can suppot,(s,(t)) = (

the Minkowski operations on freeform curved objects, while

using floating point computation. In this paper, we consider

the Minkowski sum of planar curved objects. The Minkowsi@nd

decomposition can be implemented in a similar way. However, (

p cost gksint
: ; _ S C))
Vk2sirtt + cot Vk2sirt + codt

the extension to solid objects (bounded by freeform surfaces)ds (s,(t)) =
far beyond the scope of this paper.

Bajaj and Kim [3, 4] discussed various important issues in the o N
Minkowski sum computation for planar curved objects boundéd€arly, only the curves (s, (1)) satisfies the condition of Eq. (4),
by algebraic curves and also that for convex solid objeci@mely,
bounded by algebraic surfaces. The most important steps in the , ,

Minkowski sum computation include a compatible sub- (Ca(t). Co(s1(D))) > O.
division of input curves/surfaces, the generation of convoly- . L )
tion curves/surfaces, and the elimination of redundant par Shus, the convolution curveey « Co)(t) is given as follows:
The convolution curves/surfaces are represented by simultane-
ous systems of polynomial equations. Some auxiliary variables  (C, x C,)(t) = <a cost + poost ;
are used in the simultaneous polynomial equations. Implicit Vk2sir?t + cogt
curve/surface equations can be obtained by eliminating the )

12)

—pcost —gksint
: , : . (10)
VK2sirPt + co2t vkZsirt + cot

(11)

auxiliary variables using resultant methods. However, the elimi- bsint + gksint
nation process takes a considerable amount of symbolic compu- Vk2sir’t + cogt
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the convolution curve/surface trimming is nontrivial for implicit
(Cy % Ca)(2) curves/surfaces.

Kaul and Farouki [25] took a similar approach to that of Bajaj
and Kim [3]. They have more detailed and elaborate discussion
on various importantissues in the construction of the Minkowski
sum boundary.

Kohlerand Spreng [27] considered special casesinwhich con
volution curves can be represented exactly, using radicals. The
suggested some numerical techniques to speed up the compa
ble curve subdivision and convolution curve computation. The
degree ofC,(s) is restricted to be lower than or equal to 5.
Then, one can compute the exact closed-form solutiorsét pf
in Eq. (5) by using radical expressions. However, the solutions
are not rational, in general. Furthermore, one has to determin
the correct solution from at most four possible candidateé pf

A

FIG.T. Convuion Gy () o lises () = (260 3500318 5.3 pporosimation ethods for Convolution Curve
Lee and Kim [29] suggested a method for approximating con-
volution curves with polygonal curves. In this method, each in-
Figure 7 shows the convolution curve of two ellipses that {gut curve is approximated by a sequence of discrete points (thu:
computed by Eq. (12). Ghosh [15] also considered other spedi@ming a polygon) before the convolution computation. For a
cases such as ellipse—cubic and special quartic—cubic convgiven set of evenly distributed normal directions, which is ob-
tion curves. In these special cases, the exact convolution curtegeed by a regular subdivision of the unit circle, Lee and Kim
can be computed analytically; however, they are not rational,[29] approximated each planar algebraic curve segment by
general. sequence of curve points. At each point, the curve gradient cor
Bajaj and Kim [3, 4] showed that, when input curves/surfacessponds to one of the predefined normal directions (see Fig. 8
are given as implicit or parametric curves/surfaces, their con-This curve approximation method is call&hussian app-
volution curves/surfaces can be represented exactly as implroikimation (GAP) and supports various primitive geometric
algebraic curves/surfaces. However, the resulting algebraijoerations such as offset, convolution, common tangent, and dis
degrees are too high to be useful in practice [3]. Moreovdance computations [29]. An approximated convolution curve is

47,
(a) (b)
y v A
ant 2/ D/
(c)

(d)

FIG. 8. Gaussian approximations (GAP) of a cubic B-spline curve: (a) the original curve, (b) GAP corresponding to the 32 subdivision of the unit circle
GAP to the 64 subdivision, and (d) GAP to the 128 subdivision.
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y That is, for a sampled sequenigg of the parametetr of Cy(t),
they computed the correspondifg} by solving the following

equation:
(Cl * Cz)

Ya(8)x1(t) — Xa(s)ys(t) = O. (13)

We may interpolate the discrete valuesdf = 1, ..., n) using
a polynomial/rational functios(t) so thats(tj)) = s, for each
i. The resulting polynomial/rational curv@;(t) + Cy(s(t)) is
an approximation of the convolution curv€;(x C,)(t). This
approximation method belongs to the reparametrization-base
%)% ¢ approach of convolution curve approximation methods to b

St G discussed in Section 4.

3. CONSTRUCTION ALGORITHM
Cy FOR THE MINKOWSKI SUM

In this section, we review some basic concepts and present :
algorithm for the boundary construction of the Minkowski sum
of planar curved objects. Later sections will describe in more
detail methods of computing/approximating convolution curve:s

FIG.9. Gaussian approximations (GAP) of two ellipg@sandC; are gen- based on the materials presented in this section.
erated based on a predefined circle subdivi§bn(C; * Cy) is the convolution

curve of two ellipses. 3.1. Planar Object, Boundary, and Normal

We start by defining the boundary of a planar curved object:
computed as the sequence of vector sums generated by the pairs

of curve approximation points corresponding to the same normaPerFinmion 3.1, The boundary of a planar curved objéxt
direction (see Fig. 9). Since this approach is based on a linglenoted a8 O, is represented by a connected sequence of piec
approximation, a large number of discrete points is generaw@ise smooth curve segments and their end points;

to approximate a convolution curve with high precision. In this
paper, we propose several methods that approximate convolu- 90 = { Po, Co, P1, C1, ..., Paog, Cnfl}ﬂ (14)

tion curves with polynomial/r_atiqnal spline curves. As a resul\;\,,herepI andProgi+1.n are two end points of the curve segment
we can reduce output data significantly. Ci. We assume that the object may have cusps at veifficady.

Ahn et al.[1] considered the more general problem of oMy, ¢ none of the curve segm@ithas singularity except at the
puting the boundary curve of a general sweep in the plane. In ve end points.

general sweep, the sweeping object changes its shape and orien-

tation dynamically while moving along a given trajectory. The Figure 10 shows examples of planar curved objects. Obje

convolution curve computation is a special case of general swe@pconsists of three boundary curve segments@ptias only

boundary construction in which the sweeping object is restrictege boundary curve segment.

to a fixed shape and orientation. Abnal.[1] approximated the

general sweep boundary curve with line segments. Ghosh [15]

approximated the general sweep boundary with analytic curve:

under the assumption that the shape change of the moving obje

is negligible compared with its translational motion along the “

trajectory curve. The solution curves are not rational, in general ™

This paper presents several methods of approximating convolu

tion curves with polynomial/rational curves. However, it is non-

trivial to extend the methods of Ahet al. [1] and Ghosh [15]

so that one can approximate the general sweep boundary wit A

polynomial/rational curves. Therefore, this problem remains an e

important open problem for future work. Ciro
Kaul and Farouki [25] suggested a piecewise linear approx-

imation method for convolution curves. They generated a se- Pis

guence of discrete points along the convolution curve on the

fly, by computing Eq. (5) for two compatible curve segments. FIG.10. Examples of planar curved objects.

Ch2

Capo
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Inthe convolution computation, each vert@may be consid- whereS!' is the unit circle. For a verteR, let N;_1(tj_1.1) and
ered as aedgeof the object, which has length zero but has corn; (t; o) be the unit normal vectors & _1(t),t_10 <t <tj_11,
tinuously changing normal vectors. Later, each curve segmeid C;(t), t o <t <t; ;, respectively, at the common vertex
is further subdivided int@onvexand concavecurve segments P (= C;_y(t_11) = Ci(tio)). The Gauss mapV(P) of a con-
by inserting all inflection points as extra vertices (see Sectig@ax (resp., concave) vertdX is defined as the unit circular arc
3.2). The convexity of each edge (curve or vertex) is defined @ich connectsN;_1(t_11) and Ni(ti o) in counterclockwise
follows: (resp., clockwise) direction on the unit circ.

Derinimion 3.2, Let C(t)=(x(t), y(t)),to<t<t;, be a Adifferent choice of orientation (i.e., counterclockwise/clock-
planar regular curve segment. wise direction) for the Gauss maps of convex/concave vertice:
implies that the Gauss maps generate unit circular arcs of lengt
C(t) is an inflection points x/(t)y”(t) — x"(t)y'(t) = 0, less than or equal te. In Fig. 10,P; o and Py 1 are convex and
(15) concave vertices, respectively. The dashed circular arcs represe
) the Gauss maps of the vertex edges. Note that the arc direction ¢
C(t), (to =t <t), is convexe> X'()y"(t) = X"(t)Y'(t) > O, Ar(Py ) (resp. N (PL1)) is counterclockwise (resp., clockwise).
forto <t <ti, (16) Finally, we define theompatible pairof edges:

: I s\ 1 (e\n DeriniTion 3.5, Lete; ande, be two edges 08O, andd O,,
C(), (tp <t <ty), isconcaves X'(t t) — x"()y'(t 0, X o -

O =t=t) Oy Oy© < respectively. Two edges ande, arecompatibleif and only if
forto <t <t;. (A7) N(e) = N(e).

The convexity of an edge is not important in the definition of
compatibility. Note that an edge is either a curve segment or &
vertex.

Let P, be avertex, and assume that 0 is an arbitrarily small
number.

P, is convexs B (P) N O is smaller than a half 0B, (P,),
(18)

3.2. Compatible Subdivision

For the sake of simplicity, we first assume that two input
P is concaves P is nonconvex (19) objects,0; and O,, are bounded by smooth curve(t) and
Ca(s), respectively. That iz, (t) = (x¢(t), y1(t)), to <t <t;,and
whereB,(P,) is ane-ball with center aP, : B.(P) = {P|||[P — Ca(s) =(X2(8), y2(8)), S0 < S < s, are closed regular curves, and
Pl < e€}. they haveG-continuity atCy(tp) = C1(t1) andCy(sp) = Co(S1),
respectively. Then the object®; and O, have no cusp on their
~ Weassume thateach curve segn@(p}, forto <t <t1,hasno  poyndaries. In this subsection, we consider how to subdivide th
inflection point in the curve interior, i.ex/(t)y"(t) —x"(O)Y'(t) o boundary curve€;(t) and C,(s) into compatible subseg-
# 0, fortg <t <t;. Thenthe curve_segme_@(t_) is eitherconvex ments byhodograph subdivisioas shown in Fig. 11.
or concave. We need. the following definition to introduce the | ot Cu(@), (0<i <m), and C,(5). (0< j <), be all the
Gauss mapf an edge: inflection points ofCy(t) andCx(s), respectively. The inflection
points can be computed based on Definition 3.2 using symbolic
and numeric computation tools [8]. By inserting each inflection
point as a new vertex, the curve is subdivided into convex anc

Derinimion 3.3, For a curve segme@(t) = (x(t), y(t)), to
<t <ty, theunit normal vector fielobf C(t) is defined by

(Y (1), —x'(1) concave subsegments. For each in_flection p@aft) (resp.,
Nit)= 22—~ c S to<t<ty, (20) Ca(5))), the rayOC; (i) (resp.,0C,(S;)) emanating from the
VX2 + y'(t)? origin and passing through the po®i(t;) (resp. C4(S;)) is tan-
gent to the hodograp@; (t) (resp.,C5(5)) (see Eq. 15). The set
whereSt is the unit circle. of rays

We assume that the boundary curve segments of a planar —— = — = L
curved object are oriented in counterclockwise order. That is, {OCi(t). OCy(s)). OC;(to). OCy(%0) [0 < i <.
the normal vectors of a planar curve are pointing to the right- 0<j< ﬁ} (22)
hand side of the curve advancing direction.
constitutes a set of sector-form regidRs (0 <k <), which is
a partition of the 2D plan&? (see Fig. 11(b)).

After computing all the inflection points, the hodograghit)
and C5(s) are subdivided into piecewise curves;(t), (0<
NEC)={N(t) [to <t <t} c S, (21) i <m), andCj (s), (0< j <n), at the intersection points with

Dernimion 3.4, TheGauss mapV/(C) of a curve segment
C(t) = (x(t), y(t)), to <t <ty, is a unit circular arc defined by
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4 tible pairs; that is N (Cyi) = N(Cy;). Figure 11(d) shows
Ci(t) the resulting convolution curves generated fr@g(t) and
Cz(S).

In convolution curve computation, it is convenient to assume
that each curvE(t) is convex/concave and its Gauss méfC)
has length less tham. For each normal vectdd € A/(C), we
Ci(s) can then compute a unique curve pdt) that corresponds to
the normal vectoN as follows:

(C'(t), N) = 0. (23)

Such subdivision ofC;(t) and C,(s) can be done by insert-
ing extra vertices at all inflection points and at the intersectior
points of their hodographs with some extra rays. One simpl

/j ‘ method is to use thg-and y-axes as extra rays (see Fig. 12).

Figure 12 shows two planar curves and their hodograph subd
visions so that each Gauss map belongs to a quadrant of the u
circle S.

In general situations, the boundary curves may have cusps
vertices; that is, the object boundary may noG¥econtinuous
(see Fig. 13). Then the algorithm becomes more complex. Eac

FIG.11. Hodograph subdivision. cusp point may be treated as an edge with a sector-form Gau
map. Each concave cusp point (represente@ a&s Fig. 13) is
treated in a similar way. In the hodograph subdivision proces:

the rays in the set of Eq. (22). The intersection points of a lilRe Gauss map of each point edge is also subdivided by the ra
and a curve can also be computed using symbolic and numefigim the origin as shown in Fig. 11 (b).

computation tools. The original curve€y(t) and Cy(s), are
subdivided at the parameter values corresponding to the end
points of the hodograph curve segmefs; (t) and C; ;(s),
respectively (see Fig. 11(c)). After compatible subdivision, a convolution edge is computec

Each curve segmen€y;(t) or C,;(s), is recorded in the for each pair of compatible edges. As mentioned in the previou
sector-form regiorR¢ which includes the corresponding hodosubsection, the compatible pair may be a curve—curve or curve
graph curveCy ;(t) or C; ;(s). All the pairs Cyi(t), Czj(s)) point pair. For simplicity of explanation, we consider the case
that are recorded in the same sector-form region are compépolygonal objects first.

3.3. Computing Convolution Edges

@
<

AR A
S

(a) (b)

FIG. 12. (a) Two planar curves and (b) their hodograph subdivisions (also with additional subdivisions alangurids/-axes).



MINKOWSKI SUM BOUNDARY CURVES 145

of a4 by a vectotb;. The edge direction afs in this figure is the
same as that &f;. Similarly, the convolution edges, = ag*by
andc;s = a7 bg are given the same directions as thosag@nd

bs, respectively. Unfortunately, this strategy does not produce ¢
consistent orientation for each closed loop of convolution edges
For example, the edge direction@fis inconsistent with those

of ¢4 andcg. Moreover,ci» andcs have inconsistent directions
with those ofc;3 andcya.

To make the orientation of a convolution loop consistent with
the directions of all its component convolution edges, we take
the simple strategy of reversing the direction of each convolu-
tion edge generated from a concave vertex and a line segmer
(We have a similar problem in computing the convolution edge
for each pair of compatible curve segments; more details will
be discussed in Section 3.3.2.) Figure 16(a) shows two convo
lution loops which have consistent orientations. The loops sub:
divide the planeR? into four disjoint connected regions, each
of which is assigned a unique winding number. The winding

Given two polygonal objects, we apply the following thre&umber provides an important theoretical tool in characterizing
rules [19, 33] to compute the convolution edges: the Minkowski sum boundary from the superset consisting of

. . all convolution edges; namely, a convolution edge belongs tc

1. For a pair of pointsPy and P, such thatV'(Py) NN (P2) o inkowski surgl boundaryyif and only if it is or?the bougld-

#0, i - :
ary of a region with winding number zero. (This characteriza-
tion holds under the assumption that two input objects have nc

Hodograph

Subdivision

FIG. 13. Hodograph subdivision of curves with cusps.

3.3.1. Polygonal Objects

Py P, =Py + Pa.

holes.)
2. For a pointP; and a line segmeri;, P; such that\/ (P, Ps)
C N(P),
1
Py P2P5 = (PL ¥ P)(PLT Py, Ay y
B, Bj B,
3. For a pair of compatible line segmemsP, andPz P, such
that V'(PLP,) = N(PsPy), Aq N
T xr
A2 B__
PLP; % P3Py = (PL+ P3)(P2 + Pa). AJ\ > B
The above rules imply that the strict compatible subdivisior 4o Y4, Bs B; 1B
(described in Section 3.2) is not necessary for the convolution
two polygonal objects. Figure 14 shows an example of convolt
tion edge computation for two convex polygonal objects. Eacl o 7 O = A, % B,
convolution edg€; is computed based on the above three rules Cs Cy Oy = A, B,
Clearly, we can ignore Rule 1 because it generates convolutic Oy = Ay s B;
vertices only. c Cy= Ay % By
For nonconvex polygonal objects, there are some subtle cas 3 Ce = A' « By
which need careful treatment. In Fig. 15, two vertieesand c 05 _ A'S B
b; are concave vertices. The Gauss map of each concave ver o Cf _ 42 X B‘:
has a clockwise orientation. For example, the normal angle ¢ . C/ g B"
a; changes from 280to 260, instead of changing from 26@ L CB _ A5 ) Bs
280°. The clockwise orientation has an important implication in A
the determination of the orientation for each convolution edg ¢l C'O B Al N Bb
generated from a compatible pair of a concave vertex and a lir Cs C"l B Al . B7
segment. Co Co - c oA
In Fig. 15, each convolution edge has its edge direction inhe u o1

ited from that of component edge(s). For example, the convolu-
tion edgecs = a4 * b7 is obtained from the parallel translation

FIG. 14. Convolution computation for convex polygons.



146

asg

az

LEE, KIM, AND ELBER

@

b
S

ay

‘_%

edge direction is inherited from its component edge directions.

bs@{ —0O,, where the reference point of each instance is located in
10
by

:a4*b5
¢4 = ag * bg

ag * by

7 =ag * by region of winding number zero.

c12 = ag * by
c13 = ag * bg

convolution curve €, * C,)(t) which forms a superset of themachining.

Minkowski sum boundarg(O; & O,). When the reversed ob-
ject — 0O, is translated so that its center is located in a region o
winding numbelk (for the convolutionC; * C,), the two ob-
jects O; and — 0O, intersect ink disjoint regions. Figure 16(b)
shows four different translated instances of the reversed obje

region of winding numbek(=0, 1, 2). Note that each instance
of — O, intersects withO; in k disjoint regions (shown in gray).
When we move- 0O, (with a fixed orientation) while its refer-
ence point is contained in the same region of winding numbe
k, the number of disjoint regions i@, N (—0Oy) is always fixed
tok. TheC-spacebstacle boundaryg(O; & Oy), is in between

c1 =az* by two different configurations: one for collision and the other for

c2 =a3*by collision-free. Therefore, it is clear that only the convolution

edges adjacentto regions of winding number zero can contribu

_ to the Minkowski sum boundar§(O; & O,). Moreover, each

6 = a3 * ba point on the Minkowski sum boundary must be adjacent to

Co = ag * bo When the objecD is a circle with its center at the origin,
co=ag*by  we have—0O, = O, and the winding number theory can be
en=aw*b  gpplied to the boundary construction of the offse€af that is,
to the construction 0d(O; & Oy). It is interesting to note that
ey =ag+bs  the offset boundary classification of Hansen and Arbab [21] i
cs =a7+bs  equivalent to the winding number theory which has been know
in computational geometry for many years [19]. In the above
discussion of the winding number theory, we have restricted th
FIG.15. Convolution computation for nonconvex polygons: each convolutiomput objects to those with no holes. When an object's hole:
are sufficiently large for the other object to be totally containec
in each hole, we can apply the same characterization to cla
Guibaset al [19] introduced the concept of winding num-sify the convolution edges which appear on the Minkowski sun
ber to computational geometry. A geometric interpretation dbundary. In NC machining, small holes are not allowed sinct
winding number in the convolution curve arrangement may lteey introduce gouging when they do not contain the machinin
given as follows. Consider two simply connected planar objedtsol completely. Therefore, the winding number theory can be
0O; and O, bounded byC,(t) and C,(s), respectively, and the applied with no restriction to the offset operation in NC pocket

() (b)

FIG. 16. Consistent edge directions and the winding number of each region.
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The winding number technique provides a theoretical solution1. Forapoinf and acurve segme@tsuch thatVv'(P) = N (C)
to the construction of the Minkowski sum boundary. However, {t.e., they are compatible),
is still quite doubtful whether this technique can contribute to the
robustness and efficiency of a construction algorithm. When we PxC=P+C.
deal with nonpolygonal convolution curves, there has been no, ko, 4 pair of compatible curve segmeftsandCs, i.e.,
known implemented algorithm that can robustly determine tW(Cl) — N(Cy),
arrangement of convolution curves. The determination of curve
arrangement is the most crucial step in computing the winding (C1 % Co)(t) = Cy(t) + Co(s(t)),
number of each connected region.

In dealing with polygonal convolution edges (or polygonavhere
approximations of convolution curves), a simple way to im- ,
pIF:eF:nent a robust arrangement of line ?segmen?s is toyuse exact CLOICa(s()) and (Cy(t), Cy(s(t)) > 0.
rat.io.nal arithmetic. However, this strategy.does not provide an|, ihe curved case, the convexity of each curve segment is im
efficient solution to the arrangement of line segments, espgsiiant When the convexities of two compatible edges are dif-
cially when a large number of line segments are used t0 apPreXrent, the determination of convolution edge direction becomes
imate curved convolution edges. Guilgas!. [20] presented an ;qmpjex since it depends on the relative curvature distributior
efficient technique that uses floating-point arithmetic and dgf ooch component curve. Assume thaft) andCy(s) are two
termines the arrangement of line segments robustly. In this %’mpatible curve segments which are concave and convex, re
per, we use a similar technique that was also implemented\,;ilgectivdy (see Figs. 18(a)—18(h)). Moreover, assumei}

Ahnetal [1]. andC,(s) are arc-length parametrized byands, respectively.

The convolution edges generated from at least one concaye, first derivativeC;  Cy) (t) is computed as follows:
vertex do not appear on the final boundary of a Minkowski

sum. Moreover, they have no contribution to the robustness and (Cy % Cp)/(t) = Ci(t) + Ch(s(t)S (1)

efficiency of an arrangement algorithm for convolution edges.

Consequently, we can simply remove all convolution edges gedince the convexities @, (t) andC,(s) are different, the repara-
erated from at least one concave vertex (Fig. 17(a)) and compntetrizations(t) decreases as the paramdtéicreases; that is,
the Minkowski sum boundary by eliminating other redundanciege haves'(t) < 0, for allt. When the curvature @, (t) is larger
(Fig. 17(b)). In fact, the elimination of as many redundant cothan that ofC,(s(t)), the speed of(t) is larger than 1 and we have
volution edges as possible in a preprocessing step improvesstie) < —1 (see Figs. 18(d)-18(e)). Therefore, the direction of
robustness and efficiency of the construction algorithm for (€1xC;)'(t) is opposite to that o/ (t), and it is parallel to that of
Minkowski sum boundary. In Section 6, we will discuss somg(t)C;(s(t)) (equivalently, to that of-C5(s(t))). This explains
preprocessing techniques which compute simpler Minkowskihy we need to reverse the edge direction in each convolutior
sums and eliminate many redundant convolution edges basgelde that is generated from a concave vertex and a line segme

on them. (see Section 3.3.1).
A convolution curve C, * C)(s) having the same curve trace
3.3.2. Planar Curved Objects as that of C; * C,)(t) can be constructed by switching the roles

) ) ~of C4(t) andCxy(s),
The convolution rules for planar curved objects are similar to

those for polygonal objects: (Cz2 % C1)(s) = Ca(t(s)) + Ca(9),

(a) (b)

FIG. 17. Elimination of redundant parts in the convolution of concave polygons.
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(C1 % Ca2)(t)
4; s(t)
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(d) (e)
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(Cz % C1)(s) t(s)

41—"
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FIG. 18. Convolution curve for a compatible pair of convex—concave edges.

where Fig. 18(c), we can easily notice that the edge directiorCafy
) ) ) ) C,)(t) will produce a consistent orientation for the convolution
Ci(t(s)) 1 Co(s) and (Cy(t(s)). Cy(s)) > 0. loop.

When we slightly bend a line segment into a concave circula
arc with a very large radius and also slightly round a concav
(Co % C1)/(S) = CL(t(S)'(S) + Cy(S). vertex into a concave circular arc with a very small radius, the
resulting convolution edge (i.e., a circular arc with a large ra:
When the curvature oE,(t(s)) is larger than that o€,(s), the dius) must have almost the same curve shape and edge direct
speed ot(s) is smaller than 1 and we havel <t'(s) <0 (see as the convolution linear edge generated by the line segme
Figs. 18(f)-18(g)). Therefore, the direction @,(x C,)'(s) is and the concave vertex. That is, the convolution edge must ha
the same as that @¥5(s). Note that this direction is opposite tothe opposite direction to that of the two input concave edges
that of C, x C2)'(t). This may look self-contradictory. However,Figures 19(a)-19(b) show two input objects. The boundary ©
note that the two convolution curveS(xC,)(t) and C,xC;)(s) each object consists of two line segments and a concave circul
have the same curve trace; nevertheless, they are parametrizeddnThe convolution edge of two concave circular arcs is also
opposite directions when the convexities®ft) andC,(s) are circular arc, the radius of which is given by the addition of the
different (see Figs. 18(d) and 18(f)). Therefore, we have to seleatlii of two input circular arcs. Note that the convolution edge
the convolution edge direction from the two opposite directiortirection is opposite to that of the two input concave edges (se
of (CyxCy)(t) and C,* C1)(s). In the convolution graph of Fig. 19(c)).

The first derivative C, * C1)'(s) is then computed as follows:
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Y

(a) (b) (c)

FIG. 19. Convolution curve for a compatible pair of concave—concave edges.

When we examine the winding number of each connecté@m convex—concave (or concave—convex) edge pairs. The!
region in the planar convolution graph, we find that the windingnay also contribute to the final boundary of a Minkowski sum
number of the region to the left of each convolution edge is oijg]. However, a convolution curve segment is redundant wher
larger than that of the region to the right (see Fig. 19(c)). In pdt-is generated by a convex cur@g(t) with smaller curvature
ticular, the convolution edge generated by two compatible catiran its compatible concave cur@g(s) (see Section 6 for more
cave edges reverses its edge direction from that of the two inpietails).
edges so that it correctly reflects the more complex interferenceFigure 20(a) shows two nonconvex planar curved objects.
between two input objects in its left rather than its right-hantiheir untrimmed convolution curves are shown in Fig. 20(b) and
side. Note that the right-hand side of such a convolution edtiee Minkowski sum boundary of the two curved objects is shown
also belongs to the Minkowski sum interior (see Fig. 19(c)in Fig. 20(c). Figure 20(b) and the table in Fig. 20 represent dif-
Consequently, the convolution edges generated by the compatent types of convolution curves. Comparing the curve/vertex
ible pairs of concave edges cannot appear in the Minkowskpes of two compatible input edges and their convexities, the
sum boundary. Using a similar argument, we can also sha@envolution edge can be classified as in the table of Fig. 20
that the convolution edges generated by at least one conchee example, Type 3 convolution curves are generated from the
vertex do not contribute to the Minkowski sum boundary. Figurgmirs of concave—concave curve segments and the pairs inclut
19(d)-19(f) show the relationship between the winding numbigrg at least one concave vertex. Convolution curves of Type 2
of a region in the convolution graph and the number of disjoicannot appear on the Minkowski sum boundary. However, we
regions inO; N (—Oy). must consider all other types of convolution curve segments (se

In computing the Minkowski sum of two curved objects, wéig. 20(b)). An algorithm for eliminating redundant convolution
cannot simply ignore the convolution curve segments generateave segments will be described in Section 6.
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(c)

edge of O, curve segment vertex
edge of O convex concave convex concave
convex Type 1 Type 2 Type 1 Type 3
curve segment
concave Type 2 Type 3 Type 2 Type 3
convex Type 1 Type 2 - -
vertex
concave Type 3 Type 3 - -

FIG.20. Computing convolution edges for curved objects: (a) two planar obf@cendO,, (b) Type 1 (light solid curves), Type 2 (bold solid curves), and Type
3 (bold dashed curves) convolution curves (see the table), and (c) the Minkowski sum boundary.

4. CONVOLUTION CURVE APPROXIMATION proximation methods. However, the control point based metho
METHODS uses simple arithmetic operations only. The implementation i
also quite straightforward.

In this section, we present several methods to compute g etC(t) be a B-spline curve of degreewith n control points
convolution curve segment for each pair of compatible curyg1 0<i <n, and knot vectorfki},0<i <d + n + 1. The
segments. These methods can be classified into four typesgiowing sequencéi}, 0<i < n, representsode or Greville
approachrcontrol point basegdinterpolation basedquadratic apscissae [12], parameter value<gf):
curve approximation base@ndreparametrization basedill
these convolution curve approximation methods are conceptu- i+d
ally similar to offset curve approximation methods [10]. £ = Zi:i+1 Ki (25)

LetCy(t), to <t <t;, andCy(s), S < s < 51, denote two com- ' d
patible freeform curve segments. Without loss of generality, we
may assume Hence, a node parameter value is an averagk afnsecutive

knots in{kj}. Each control poinf? of C(t) is associated with
Ci(to) I C5(s0) and Ci(t1) | C5(s1). (24) the node;. C(&) is typically close toP;; however, it is not the
closest point ofC(t) to P, in general.

Moreover, let C; %@ C,)(t) denote an approximation curve of Let P and&,0<i <n, be the control points and the node

(C1 * Co)(b). parameter values @,(t). An approximated convolution curve
can be computed by translating each control p&jrity C,(&;),
4.1. Control Point Based Method (CTC) where

The control point based method is the simplest method. This . .
method does not consider the relationship between the normal CiE) ICy&), <& <su. (26)
directions of two input curves. Therefore, this method does not
generate very precise approximations compared with other djve unique parametef; can be computed by solving the
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Y where
a A
(Cr# Cy)(1) Ci () Il Chl). (29)

The parameterg; tan be computed using Eq. (27).

There are many well-known methods for the approximation or
interpolation of a given point set by a B-spline curve [23]. A set
of convolution points{(C; « C2)(xi)|i =0,1,2,...,m—1},
can be either (i) approximated by a B-spline curve using the leas
squares method_6C) or (ii) interpolated by a B-spline curve
(BIC).

4.2.2. Convolution Using Hermite InterpolatiorH{C)

The derivative of an exact convolution curve is computed as
follows:

B(Cl * Cz) 801

0C, as
T(t) = W(t) + E(S(t))&(t)- (30)

From Eq. (3), we have

0Xp dY2 0% 0Y1

FIG. 21. CTC approximation C; 2 Cp) of Cy(t) and Cy(s). Two internal e Aot S o | (31)
control pointsP; and P, are translated by»(£1) and Cy(€2) (two dots on ot 9ds ds ot
Ca(9)).
By differentiating Eq. (31) with respect towe have
equation (see Section 3.2) 9% 0y, | 0% 9%y2 05  0%X2 9SAy1 9% 9%y1
—t———— —— —— ———= =0, (32)
~ ot2 9s ot 9s? ot 0s? ot ot ds 0t2
(N1(&), C3(&)) =0, (27)
and
whereN;j(t) is the unit normal vector field &, (t). This method . .
. . . . . X2 0°Y1 94Xy Y2
of convolution curve approximation is call€d C (control point L i T T2 (33)
translation convolution). This approximation method may be ot Ax % _ d%e v’

. . , . . ot 9s? 9s? 9t
considered as a generalization of Cobb’s offset approximation S s

method [5]. Figure 21 shows an examplé€giC approximation. Equation (33) implies that we can compute the first derivative
(Cy * Cy)'(t), for somet e [to, t], once we can find the cor-
4.2. Interpolation Based Methods responding parametsre [so, ;] such thatC; (t) || C5(S), even
Wyithout knowing the exact reparametrizing functis(h).

A natural approach to the approximation of a convolutio X _
curveis to interpolate the convolution points which are computed B€caUs&1(t) andCz(s)/are cor/npatlble with each other, we
1(t2) I C5(s1); namely, we have two

from some sample points on the input curves. Although interpBVe C1(to) Il C2(So) andC

lation based methods need intensive computation, they genef3{aCt tangent vectors at the two end points of the convolutior
better approximations than control point based methods, ~ CUVe ségment. An approximated convolution curve can be com
puted using the cubic Hermite interpolation of the two end points

4.2.1. Convolution Using Least Squares Approximatias¢, and the two tangent vectors,

BIC)

) _ o (C1* C2)(to) = Ca(to) + Ca(0),

LSC (least squares convolution) aBdC (B-spline interpo-

lation convolution) methods compute the convolution points at (C1+ Co)(ta) = Ca(ta) + Ca(s),
finite sample parameters. After that, they approximate or inter- 9(Cy % Cy) 0Cy aC, . 0s
polate these discrete points with spline curves. kty1, . . ., at (to) = W(t‘)) + E(%)ﬁ(t")’
Xm-1, bemfinite sample parameters 6f(t), whereyo =ty and 3(C1 + Cy) 9C, 9C, 9s
xm-1=t1. For eachy;, the exact convolution poin©  C2)(xi) T () = W(tl) + E(Sl)ﬁ(tl),

is computed as
where @s/dt)(to) and @s/dt)(t1) are computed using Eq. (33).
(C1xC)(xi) =Ci(xi) + Co(Xi), S=<xi <51, (28) Figure 22 shows an example iIdfC approximation curve.
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y Qa(s) is given by
Q2(8) = (1 -9 °Po+ 25(1—9)P1 +8°P,, ss<s<s. (38)
The simplest construction @(s) is based on (i) identifying

the two end points 0f,(s) with the two end points o€,(s),

i.e.,Cz(%0) = Q2(s0) = Py, andCy(s1) = Q2a(s1) = P», and (i)
setting the middle control poinP; as the intersection point

r between the two tangent lines @&(s) at o and s, respec-

tively. This simple approximation method guarantees@te
\%S) continuity between any two consecutive quadratic approxima
tion curve segments, when the original curve segments are co

pa—_ nected withG*-continuity.

w)(@ The approximation error o€,(t) ** Cy(s) in Eq. (37) is
bounded by the approximation error qf,(s). The approxi-

mation error betweef,(s) and Qx(s) = (X4(s), Y4(s)) can be

estimated with a distance function. The distance betv@¢s)

FIG. 22. Approximated convolution curve of the Hermite |nterp0|at|onand QZ(S) is bounded by the maximum of the following error

method. )
function:
4.3. Quadratic Curve Approximation Based Method (QAC) €(8) = 1C2(8) = Qa9
Assume tha€C,(s) is approximated by a quadratic curve seg- - \/ (X2(S) — Xq(8))? + (Y2(S) — Yq(s))?.  (39)

ment Qx(s). A quadratic curveQ,(s) has a linear hodograph

(derivative curve)Q,(s) = (as+ b, cs+d), s < S< 1, where Instead of using(s) which has a square root term, we may use
a, b, c,d e R. From the parallel relatiorQj(s(t)) | C;(t), that the following functione(s) for the error estimation,

is,

£(s) = IC2(s) — Q2(9)|%, (40)
(@s(t) + b, cs(t) + d) Il (x; (1), y1 (1)), (34) _ _ . :
which can be computed using symbolic and numeric compute
we have tion tools [8].
Algorithm 4.1 shows a divide-and-conquer algorithm for the
cs(t) +d  yi(t) computation ofQAC. (See Elber and Cohen [7] for a similar
as(t) + b = X ()’ (35) algorithm that approximates an offset curve.) For the sake c

simplicity, we assume that the two input curves have the sam

Consequently, we have a reparametrization funcs{opas fol-  Convexity (see Definition 3.2). When boBy(s) and Qx(s) are
lows: polynomial/rational curves, the error functiornés) in Line (1)

of Algorithm 4.1 is a polynomial/rational function. Because of
cxq(t) —ay(t)

Then the approximated convolution curve is defined by Ca(s1) = Qa(s1) = P

(36)

(C1#% C)(t) = Ca(t) + Qa(s(t)). o=t =ty (37)

wheres(t) is given in Eq. (36). For a polynomial curég (t) of
degreed, the reparametrized cun@,(s(t)) is a planar rational
curve of degree 2(— 1). Thus, the approximated convolution
curve Cy %2 Cy)(t) is a planar rational curve of degred 3 2.

For arational curv€,(t) of degreed, the functiors(t) is a ratio- Qa(s)

nal polynomial of degreed®— 2. (Note that the highest degree

terms both in the numerator and the denominator are canceled. Ca(s Ca(s0) = Qa(so) = Py
Therefore,Q,(s(t)) is a rational curve of degree 2{2- 2), and P,

(C1 %2 Cy)(t) is a rational curve of degreal5- 4.

The quadratic Bzier curve approximatioQx(s) (Fig. 23) has FIG. 23. Approximation of Cy(s) by quadratic BZzier curveQa(s) (bold
three control pointsP;, P,, and Ps; thus the curve equation of curve).
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e = 0.1 e = 0.01 e = (0.0001
Pts. = 272 Pts. = 388 Pts. = 1127 Pts. = 3585
(c) (d) (e) (f)

e = 0.001

FIG. 24. QAC approximation of two cubic B-spline curves.

the convex hull property af(s), we can easily bound max§)) (3)
by scanning for the largest coefficient of its control polygon.
Moreover, the node parameter value of the control point (with

the largest coefficient) may be used as the subdivision parameter
for Line (2) of Algorithm 4.1. In Line (3), we use a numeric

Compute ty such that (C}(tm), N2(Sm)) = O;
C1.1(t), C12(t) < subdivide Cq(t) attpy;
C,.1(8), C2.2(S) <= subdivide Cy(S) atsm;
return MergeCurveJQAC(Cy1(t), C2.1(9), €),

computation function to refine the parameigr

Algorithm 4.1
Input:
Ca(t) = (xa(t), ya()), to <t <t;, and

Ca(s) = (X2(8), Y2(S)), So < S < Si:two compatible

regular freeform curves;
€. maximal tolerance of approximation;

Output:

(C1#2 Cy)(t), to <t <ty: an approximated

convolution of Ci(t) and Cy(S);

Algorithm: QAC (Ci(t), Cx(s), €)
begin

Q2(S) & quadratic approximation of Cy(S);
(1) if y/max||Cx(s) — Qa(S)[|2 < € then begin

(as+ b, cs+d) < Q5(s);

by;-dx(1).
() < oo

return Cy(t) + Q2(s(t));

end
else begin
(2) Sn < parameter of Cy(S), S < Sm < S1,
where ||Co(S) — Q2(S)||? has a maximum
value;

QAC(Cy2(t), C22(9), €));
end
end

Figure 24 shows th@AC approximation of two cubic B-
spline curvesC,(t) andCy(s) in Fig. 24(a) are cubic B-spline
curves with five and 27 control points, respectively. After the
compatible subdivision, we compute tRRAC approximation
curves with various tolerance values of approximation error,
€. Figures 24(c)-24(f) show th@AC approximations and the
numbers of their control points. THRAC approximations are
piecewise rational B-spline curves of degree seven. In Fig. 24(b)
the trace of th&€QAC approximation curve (bold solid curve) is
verified by sweepin€,(s) (a family of light curves) alon@;(t)
(dashed curve).

When we approximat€, (t) with a quadratic curv€,(t) (as
well as approximatin@,(s) with Q»(s)) and computs(t) using

1(t), QAC approximation is a rational curve of degree four.
Figure 25 shows the degree and the number of control points o
variousQAC approximations computed by the following four
methods:

e Cy(t) + Qa(s(t)): approximate onlyC,(s) with Qx(s). s(t)
is computed usin€; (t).

e Cy(s) + Qa(t(s)): approximate onl\C4(t) with Q4(t). t(s)
is computed usin@;(s).
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(a) (b) ()
QAC Degree Number of control points
e=01 =001 e = 0.001
Ci(t) + Qa(s(t)) rational 7 550 638 953
Ca(s)+ Qq1(t(s)) rational 11 464 764 2240
Q1(t) + Q2(s(¢)) rational 4 188 333 989
Q2(s) + Q1(t(s)) rational 4 182 329 949

FIG.25. VariousQAC approximations computed from culilg (t) and ratio-
nal cubicCsy(s).

e Qq(t) + Qz(s(t)): approximate botl€,(t) andCy(s) with
Qa(t) and Qz(s), respectivelys(t) is computed using); (t).

e Q2(s) + Qi(t(s)): approximate botiC,(t) andC,(s) with
Qu(t) and Qx(s), respectivelyt(s) is computed using,(s).

Note that theQAC approximations shown in Fig. 25 are com-

puted from a cubic B-spline cun, (t) and a rational cubic B-

LEE, KIM, AND ELBER

Given a freeform curve, its specific parametrization has a
important implication for the processing of the curve. The arc:
length parametrization provides many useful properties. For e»
ample, in computer animation, motion speed control become
much easier when we have an almost arc-length parametrizati
of the motion curve. In computer aided geometric design, th
major concern is how to design various geometric shapes usir
freeform curves and surfaces. In this case, the curve and surfa
traces are more important than the parametrization itself. How
ever, further geometric processings on these freeform shapes
heavily dependent on the parametrization of the curves and st
faces. Proper reparametrization can also improve the renderil
quality of freeform curves and surfaces significantly, when the
freeform objects are rendered with polygonal approximation
Kosters [28] used a curvature dependent parametrization to re
der the freeform curves and surfaces with more line segmen
in high curvature regions. In many geometric operations on twi
operand curves, thetangent field matchinglays an important
role. We provide a formal definition of this concept as follows:

Derinimion 4.1, Let Cy(u), ug <u<ug, and Cy(v), vo<v
< vy, be two regula€? parametric curves. Consider two repara-
metrizationslJ : u+— t andV : v — t, which mapC;(u) into
the curveCy(t), to <t <t;, andC,(v) into the curveCs(t), to <t
<ty, respectively. If two unit tangent fields

Ci(t) Cy(t)

T = —
=180 IC@)l

Ta(t) =

(42)

spline curveCx(s). Figure 25(c) verifies the convolution curveare the same for all [to, t1], the two parametrized curves

by sweepindC,(s) (a family of light curves) alon@;(t) (dashed
curve).

4.4. Reparametrization Based Methods

Another natural approach to the approximation of a convolﬂ1

tion curve is to approximate the reparametrization funcsigph

in Eq. (2) using a polynomial/rational function, rather than a

proximating the whole convolution curv€{ x C)(t). In this
section, we present three such methods.

4.4.1. Convolution Using Linear ReparametrizatiohRC)

The simplest approximation of the reparametrizahis a
simple translation and scaling of the parameter donm&irs{]
to [to, t1]; that is,

(41)

s(t) =

We call this methodlRC (linear reparametrization convolution).
The implementation dfRC requires a simple linear reparametr-

ization of s(t) and the addition of two curve segmeriis(t)
+ Cy(s(t)). Figure 26 shows an exampleldRC approximation.

4.4.2. Convolution Using Tangent Field Matchingh/C)

We may approximate the reparametrizatig(h) using the
technique ofangent field matchinguggested in Cohest al. [6].
The basic concept of this method is explained below.

Ci(t) and C,(t) have a completéangent field matchingand
the two tangent fields of;(u) and C,(v) are matched by the
reparametrizations U and V

When the two curves have a complete tangent field matching
e inner productTy(t), To(t)) = 1, for allt € [to, t1]. Cohen
et al. [6] presented an algorithm to approximate the matching

>du,

%y solving the optimization problem

Ci(w)  Ci(w(w)
ICL W™ IC5 )l

(43)

max / <
v(u)

Y
] Co(s)
~\ \‘W N
Ch(t)

(Cy+* Cy)(1)

FIG. 26. LRC approximationC; %2 Cy)(t) of Cy(t) andCx(s).
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wherev(u) = V(U ~(u)), v(uo) = vo, anduv(u;) = vs. This opti- Output:
mization problem is bounded from above ly— ug, since the (C1 2 Co)(t), to <t <t3: a TMC approximation of
normalized inner product does not exceed one. While the solu- Cy(t) ana Cy(s);

tion of EqQ. (43) is difficult, we can solve instead an associated Algorithm : TMC ( C4(t), Cx(S), A)
discrete optimization problem which may produce an arbitra- begin

rily close approximation to the solution of Eq. (43). We sample N < No;
bothC;(u) andC;(v) atn uniform parameter locations and com- do
pute their unit tangents &; andT,;, 0 <, j <n. Then, the €D) C,(s(t)) « TangentFieldMatching( Cy(t), Cx(s),
problem is reduced to a discrete optimization problem, N»O;

1 Naz(s(t)) < (E)yéN((SS((E)))); —X5(s(1)));

max, (Toi, T2.j0)), (44) 8(t) = Mél(lwiﬁlz(s(t;)llz

i=0 N < 2N;

subject to (@ while (|3 — arccos/max@())| > A )
return Cy(t) + Cu(s(t));

j0=0 jh-=n-1 ji)=jli+1). (49 end

Coheret al. [6] suggested a method to solve the optimization Algorithm 4.2 is an iterative algorithm for computing the
problem of Eq. (44) withirD(n?) time, wheren is the number of TMC approximation. The accuracy of the matching algorithm
sample locations. This method employs a dynamic programmif@] is controlled by the sampling value df = Ng. According to
technique and provides a globally optimal solution. The mogxperimental resultsyp, = 15 has been found to be a reasonable
sample points we use, the closer is the resulting reparametrizestting value for computing(i) for a single cubic polynomial
curveCy(v(u)) to the completely matching curve wi@y (u). In  curve segment with no inflection point. As in the cas€#C,

Ref. [6], a method is also described to approximate a continuauaix@(t)) in Line (2) of Algorithm 4.2 can be found by scanning
function v(u) from the discrete match gf(i), by using a least the control polygon o8(t). Figure 27 shows thEMC approxi-
squares fitting to a B-spline curve. The compositio€gfv(u)) mations computed from two cubic B-spline curves with six and
can then be computed using symbolic computation tools [8, 26n control points, respectively. All tHEMC approximations
while resulting in a B-spline curve representation. The tangesit Fig. 27 are piecewise cubic B-spline curves, while using a
field matching can be used for various practical geometric opéirear reparametrizatios(t). Note that the open B-spline curve
ations. Coheet al. [6] suggested efficient algorithms which carhas a curve direction from left to right. In Fig. 27(b), the upper
prevent self-intersections in the construction of ruled surfacesvelope curves do not contribute to the convolution curve since
blending surfaces, sweep surfaces, and metamorphosis betwhey are generated by the closed B-spline curve points, at whicl
two parametric curves. the curve tangent directions are opposite to those of the ope

Tangent field matching allows the computation of an approg-spline curve.
imated convolution betwee@;(t) and C,(s) by first comput-
ing the proper reparametrizatiat) for Ca(s(t)) = (x2(s(t)),  4.4.3. Convolution Using Sample Reparametrizati@RC)
y2(s(t))). Unfortunately, the approximation error cannot be com- L ! _ .
puted with the distance function which we used in the quadratic'nStead of approximating(t) with tangent field matching, we
curve approximation (see Section 5.2.1). Instead of the distarfe8Y approximats(t) by a simpler method. For each sample pa-
function, we use the following formula which represents th@metervalué e [to, ty] of C,(t), the corresponding < [So, 1]
value of coda, wherex is the angle between the tangent vectd?! C2(S) can be computed by solving Eq. (27). Using these sam-

of C4(t) and the normal vector @(s(t)), ple parameter vglues, the repara_metrizaﬁa_r), to <t <ty _
/ _ ) such thass(tj) = 5, can be approximated or interpolated using
(t) = (C1(t). Nao(s(®))) (46) the same techniques for theSC andBIC methods. LeN be
ICLOIZIN2(s(t))12° the number of sample parameter values. The simplest lafgar

wherel\_lz(s(t)) — (y4(s(t)). —x5(s(t))) is an unnormalized nor- in uniform B-spline representation hakcontrol points,

mal vector field ofC,(s(t)). Then, the angle deviation can be

represented as= | % — arccos(/max3(t))|. (8 10=1 <N} (47)
Algorithm 4.2 and the following knot vector:
Input: L L
Ca(t) = (xa(t), ya(t)), to <t <t;, and {to, to, t1, to, ..., tn2, N1, Ena ) (48)
Cz(S) = (Xz(S), yz(S)), S < S < 5. two compatible
regular freeform curves; This method, calleSRC (sample reparametrization convolu-
A maximal tolerance of angle deviation in tion), is much simpler than the tangent field matching proce-

approximation; dure of TMC. In Algorithm 4.2, we can replace the procedure
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\ v\ Vo \

max{d(t)) =10 (degree) max(d(t)) =5  (degree) max(§(t)) =1  (degree)
A =0.18 A =0.09 A =0.017
Pts. = 60 Pts. = 72 Pts. = 138

(c) (d) (e)

FIG. 27. TMC approximation of two cubic B-spline curves.

TangentFieldMatching by the code segment described in Al- QAC is the only method in which we can guarantee that the
gorithm 4.3. Figure 28 shows an example of 8RC approxi- resulting approximated convolution curve is within #v®and
mation and the refinement procedure of the error fundip)h from the exact convolution curve, wheeeis the given toler-

by increasing the number of sample parameters. ance of quadratic curve approximation. (In fact, this statemer

Algorithm 4.3 is true only for r_wontrimmed (clos_e or infinite) input curves a_nd

— - ] for the convolution curves after eliminating the self-intersectior

{ti}, 0 <i < N < N parameter values uniformly ] . . o

sampled in [to, t1]; Ioops, see Ref. [30] for more details.) As we will describe in

for eachi = 0.1, ....N — 1do Section 5.2, other methqu ('jo'not guargntge tha.t the appro»

Compute § such that (C(§), Ny(f)) = O; mated convolution curve is within a certain given distance from
S(t) <= reparametrization defined by Equations (47) the exact c_onV(_)Iutlon curve. Furthgrmore,_m (DAC method,
and (48): the approximation error can be estimated iragiori fashion;

Ca(s(t)) <= symbolic composition of Cp(S) and S(t); that is, we can estimate the convolution curve approximatio

error by measuring the approximation error of quadratic curve

approximation, even without computing any approximated con

5. COMPARISONS OF CONVOLUTION CURVE volution curve at all. In other methods, the approximation errol

APPROXIMATION METHODS can be estimated only after an approximated convolution curv

is constructed (see Section 5.2). In a subdivision based algorith

In Section 4, we presented several methods for convolutiGhlgorithm 5.1), the approximation error estimation is required
curve approximation. In this section, we report various resuké each subdivision step. For some input curves of special type
of comparing these approximation methods. (e.g., circles), the quadratic curve approximation error is alread
known. In that caseQAC saves computation time since there is
no need to estimate the convolution curve approximation errc
at each subdivision step.

Each approximation method presented in the previous sectiodn some approximation methods suchl&C andBIC, we
has advantages and disadvantages. In terms of complexitycah easily control the degree of an approximated convolutio
computation and implementatiobRC is the simplest method. curve. TheHIC method produces cubic curves only. OTC,
LSC, BIC, andTMC require more computation time and du€2AC, andLRC methods, the degree of an approximated con
to the intermediate steps such as least squares approximatgtijtion curve depends on the degrees of two input curves; tht
interpolation, and tangent field matching. we cannot control the degree of a convolution curve arbitrarily

5.1. Qualitative Comparisons
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y 6(t)(degree)
Ci(t)

ESINT

CN\ . t

N =2 : maxd(t) = 36.834877
(Cy " C) (¢ N =3 : maxd(t) = 27.188434
N =5 :maxd(t) = 14.219412
N =8 :maxd(t) = 4.484874
(a) (b)

FIG.28. SRC approximation for two planar curves: @) (t), Cz(s), and C1 %2 Cy)(t). (b) Error functions(t) for variousN (the number of sample parameters).

Moreover, theQAC method always generates rational curvesvheres?(t) is an approximation of the exact reparametrization
The degree of a convolution curve generated®C or SRC  s(t). The main difficulty in measuring the convolution approxi-
is mainly dependent on the degree of the reparametrizefipn mation error is that we do not have the exact reparametrizatiot
When two input curves are both polynomial curv€®C and s(t), in any convolution approximation method we have con-
SRC generate lower degree convolution curves t#C. Note sidered in this paper. Furthermore, in the control polygon anc
that the reparametrized cur@(s(t)) in TMC or SRC has the interpolation based approaches, we do not even have the appro
same degree &3;(s) after composition when we use a lineaimated reparameterizatic(t).

reparametrization functias(t). Table 1 compares the degrees of In this subsection, we suggest two different criteria which
approximated convolution curves generated by different meitan be applied to divide-and-conquer algorithms. In Sectior
ods. Note that we do not consider variantQ#C (see Fig. 25). 5.2.3, these error estimation functions will be used in quanti-
We also use a linear reparametrizatggt) for TMC andSRC. tative comparisons of various convolution curve approximation

methods.

5.2. Quantitative Comparisons Distance sampling. From Eq. (2), we have

5.2.1. Error Estimation
_ _ _ (C1x Co)(t) — Ca(t) = Ca(s(t)). (50)
The distance between the exact and approximated convolution
curves is given by Note thatC,(s(t)) has the same curve trace as thatGy{s),
wheres(t) is an exact reparametrization. Let
I(C1 % C2)(t) — (C1 % C) (V)

= [C(t) + Ca(s(t)) — (Ca(t) + Ca(S* 1)) Ca(t) = (C1#7 Co)(0) — Ca(). (51)
= [ICx(s(t)) — Co(s* (D), (49) We can use the Hausdorff distance betwée(t) and C,(s)
TABLE 1
Degrees of Various Convolution Approximations
Cy C CTC LSC,BIC HIC QAC LRC TMC, SRC
di dy max(di, dz) any 3 rt. (3 — 2) maxgy, dy) max(ds, dz)
dy rt. dy rt. max(, da) any 3 rt. (3 — 2) rt. (d1 + dy) rt. (di + d)
rt. dy do rt. max@sz, d) any 3 rt. (% — 4) rt. (d1 + dy) rt. (dy + dy)
rt. dy rt. do rt. max(, d2) any 3 rt. (% — 4) rt. (d1 + dy) rt. (diy + d)

Note “rt."represents rational curve.
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to estimate the approximation error. However, the relationsh2.2 Subdivision Based Algorithm

between the two parameters [to, t1] ands € [so, s1] of Ca(t)

and C,(s), respectively, is not well defined for most approxi-
mation methods such as the control polygon and interpolation
based approaches. Although distance sampling does not guaran-
tee the maximum global error [8], this seems the only available

method that can measure the maximum distance bet@ggh
andCy(s).

LetC,(t) andCx(5), (i =0, 1, ..., n — 1), ben finite sam-
ple points on the curve§,(t) and Cy(s), respectively, where

to=to, th_1 =11, So = S, ands,_; = ;. The distance from a point

C,(t) to the curveC,(s) is approximated by

min [C2(8) — C(6) (52)

and the maximum distance betwe@s(t) andCx(s) is approx-
imated by

miax{m]_inlléz(ﬁ) — Ca(5) 11} (53)

Note that the distance sampling function (Eq. (53)) cannot
be used in the.RC, TMC, andSRC methods. In these three

methods, the reparametrizatis(t) is approximated while main-
taining the same trace witll,(s). Thus, the distanc¢Cs(t)
— Cy(s)| always vanishes.

Algorithm 5.1
Input:
Ca(t) = (xa(t), ya(t)), to <t <ty, and
Ca(S) = (X2(S), Y2(8)), So < S < 1! two regular
compatible freeform curves;
€. maximal tolerance of approximation;
Output:
(C1 @ Co)(t), to <t <11: an approximated
convolution of Cy(t) andCy(s);
Algorithm: SubdivConvolution (Cy(t), Cx(s), €)
begin
(Cl * Cz)a(t) <= an approximated convolution curve;
€, < distance computed by sampling, or normal
deviation;
(1) if €, < € then return (Cy x Cp)3(t);
else begin
tm < (to +11)/2;
Compute Sy such that (Cé(&n), N],_(tm)) =0;
C]_.]_(t), C]_.z(t) <= subdivide Cl(t) atty;
C2.1(8), C2.2(S) <= subdivide Cy(S) atSy;
return MergeCurves
(SubdivConvolution (Cy 1(t), C2.1(S), €),
SubdivConvolution (Cy »(t), Cz2(S), €));

(2)

end

end

Normal deviation. Another criterion to measure the error inA general subdivision based algorithm for convolution curve ap
each convolution curve approximation method is to compare thgoximation is described in Algorithm 5.1, where an appropri-

normal directions o€, (t) andC,(t). For the exact convolution

ate error estimation function is assumed. In Line (1), we appl

computationC;(t)||C’l(t). The normal vector deviation betweera distance sampling function or a normal deviation function tc

C,(t) andCy(t) can be represented by the equation

_{(CL(D), Np(1))? 54
= IC; () I12IN ()12 %)

whereN,(t) is an unnormalized normal vector field Gh(t).
The angle betweeN,(t) andN(t) is measured by

: (55)

H % — arccos/maxs(t)

compute the error in the convolution curve approximation. In-
stead of using the naive bisection method as shown in Line (2
we can subdivide the parameter domain at the parameter val
corresponding to the maximum of an error function computec
from Eq. (53) or Eq. (55).

5.2.3. Comparison Results

Figures 29-32 show the results of quantitative compariso
among different convolution curve approximation methods ir
terms of the tolerance of distancg, and the tolerance of nor-
mal deviation,e,, using Algorithm 5.1. The numbers in each

as mentioned in Section 4.4.2. Note that Eq. (54) is the sametaisle show the number of control points in each approximate

Eq. (46) in theTMC approximation method.

convolution curve. Although th@ AC method can compute the

Nevertheless, for thQAC method, we cannot use the norglobal approximation error representing the distance betwee

mal deviation function to estimate the approximation error.
the QAC method, C; % Cy)'(t) is always parallel toCi(t)
because

(C1 7 C)(t) = Cu(t) + Qa(s(t)), (56)

whereC; (t) | Qy(s(t)). ThusCy(t) = Qj(s(t))isalso parallel to

lthe approximated and exact convolution curves, we apply th
same distance sampling function @AC for the sake of fair
comparison with other methods.

In most of the test results, th&C andBIC methods perform
better than other methods. (Similar results can be found in th
comparison of offset curve approximation methods reported i
Reference [10].) Next in performance rankH4C, which is

C;(t). Inother wordsQAC preserves the exact normal directionalso an interpolation based method, followed®%C, and the

while generating distance deviation.

reparametrization based methods suci l&C andSRC. The
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Yoo (CrxC)t)

Ci{t) Cols)
S

€d CTC LSC BIC HIC QAC |l € CTC LSC BIC HIC LRC TMC SRC

1.0 31 31 31 31 71 10° | 43 40 40 46 41 40 40
0.1 34 31 31 31 71 5° 55 43 43 58 50 49 49
001 |70 34 35 31 71 3° 97 45 4 64 65 61 61
0.001 | 193 47 51 79 92 1° 244 54 59 118 104 94 106
0.5° | 463 62 61 166 143 118 145

FIG.29. Convolution curve approximation of two cubic B-spline curves.

control polygon based methddJ C, performs pretty badly, even are convex, the Minkowski sum boundary is the same as the
worse tharLRC. For the convolution of a circular arc (Fig. 31),convolution curve of the two objects’ boundary curves. However,
LRC, TMC, andSRC generate exact results. Although the tabléor nonconvex objects, the Minkowski sum boundary is a subse
on the left-hand side of Fig. 31 does not contain the results @fthe convolution curve.

LRC, TMC, andSRC, it is obvious that the.RC, TMC, and For the construction of the Minkowski sum boundary, we first

SRC methods produce exact results in termgof construct the convolution curve; after that, all local and global
self-intersections are detected and redundant curve segmer
6. ELIMINATION OF REDUNDANT PARTS are eliminated. The determination of self-intersection loops is

closely related to the arrangement of planar curve segments [19
In this section, we consider how to compute the Minkowsl& robust implementation of curve arrangement is one of the
sum boundary of two planar curved objects. When two objeatsost difficult open problems in geometric modeling. The only

Cafs)

/(&*W

Ci(t)

€4 CTC LSC BIC HIC QAC [ ¢, CTC LSC BIC HIC LRC TMC SRC

1.0 12 12 12 15 24 10° | 24 17 19 22 18 22 20
0.1 18 13 14 15 24 5° 36 21 21 28 22 28 22
0.01 |36 18 18 24 50 3° 54 24 24 34 24 32 26
0.001 [ 108 31 33 36 56 1° 166 35 34 49 40 46 38
0.5° | 330 43 4 76 54 62 46

FIG. 30. Convolution curve approximation of two quadratic B-spline curves.
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€4 CTC LSC BIC HIC QAC | e, CTC LSC BIC HIC LRC TMC SRC
1.0 3 3 3 4 7 10° 19 4 3 7 3 3 3
0.1 5 3 3 7 7 5° 17 4 4 7 3 3 3
0.01 13 ) 5 7 21 3° 17 6 6 13 3 3 3
0.001 |33 8 9 13 35 1° 65 8 9 13 3 3 3
0.0001 [ 129 16 17 25 56 0.5° 129 10 11 19 3 3 3

FIG. 31. Convolution curve approximation of two exact circular arcs (rational quadratic B-spline curves).

reliable robust implementation today involves using polygongkneral form of sweep in which the moving object change:
approximations of the convolution curve segments and detés shape dynamically while moving along a trajectory curve.
mining the arrangement of resulting line segments. (See Guithagmkowski sum computation is a special case of general swee
and Marimont [20] for the state-of-the-art of robust arrangemeacdmputation. Therefore, the general technique of Ahal.[1]
algorithms for line segments in the plane.) can be applied to the case of the Minkowski sum computatior
Ahnetal.[1] demonstrated the efficiency and robustness of &fowever, there are some computational shortcuts in the speci
arrangement technique for line segments in approximating tb&se of the Minkowski sum computation [29]. In this section we
boundary of a 2D general sweep. General sweep is the moshsider other advantages in eliminating redundant convolutio

t: (Cr* Ca)(t)

Cg(s)

€4 CTC LSC BIC HIC QAC || ¢, CTC LSC BIC HIC LRC TMC SRC

1.0 13 13 13 13 29 10° | 40 39 33 5 49 43 25
0.1 19 13 13 13 29 5° 49 42 37 73 58 49 43
0.01 | 52 27 32 46 57 3° 79 46 46 82 70 64 76
0.001 [ 130 90 99 142 95 1° 196 98 99 136 121 106 208
0.5° | 376 179 182 196 178 175 442

FIG. 32. Convolution curve approximation of two cubi@Bier curves.
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more precise intersection points among exact convolution curve
segments. For this purpose, the parameter values correspondil
to each pair of intersecting line segments are used as an initic
solution and numeric procedures are applied to improve the pre
cision. Figure 33(f) shows the final Minkowski sum boundary
thus constructed.

Thetrue convolution curves are shown in Fig. 33(b). Fig. 33(c)
shows polygonal approximations of some convolution curves
(i.e., except some obviously redundant segments). One can ea
ily notice that some curves of Fig. 33(b) are missing in Fig. 33(c)
(in the polygonal approximation). To reduce the size of polyg-
onal approximation data and to improve the robustness of line
segment intersection in the plane sweep algorithm, we eliminatt
some obviously redundant edges from further consideration. Th
elimination procedure is based on the following three rules (see
also Section 3.3):

e Rule 1: The convolution curves generated from two con-
cave edges do not contribute to the final Minkowski sum bound-
ary.

e Rule 2: The convolution curves generated from at least one
concave vertex do not contribute to the final Minkowski sum
boundary.

e Rule 3: The convolution curves that belong to a local self-
intersection loop can be eliminated.

The elimination based on Rules 1 and 2 is explained in Sec
tion 3.3. In Rule 3, it is not easy to detect and eliminate all
redundant convolution curve segments that belong to a loca
self-intersection loop. However, it is relatively easy to remove a
certain portion of each self-intersection loop. L&t & C,)(t) be

an exact convolution curve segment that is computed from twc

FIG. 33. Computation steps for the elimination of self-intersection loops.

curve segments. We assume that the two planar curved objec
are bounded by piecewise parametric curves. Note that in mar
applications of the Minkowski sum computation, we need to
consider closed objects only.

With the exception of some obvious redundancies (to be dis
cussed below), we approximate convolution curve segments t
using discrete points and their connecting piecewise line se(
ments (Fig. 33(c)). In the next step, we use a plane sweep alg
rithm [34] to detect all the intersections among the convolutior
line segments (Fig. 33(d)), and construct a polygonal approxi
mation of the Minkowski sum boundary (Fig. 33(e)).

Once we have computed a polygonal approximation of the

interval corresponding to each convolution curve segment o

B
=

a)

Minkowski sum boundary, we can easily extract the paramete \

the Minkowski sum boundary. In particular, the coordinates anc
parameters corresponding to the self-intersections of the convo-

(c)

1D

=)
=%

(b)

(d)

lution curves (approximated by line segments) mustbe refinedto FIG.34. Trimming by a rectilinear subset of the Minkowski sum.

™
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v v curves generated by concave edges with larger curvature th:
the corresponding convex edges belong to redundant local se
intersection loops; thus they can be eliminated (see the part “A

N " in Fig. 33(b)). AI! cusps can be a.pproximated by computing the
cusps of approximated convolution curvex &2 Co)(t).

/‘J Even after eliminating redundant convolution curve segment
based on Rules 1-3, there are still many redundant segments
the planar graph of remaining convolution curves. Moreover

b) the elimination based on Rule 3 requires the construction c

= approximated convolution curves or the curvature compariso
between two input curve segments. A more efficient solution i
to generate a simpler Minkowski sum which is a proper subse
of the Minkowski sum and then to eliminate convolution curve
\ segments which appear in the interior of the simpler Minkowsk
sum.
Giventwo input object®; andO,, we approximate them with
simpler proper subse®; and P,, respectively. ThenP; & P,
is also a proper subset @i; & O,. Figure 34 shows an exam-
ple which uses rectilinear polygori®(i = 1, 2). The resulting
(c) (d) Minkowski sumP; @ P; is also a rectilinear polygon. The con-
volution curve segments @, x C, that belong to the interior

FIG. 35. Trimming by a polygonal subset of the Minkowski sum.  of P; @ P, can be eliminated from further consideration, where

C, andC; are the boundary curves @f; and O, respectively.

Figure 35 shows another example in which inscribed polygon

P, and P, are used for the approximation &, and O, re-

spectively. In this case, the Minkowski suR @ P; is also a

polygonal object. Figures 34(d) and 35(d) show the eliminatior

ki(t) = —ko(t), (57) procedure based on Rules 1-2, and a simpler Minkowski sul
P.® P,. Note that the remaining convolution curves in Fig. 34(d)
that is, the curvature @, (t) att has the same magnitude as thand 35(d) have relatively few redundancies compared with othe

curvature ofC(s(t)) att, but with a different sign. In this case, elimination procedures based on Rules 1-3.

C,(t) andCy(s) have different convexities. In Figure 36, we show a sequence of shape transformatior

When we subdivide the convolution curv€;(x C)(t) at from a bird to a butterfly. The intermediate shapes are th
each cusp (equivalently, the compatible edggs) andC,(s(t)) Minkowski sums of the bird and butterfly shapes while scaling

at eacht such thatk;(t) = —k»(t)), each resulting convolution the bird from 100% to 0% and the butterfly from 0% to 100%,

curve segmentd; x C,)(t) is generated by a pair of convex-simultaneously (see also Kaul and Rossignac [24]). Bird and bu

concave edges in which the concave edges has larger (respexély objects are bounded by piecewise cubic B-spline curves
tively, smaller) curvature than the convex edge. The convolutidm this example, we use tHeAC method for the curve—curve

SYNRIBS
AW v/

FIG. 36. Transformation from bird to butterfly.

wie
N

P

input curve segment€; (t) andCy(t) = Cy(s(t)), wheres(t) is
a proper reparametrization. The convolution cui@e £ Co)(t)
has a cusp at the parametesuch that
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convolution computation. Thus, the Minkowski sum boundary is
a piecewise rational B-spline curve of degree seven. Figure 3
shows the offset boundary curves that are generated by con
puting the Minkowski sums of the horse-shaped object and the
circles with different radii. The horse shape is represented by
eight cubic B-spline curves and six line segments, and the circle
are represented by rational quadratic curves. Figure 38 demor
strates the generation of C-space obstacles of arobot (Fig. 38(b
and the obstacles consisting of “CSPACE" character shapes (Fic
38(a)). Figures 38(d) and 38(e) show the untrimmed convolutior
curves and the Minkowski sum boundary, respectively. In Figure
38(f), we verify the computed C-space obstacle by sweeping th
robot, while its local reference point follows along the C-space
obstacle boundary.

The polygonal approximation may miss some valid loops
in the exact boundary of a Minkowski sum or include some
invalid loops. A simple way to resolve this problem might be
to approximate the convolution curve with line segments us-

FIG.37. Offsetting. ing high precision. However, this approach generates many tiny
line segments which cause problems in robustness as well ¢

FIG.38. C-space obstacles.
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in computational efficiency. The missing valid loops are due tQ. C. Bajaj and M.-S. Kim, Generation of configuration space obstacles
the tangential and/or multiple intersections of the convolution The case of a moving sphei&EE J. Robotics Automa#(1), 1988, 94—
curve segments. These degeneracies correspond to the topolog2®: o _ _ ' '
ical changes of the Minkowski sum boundary as the shapes 6’f C. Bajaj and M.-S. Kim, Generation of configuration space obstacles: Th
. . . case of moving algebraic curveigorithmica4(2), 1989, 157-172.
input objects are slightly changed. For each degeneracy, the cor- - _ . . .

. . . % C. Bajaj and M.-S. Kim, Generation of configuration space obstacles: Thi
responding convolution curve segments must be intersected with

. .. . .. case of moving algebraic surfacdsternat. J. Robotics Researd{l),
higher precision to determine a correct topology. However, itis 1990, 92-112.

not always poss?ble_to dete_rmine the correct tODF’lOQical arrange:- B. Cobb Design of Sculptured Surface Using the B-spline Representation
ment while making it consistent with the numerical curve inter- Ph.D. thesis, University of Utah, Computer ScienceDepartment, 1984.
section data, especially when the curve segments have (almoat)s. Cohen, G. Elber, and R. Bar-Yehuda, Matching of freeform curves

tangential/multiple intersections [22]. Computer-Aided Desig29(5), 1997, 369-378.
7. G. Elber and E. Cohen, Error bounded variable distance offset operat
7. CONCLUSION ;-og;';;e%;gr?rg curves and surfacdsternat. J. Comput. Geom. Apdl(1),

. . . G. Elber,Free Form Surface Analysis Using A Hybrid of Symbolic and
This paper presented new methods to approximate Convg Numerical ComputationPh.D. thesis, Department of Computer Science,

lution curves. We demonstratgd that many techniques devel- 1o University of Utah, 1992.
oped for offset curve computation can be extended to convoly: _gjper|RIT Version 7.0 Programmer's Manual997.
tion curve computatlpn. As aresult, We.su99e5ted S.everal NRY G. Elber, |.-K. Lee, and M.-S. Kim, Comparing offset curve approximation
methods that approximate the convolution curves with polyno- methods|EEE Comput. Graphics AppL7(3), 1997, 62—71.
mial/rational curves, motivated by applications in conventional. G. FarinCurves and Surfaces for Computer-Aided Geometric Design: A
CAD systems. Practical Guide 4th ed. Academic Press, San Diego, 1996.

In particular, we proposed the techniques based on the cut?e G. Farin,NURB Curves and Surfaces: From Projective Geometry to
reparametrization: for examplgyadratic curve approximation ~ Practical Usg Peters, Wellesley, MA, 1995.
andtangent field matchingQuadratic curve approximation and!3- R-T. gafOUk' a”d_dV-dTéRaJa”' A'QO”mm;Bfgf Poz')énom'a's in Bernstein
reparametrization based approaches have many advantages sucjﬁ”f‘r’ Fomp:_ter Adlce A ;Or;"fles'f@’ 1988, 1- o
as simple error analysis and output data reduction. We expect that - |- Farouki and . A. Neff, Algebraic properties of plane offset curves,

. . . . Computer Aided Geom. Desig(l-4), 1990, 101-127.
the concepts of quadratic curve approximation and tangent fi lad . , )
. . .15, P. Ghosh and S. P. Mudur, The brush-trajectory approach to figure speci

mathh'ng can also be used for many other geometric Operaf['onscation: Some algebraic-solutio’SCM Trans. Graphic$(2), 1984, 110—
which are closely related to the normal and/or tangent directions 134.
of planar curves. 16. P. Ghosh, A mathematical model for shape description using Minkowsk

The 3D extension of convolution curve approximation tech- operators,Comput. Vision Graphics Image Proces$d, 1988, 239-
niques remains an important problem for future research. Bajaj 26°- _ _
and Kim [2'4] showed that 3D offset and convolution of algebrapa- P. Ghosh, An algebra of polygons through the notion of negative shape

surfaces are also algebraic; however, their algebraic degrees ar{fgim Vision Graphics Image Process. Image Understariiing991,

Yery high. Therefor?' for the applications .In practice, it is Ver¥8. P. Ghosh, A unified computational framework for Minkowski operations,
important to approximate the 3D convolution surfaces by poly-  computers and Graphics7(4), 1993, 357-378.

nomial/rational surfaces. Considerable research effortin CAGl@. L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for computer
is required for the 3D extension of the work presented in this geometry, inProc. of 24th Annual Symp. on Foundations of Computer
paper. Sciencepp. 100-111, 1983.

Qualitative and quantitative comparisons are also made ame@agL. Guibas and D. Marimont, Rounding arrangements dynamicalyde.
many convolution curve approximation methods. We believe ©f 11th Annual Symp. on Computational Geomary 190-199, 1995.
that these comparison results provide an important guideline fdr A- Hansen and F. Arbab, An algorithm for generating NC tool paths for
future research in convolution curve computation. arbitrarily shaped pockets with islandsCM Trans. Graph11(2), 1992,

. . . . 152-182.
We also demonstrated the effectiveness of the piecewise Ilng?r , . .
. . . . .. .22, C. Hoffman,Geometric and Solid ModelingMorgan Kaufmann, San
approximation and the plane sweep algorithm in the elimination ;4te0 ca 1989.
of redundant parts. Nevertheless, a robust |mplementat|on of E%? J. Hoschek and D. Lasséuundamentals of Computer Aided Geometric

plane sweep algorithm for planar curve segments still remains pesign Peters, Wellesley, MA, 1993.

an important open problem. 24. A. Kaul and J. R. Rossignac, Solid interpolating deformations: Construc
tion and animation of pipComputers and Graphic6(1), 1992, 107-
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