

GRAPHICAL MODELS AND IMAGE PROCESSING

Vol. 60, No. 2, March, pp. 136–165, 1998
ARTICLE NO. IP970464

Polynomial/Rational Approximation of Minkowski
Sum Boundary Curves1

In-Kwon Lee and Myung-Soo Kim

Department of Computer Science, POSTECH, Pohang 790-784, South Korea

and

Gershon Elber

Department of Computer Science, Technion, IIT, Haifa 32000, Israel

Received June 20, 1997; accepted December 30, 1997

Given two planar curves, their convolution curve is defined as the
set of all vector sums generated by all pairs of curve points which
have the same curve normal direction. The Minkowski sum of two
planar objects is closely related to the convolution curve of the two
object boundary curves. That is, the convolution curve is a super-
set of the Minkowski sum boundary. By eliminating all redundant
parts in the convolution curve, one can generate the Minkowski
sum boundary. The Minkowski sum can be used in various im-
portant geometric computations, especially for collision detection
among planar curved objects. Unfortunately, the convolution curve
of two rational curves is not rational, in general. Therefore, in prac-
tice, one needs to approximate the convolution curves with poly-
nomial/rational curves. Conventional approximation methods of
convolution curves typically use piecewise linear approximations,
which is not acceptable in many CAD systems due to data pro-
liferation. In this paper, we generalize conventional approximation
techniques of offset curves and develop several new methods for ap-
proximating convolution curves. Moreover, we introduce efficient
methods to estimate the error in convolution curve approxima-
tion. This paper also discusses various other important issues in the
boundary construction of the Minkowski sum. c© 1998 Academic Press

Key Words: convolution curve; offset curve; Minkowski sum;
C-space obstacle; sweeping; curve approximation; Bézier curve;
B-spline curve.

1. INTRODUCTION

Convolution is a classic operation which has been used as a
tool for computing collision-free paths in robot motion planning
[3, 19, 27, 33]. Convolution is closely related to the notion of
Minkowski sum. Given two planar curved objectsO1 and O2,

1 The research was supported in part by the Korean Ministry of Science and
Technology under Grants 96-NS-01-05-A-02-A and 96-NS-01-05-A-02-B of
STEP 2000, and by KOSEF (Korea Science and Engineering Foundation) under
Grant 96-0100-01-01-2.

their Minkowski sumO1⊕ O2 is defined as the set of all vector
sums generated by all pairs of points inO1 andO2, respectively:

O1⊕ O2 = {a+ b |a ∈ O1, b ∈ O2}. (1)

In Fig. 1, the gray area of each object represents the object in-
terior. The Minkowski sum of two planar objects considers all
points in the interiors as well as on the boundaries of the two
objects. In this paper, for the sake of computational efficiency
and representational compactness, we are more concerned with
constructing the boundary of the Minkowski sum.

Let O1 andO2 be two planar curved objects which are bounded
by the planar curvesC1 andC2, respectively. The problem of
computing the Minkowski sum boundary, denoted as∂(O1 ⊕
O2), can be transformed into the problem of computing the curve
convolution ofC1 andC2, denoted asC1 ∗C2 [3]. In the convo-
lution operation, the vector sums are applied only to the pairs of
curve points that have the same curve normal direction:

DEFINITION 1.1. LetC1(t) = (x1(t),y1(t))andC2(s) = (x2(s),
y2(s)) be two planar regular parametric curves. The convolution
curveC1 ∗ C2 is defined by

(C1 ∗ C2)(t) = C1(t)+ C2(s(t)), (2)

where

C′1(t) ‖C′2(s(t)) (3)

and

〈C′1(t),C′2(s(t))〉 > 0, (4)

for a reparametrizations= s(t).

When bothO1 and O2 are convex objects, the convolution
curveC1∗C2 is exactly the same as the Minkowski sum bound-
ary∂(O1⊕O2) (see Fig. 1). However,∂(O1⊕O2) is a subset of
C1 ∗ C2 in general [3]. Thus, the convolution curveC1 ∗ C2

136
1077-3169/98 $25.00
Copyright c© 1998 by Academic Press
All rights of reproduction in any form reserved.

MINKOWSKI SUM BOUNDARY CURVES 137

FIG. 1. Minkowski sumO1 ⊕ O2 of two planar convex objectsO1 andO2.

may have some redundant parts which do not contribute to the
Minkowski sum boundary (see Figs. 2(c) and 2(d)). To construct
∂(O1⊕ O2), we need to follow two steps: (i) compute the con-
volution curveC1 ∗C2, and (ii) eliminate the redundant parts of
C1 ∗ C2 which do not contribute to∂(O1⊕ O2).

The convolution curveC1 ∗ C2 is an envelope curve which
is obtained by sweeping one curveC1 (with a fixed orientation)
along the other curveC2 [3]. The constant radius offset curve is
a special case of convolution curve in which the swept curve is
restricted to being a circle of a fixed radiusr . Figure 3 shows
the offset and convolution curves of planar curves. In Fig. 3(a),
an offset curve is obtained by sweeping a circleC2 along the
other curveC1 and taking only the outer envelope curve. In
Fig. 3(b), a convolution curve is generated by sweeping one
curveC2 along the other curveC1 and similarly taking the outer
envelope curve.

The Minkowski sum has been used as an important tool for
computing collision-free paths in robot motion planning [3, 19,
27, 33]. Figure 4(a) shows the Minkowski sumO1 ⊕ O2 of
two planar curved objectsO1 andO2. In Fig. 4(b), we compute
the Minkowski sumO1⊕ (−O2), where−O2 is the symmetric
object ofO2 with respect to the local reference point (which is
located at the origin). There is no collision betweenO1 andO2

as long as the reference point ofO2 does not penetrate∂(O1⊕
(−O2)) (see Fig. 4(c)). The objectO1 ⊕ (−O2) is called the
configuration-space(C-space) obstacleof O1 with respect to
the moving objectO2.

The Minkowski sum has many other applications. In Fig. 5,
an outline font is designed by sweeping an ellipse (with a fixed

FIG. 2. Minkowski sumO1⊕O2 of two planar objectsO1 andO2: (a) convex objectO1 bounded byC1, (b) nonconvex objectO2 bounded byC2, (c) convolution
curveC1 ∗ C2, and (d) the Minkowski sumO1 ⊕ O2.

FIG. 3. Offset and convolution curves: (a) offset and (b) convolution.

orientation) along a skeleton curve [1, 15, 16]. The Minkowski
sum can be used in shape transformation (i.e., metamorphosis
or morphing) between two objects [24]. Figure 6 shows such an
example of shape transformation between two planar objects.
The intermediate shapes are the Minkowski sums of the charac-
ter shapes “T” and “M” while scaling the T shape from 100%
to 0% and the M shape from 0% to 100%, simultaneously.

Most CAD/CAM systems today represent curves and sur-
faces in polynomial/rational spline forms as B´ezier or NURBS
(nonuniform rational B-spline) curves and surfaces. Polyno-
mial/rational curves and surfaces have many advantages (in ren-
dering and geometric computations) over other representation
methods such as implicit curves and surfaces [11]. Therefore,
many conventional geometric modeling operations have been
designed to deal with polynomial/rational curves and surfaces.

Given two planar algebraic curves, their exact convolution
curve is also algebraic. Unfortunately, the convolution curve is
not polynomial/rational, in general. Moreover, the convolution
curve has a high algebraic degree. For example, the exact offset
(a special case of the convolution) of a cubic B´ezier curve has an
algebraic degree of 10 [14]. These undesirable properties have

138 LEE, KIM, AND ELBER

FIG. 4. Minkowski sum andC-spaceobstacle.

led offset and convolution research to develop various approxi-
mation techniques that generate low degree polynomial/rational
curves [10].

Consider Eq. (3) which can be rewritten as follows:

y′2(s(t))x′1(t)− x′2(s(t))y′1(t) = 0. (5)

When the curveC2(s) is a quadratic polynomial curve,

C2(s) = (x2(s), y2(s)) = (as2+ bs+ c, ds2+ es+ f),

Eq. (5) becomes

(2ds(t)+ e) x′1(t)− (2as(t)+ b) y′1(t) = 0,

which produces a unique solution fors(t); namely, we have

s(t) = by′1(t)− ex′1(t)

2dx′1(t)− 2ay′1(t)
.

When the curveC1(t) is rational, the convolution curve (C1 ∗
C2)(t) can be computed as a rational curve using a symbolic

FIG. 5. Outline font generation using the Minkowski sum.

composition technique [8, 11, 13]. However, Eq. (5) may not
have a unique rational solution ofs(t) when the curveC2(s) has
degree higher than two.

A simple way of approximating the convolution curve (C1 ∗
C2)(t) with a rational curve is to approximate either (i) the
curveC2(s) by a quadratic polynomial curve [30, 31], or (ii)
the reparametrizations(t) by a rational function [31]. Leeet al.
[30] applied the first approach to the planar curve offset problem
in which the curveC2(s) is an exact circle. Note that the circle
can be represented exactly by a rational quadratic curve, but
no polynomial curve can represent an exact circle. Therefore,
Leeet al. [30] approximated the offset circle by a sequence of
quadratic polynomial B´ezier curves and approximated the off-
set curve by computing the convolution curves of the given base
curve and the B´ezier curves approximating the offset circle. Lee
et al. [31] suggested convolution curve approximation methods
based on the two approaches (i) and (ii) above and compared
their experimental results.

In Section 4, the methods of Leeet al. [31] are classified
according to approaches based on (i) quadratic curve approxi-
mation, (ii) reparametrization, and (iii) tangent field matching.
Section 4 also presents other methods corresponding to ap-
proaches based on (iv) control polygon and (v) interpolation.
Elberet al. [10] surveyed conventional offset curve approxima-
tion methods and made detailed (qualitative and quantitative)
comparisons of them. The approaches of Section 4 are general-
izations of similar approaches in the offset curve approximation
methods surveyed and compared in Elberet al. [10].

Conventional convolution curve approximation methods use
piecewise linear approximations to represent the convolution
curves (see Section 2), which may not be acceptable in many
CAD systems due to data proliferation. Based on generalizations
of conventional offset curve approximation methods, all the con-
volution curve approximation methods presented in this paper
approximate the convolution curves with polynomial/rational
curves. Each of our methods also provides appropriate error

MINKOWSKI SUM BOUNDARY CURVES 139

FIG. 6. Shape transformation by a sequence of Minkowski sums.

analysis mechanism(s). (No previous method suggested a way
to measure approximation error.)

This paper also discusses various other important issues in
the construction of the Minkowski sum boundary; e.g., a com-
patible subdivision of input curves in a preprocessing step, the
approximation of convolution curves with polynomial/rational
curves, and the extraction of the Minkowski sum boundary from
the planar graph of convolution curves. For the elimination of
redundant parts in untrimmed convolution curves, we demon-
strate a method based on a plane sweep algorithm [34] and apply
the algorithm to piecewise linear approximations of the con-
volution curves. (There is no known implemented algorithm
which can determine the arrangement of planar curve segments
robustly; therefore, we use a robust algorithm that can determine
the arrangement of approximating line segments.) Experimental
results of this new trimming algorithm are promising.

The rest of this paper is organized as follows. In Section 2,
we review previous work for the Minkowski sum and convo-
lution curve computation. Section 3 describes a general algo-
rithm for constructing the Minkowski sum boundary. In Section
4, we present several new methods that approximate convolu-
tion curves with polynomial/rational curves. Detailed qualitative
and quantitative comparisons of these approximation methods
are made in Section 5. In Section 6, we consider how to elimi-
nate redundant parts of convolution curves for the construction
of the Minkowski sum boundary. Some interesting experimental
results are also demonstrated in this section. Finally, in Section 7,
we conclude this paper and suggest further research problems.
The implementation of all algorithms and comparisons pre-
sented in this paper are based on the IRIT solid modeling library
[9].

2. PREVIOUS WORK

In spite of the paramount importance of the Minkowski sum
operation in practice, conventional convolution curve compu-
tation methods have many limitations. Exact methods [3, 15,
27] generate convolution curves which are algebraic/analytic
curves; however, they are not rational, in general. Approxima-
tion methods [1, 25, 29] generate polygonal approximations,

which may not be acceptable in many CAD systems due to
data proliferation. Moreover, error analysis has not been seri-
ously considered in the conventional approximation methods.
The Minkowski sum boundary construction requires an algo-
rithm which can determine the global arrangement of convolu-
tion curve segments in the plane; after that, it must eliminate
all the redundant parts which lie in the Minkowski sum interior.
Unfortunately, there has been no known implemented algorithm
that can determine the curve arrangement in a robust way. A
reasonable approximate solution may be based on using polyg-
onal approximation of the convolution curves. These important
issues have not been thoroughly considered in the previous work.
We present more details in the following subsections. The later
sections of this paper suggest some (partial) solutions to remedy
drawbacks of the previous work.

2.1. The Minkowski Sum Computation

Lozano-Pérez [32, 33] used the Minkowski sum operation to
construct the C-space obstacles for polygonal/polyhedral
objects. To simplify the computation, each nonconvex object is
subdivided into convex objects and a convex Minkowski sum
is computed for each pair of convex objects. After that, the
Minkowski sum of the original objects is represented as a union
of all these convex Minkowski sums. When the objectsO1 and
O2 are subdivided intom andn convex objects,O1,i (1≤ i ≤m)
andO2, j (1≤ j ≤ n), respectively, the resulting Minkowski sum
O1⊕O2 is a union ofmnconvex Minkowski sums,∪1≤i≤m,1≤ j≤n

O1,i ⊕O2, j , the representation of which requires at leastO(mn)
edges/faces. Nevertheless, the number of edges/faces in the poly-
gonal/polyhedral boundary∂(O1 ⊕ O2) may end up to be only
a small fraction ofO(mn). Moreover, the convex decomposi-
tion can be applied to polygonal/polyhedral objects only. When
a nonconvex curved object has a concave edge/face, it is im-
possible to decompose the object into a finite union of convex
objects. For handling curved objects as well as improving space
efficiency, it is necessary to develop an algorithm which can
compute the Minkowski sum boundary without using the con-
vex decomposition of input objects.

Guibaset al. [19] suggested such an algorithm for polygonal
objects in the plane. They investigated some important properties

140 LEE, KIM, AND ELBER

of the planar graph of convolution edges. The graph is composed
of closed loop(s) which may self-intersect; that is, there is no
dangling convolution edge in the graph. The planar convolu-
tion graph subdivides the plane into many disjoint regions. Each
region has a winding number that is defined by the tracing of all
closed loops along appropriate directions. The Minkowski sum
boundary is defined as the set of convolution edges which are
adjacent to a region with winding number zero. An important
problem is how to define the directions of convolution edges so
that each closed loop has a well-defined direction. However, this
problem has not been seriously considered, yet. Moreover, the
winding number classification seems not to work properly for
the detection of the Minkowski sum boundary when an input
object has small interior holes. In this paper, we consider two
planar curved objects and construct their convolution graph as a
union of closed loops. Each convolution edge has a well-defined
direction and each convolution loop also has a well-defined ori-
entation which is compatible with the directions of its component
convolution edges.

Ghosh [16–18] presented in great detail the concepts, algo-
rithms, and data structures that support the Minkowski sum
and decomposition for polygonal/polyhedral objects. Assuming
exact computation of line/line, plane/line, and plane/plane inter-
sections, the Minkowski operations can be implemented based
on the algorithms presented in Ghosh [16–18]. Rational arith-
metic can be used to support such exact computation. How-
ever, when we use floating point arithmetic (which introduces
numerical errors), it is nontrivial to implement Ghosh’s algo-
rithms robustly. Moreover, in the curved case, it is impossible to
support exact computation of the curve/curve, curve/surface, and
surface/surface intersections even if we use rational arithmetic.
Therefore, there are still many challenging problems that must
be resolved for the realization of the very important Minkowski
operations of Ghosh [16–18] in practical situations. That is, we
need to develop robust and efficient algorithms that can support
the Minkowski operations on freeform curved objects, while
using floating point computation. In this paper, we consider
the Minkowski sum of planar curved objects. The Minkowski
decomposition can be implemented in a similar way. However,
the extension to solid objects (bounded by freeform surfaces) is
far beyond the scope of this paper.

Bajaj and Kim [3, 4] discussed various important issues in the
Minkowski sum computation for planar curved objects bounded
by algebraic curves and also that for convex solid objects
bounded by algebraic surfaces. The most important steps in the
Minkowski sum computation include a compatible sub-
division of input curves/surfaces, the generation of convolu-
tion curves/surfaces, and the elimination of redundant parts.
The convolution curves/surfaces are represented by simultane-
ous systems of polynomial equations. Some auxiliary variables
are used in the simultaneous polynomial equations. Implicit
curve/surface equations can be obtained by eliminating the
auxiliary variables using resultant methods. However, the elimi-
nation process takes a considerable amount of symbolic compu-

tation time and the resulting curve/surface equations may have
many redundant components. Therefore, the convolution curves/
surfaces must be trimmed to represent only the portions of curve
segments and surface patches which appear on the Minkowski
sum boundary. This trimming procedure is nontrivial for implicit
curves/surfaces especially when they have high degree, which is
indeed the case for convolution curves/surfaces. Consequently,
the convolution curves/surfaces must be approximated by para-
metric curve segments and surface patches for further construc-
tion of the Minkowski sum boundary. This paper presents sev-
eral methods to approximate the convolution curves with planar
polynomial/rational curve segments.

2.2. Exact Convolution Curve Computation

Ghosh [15] demonstrated that Eq. (5) has a closed-form solu-
tion in some special cases. One such case is shown in the fol-
lowing example:

EXAMPLE 2.1. LetC1(t) andC2(s) be two ellipses defined
by

C1(t) = (a cost, bsint) and C2(s) = (p coss,q sins). (6)

In this case, Eq. (5) is represented as follows:

aqcosssint = bpsinscost. (7)

We have two solutions for the reparametrizations(t):

s1(t) = arctan(k tant) and s2(t) = π + arctan(k tant), (8)

wherek = aq/bp. There are two possible candidates forC2(s(t))
that are reparametrized bys1(t) ands2(t), respectively:

C2(s1(t)) =
(

p cost√
k2 sin2 t + cos2 t

,
qksint√

k2 sin2 t + cos2 t

)
, (9)

and

C2(s2(t)) =
(

−p cost√
k2 sin2 t + cos2 t

,
−qksint√

k2 sin2 t + cos2 t

)
. (10)

Clearly, only the curveC2(s1(t)) satisfies the condition of Eq. (4),
namely,

〈C′1(t),C′2(s1(t))〉 > 0. (11)

Thus, the convolution curve (C1 ∗ C2)(t) is given as follows:

(C1 ∗ C2)(t) =
(

a cost + p cost√
k2 sin2 t + cos2 t

,

bsint + qksint√
k2 sin2 t + cos2 t

)
. (12)

MINKOWSKI SUM BOUNDARY CURVES 141

FIG. 7. Convolution (C1∗C2)(t) of two ellipses:C1(t) = (2 cost, 3 sint) and
C2(s) = (4 coss, 2 sins), computed by Ghosh’s method.

Figure 7 shows the convolution curve of two ellipses that is
computed by Eq. (12). Ghosh [15] also considered other special
cases such as ellipse–cubic and special quartic–cubic convolu-
tion curves. In these special cases, the exact convolution curves
can be computed analytically; however, they are not rational, in
general.

Bajaj and Kim [3, 4] showed that, when input curves/surfaces
are given as implicit or parametric curves/surfaces, their con-
volution curves/surfaces can be represented exactly as implicit
algebraic curves/surfaces. However, the resulting algebraic
degrees are too high to be useful in practice [3]. Moreover,

FIG. 8. Gaussian approximations (GAP) of a cubic B-spline curve: (a) the original curve, (b) GAP corresponding to the 32 subdivision of the unit circle, (c)
GAP to the 64 subdivision, and (d) GAP to the 128 subdivision.

the convolution curve/surface trimming is nontrivial for implicit
curves/surfaces.

Kaul and Farouki [25] took a similar approach to that of Bajaj
and Kim [3]. They have more detailed and elaborate discussions
on various important issues in the construction of the Minkowski
sum boundary.

Kohler and Spreng [27] considered special cases in which con-
volution curves can be represented exactly, using radicals. They
suggested some numerical techniques to speed up the compati-
ble curve subdivision and convolution curve computation. The
degree ofC2(s) is restricted to be lower than or equal to 5.
Then, one can compute the exact closed-form solutions ofs(t)
in Eq. (5) by using radical expressions. However, the solutions
are not rational, in general. Furthermore, one has to determine
the correct solution from at most four possible candidates ofs(t).

2.3. Approximation Methods for Convolution Curve

Lee and Kim [29] suggested a method for approximating con-
volution curves with polygonal curves. In this method, each in-
put curve is approximated by a sequence of discrete points (thus,
forming a polygon) before the convolution computation. For a
given set of evenly distributed normal directions, which is ob-
tained by a regular subdivision of the unit circle, Lee and Kim
[29] approximated each planar algebraic curve segment by a
sequence of curve points. At each point, the curve gradient cor-
responds to one of the predefined normal directions (see Fig. 8).

This curve approximation method is calledGaussian app-
roximation (GAP) and supports various primitive geometric
operations such as offset, convolution, common tangent, and dis-
tance computations [29]. An approximated convolution curve is

142 LEE, KIM, AND ELBER

FIG. 9. Gaussian approximations (GAP) of two ellipsesC1 andC2 are gen-
erated based on a predefined circle subdivisionS1 . (C1 ∗C2) is the convolution
curve of two ellipses.

computed as the sequence of vector sums generated by the pairs
of curve approximation points corresponding to the same normal
direction (see Fig. 9). Since this approach is based on a linear
approximation, a large number of discrete points is generated
to approximate a convolution curve with high precision. In this
paper, we propose several methods that approximate convolu-
tion curves with polynomial/rational spline curves. As a result,
we can reduce output data significantly.

Ahn et al. [1] considered the more general problem of com-
puting the boundary curve of a general sweep in the plane. In the
general sweep, the sweeping object changes its shape and orien-
tation dynamically while moving along a given trajectory. The
convolution curve computation is a special case of general sweep
boundary construction in which the sweeping object is restricted
to a fixed shape and orientation. Ahnet al.[1] approximated the
general sweep boundary curve with line segments. Ghosh [15]
approximated the general sweep boundary with analytic curves
under the assumption that the shape change of the moving object
is negligible compared with its translational motion along the
trajectory curve. The solution curves are not rational, in general.
This paper presents several methods of approximating convolu-
tion curves with polynomial/rational curves. However, it is non-
trivial to extend the methods of Ahnet al. [1] and Ghosh [15]
so that one can approximate the general sweep boundary with
polynomial/rational curves. Therefore, this problem remains an
important open problem for future work.

Kaul and Farouki [25] suggested a piecewise linear approx-
imation method for convolution curves. They generated a se-
quence of discrete points along the convolution curve on the
fly, by computing Eq. (5) for two compatible curve segments.

That is, for a sampled sequence{ti } of the parametert of C1(t),
they computed the corresponding{si } by solving the following
equation:

y′2(si)x
′
1(ti)− x′2(si)y

′
1(ti) = 0. (13)

We may interpolate the discrete values ofsi (i = 1, . . . ,n) using
a polynomial/rational functions(t) so thats(ti) = si , for each
i . The resulting polynomial/rational curveC1(t) + C2(s(t)) is
an approximation of the convolution curve (C1 ∗ C2)(t). This
approximation method belongs to the reparametrization-based
approach of convolution curve approximation methods to be
discussed in Section 4.

3. CONSTRUCTION ALGORITHM
FOR THE MINKOWSKI SUM

In this section, we review some basic concepts and present an
algorithm for the boundary construction of the Minkowski sum
of planar curved objects. Later sections will describe in more
detail methods of computing/approximating convolution curves
based on the materials presented in this section.

3.1. Planar Object, Boundary, and Normal

We start by defining the boundary of a planar curved object:

DEFINITION 3.1. The boundary of a planar curved objectO,
denoted as∂O, is represented by a connected sequence of piece-
wise smooth curve segments and their end points;

∂O= {P0,C0, P1,C1, . . . , Pn−1,Cn−1
}
, (14)

wherePi andPmod(i+1,n) are two end points of the curve segment
Ci . We assume that the object may have cusps at verticesPi only.
Thus, none of the curve segmentCi has singularity except at the
curve end points.

Figure 10 shows examples of planar curved objects. Object
O1 consists of three boundary curve segments andO2 has only
one boundary curve segment.

FIG. 10. Examples of planar curved objects.

MINKOWSKI SUM BOUNDARY CURVES 143

In the convolution computation, each vertexPi may be consid-
ered as anedgeof the object, which has length zero but has con-
tinuously changing normal vectors. Later, each curve segment
is further subdivided intoconvexandconcavecurve segments
by inserting all inflection points as extra vertices (see Section
3.2). The convexity of each edge (curve or vertex) is defined as
follows:

DEFINITION 3.2. Let C(t)= (x(t), y(t)), t0≤ t ≤ t1, be a
planar regular curve segment.

C(t) is an inflection point⇔ x′(t)y′′(t)− x′′(t)y′(t) = 0,

(15)

C(t), (t0 ≤ t ≤ t1), is convex⇔ x′(t)y′′(t)− x′′(t)y′(t) > 0,

for t0 < t < t1, (16)

C(t), (t0 ≤ t ≤ t1), is concave⇔ x′(t)y′′(t)− x′′(t)y′(t) < 0,

for t0 < t < t1. (17)

Let Pi be a vertex, and assume thatε >0 is an arbitrarily small
number.

Pi is convex⇔ Bε(Pi) ∩ O is smaller than a half ofBε(Pi),

(18)

Pi is concave⇔ Pi is nonconvex, (19)

whereBε(Pi) is anε-ball with center atPi : Bε(Pi) = {P|‖P−
Pi ‖ < ε}.

We assume that each curve segmentC(t), for t0≤ t ≤ t1, has no
inflection point in the curve interior, i.e.,x′(t)y′′(t)− x′′(t)y′(t)
6= 0, fort0< t < t1. Then the curve segmentC(t) is either convex
or concave. We need the following definition to introduce the
Gauss mapof an edge:

DEFINITION 3.3. For a curve segmentC(t) = (x(t), y(t)), t0
≤ t ≤ t1, theunit normal vector fieldof C(t) is defined by

N(t) = (y′(t),−x′(t))√
x′(t)2+ y′(t)2

∈ S1, t0≤ t ≤ t1, (20)

whereS1 is the unit circle.

We assume that the boundary curve segments of a planar
curved object are oriented in counterclockwise order. That is,
the normal vectors of a planar curve are pointing to the right-
hand side of the curve advancing direction.

DEFINITION 3.4. TheGauss mapN (C) of a curve segment
C(t) = (x(t), y(t)), t0≤ t ≤ t1, is a unit circular arc defined by

N (C) = {N(t) | t0 ≤ t ≤ t1} ⊂ S1, (21)

whereS1 is the unit circle. For a vertexPi , let Ni−1(ti−1,1) and
Ni (ti,0) be the unit normal vectors ofCi−1(t), ti−1,0≤ t ≤ ti−1,1,
and Ci (t), ti,0≤ t ≤ ti,1, respectively, at the common vertex
Pi (= Ci−1(ti−1,1)=Ci (ti .0)). TheGauss mapN (Pi) of a con-
vex (resp., concave) vertexPi is defined as the unit circular arc
which connectsNi−1(ti−1,1) and Ni (ti,0) in counterclockwise
(resp., clockwise) direction on the unit circleS1.

A different choice of orientation (i.e., counterclockwise/clock-
wise direction) for the Gauss maps of convex/concave vertices
implies that the Gauss maps generate unit circular arcs of length
less than or equal toπ . In Fig. 10,P1,0 andP1,1 are convex and
concave vertices, respectively. The dashed circular arcs represent
the Gauss maps of the vertex edges. Note that the arc direction of
N (P1,0) (resp.,N (P1,1)) is counterclockwise (resp., clockwise).
Finally, we define thecompatible pairof edges:

DEFINITION 3.5. Lete1 ande2 be two edges on∂O1 and∂O2,
respectively. Two edgese1 ande2 arecompatibleif and only if
N (e1) = N (e2).

The convexity of an edge is not important in the definition of
compatibility. Note that an edge is either a curve segment or a
vertex.

3.2. Compatible Subdivision

For the sake of simplicity, we first assume that two input
objects,O1 and O2, are bounded by smooth curves,C1(t) and
C2(s), respectively. That is,C1(t)= (x1(t), y1(t)), t0≤ t ≤ t1, and
C2(s)= (x2(s), y2(s)), s0≤ s≤ s1, are closed regular curves, and
they haveG1-continuity atC1(t0)=C1(t1) andC2(s0)=C2(s1),
respectively. Then the objectsO1 andO2 have no cusp on their
boundaries. In this subsection, we consider how to subdivide the
two boundary curvesC1(t) andC2(s) into compatible subseg-
ments byhodograph subdivisionas shown in Fig. 11.

Let C1(t̄i), (0≤ i < m̄), and C2(s̄j), (0≤ j < n̄), be all the
inflection points ofC1(t) andC2(s), respectively. The inflection
points can be computed based on Definition 3.2 using symbolic
and numeric computation tools [8]. By inserting each inflection
point as a new vertex, the curve is subdivided into convex and
concave subsegments. For each inflection point,C1(t̄i) (resp.,
C2(s̄j)), the rayOC′1(t̄i) (resp.,OC′2(s̄j)) emanating from the
origin and passing through the pointC′1(t̄i) (resp.,C′2(s̄j)) is tan-
gent to the hodographC′1(t̄) (resp.,C′2(s̄)) (see Eq. 15). The set
of rays{

OC′1(t̄i),OC′2(s̄j),OC′1(t̄0),OC′2(s̄0) | 0≤ i < m̄,

0≤ j < n̄
}

(22)

constitutes a set of sector-form regionsRk, (0≤ k< l), which is
a partition of the 2D planeR2 (see Fig. 11(b)).

After computing all the inflection points, the hodographsC′1(t)
and C′2(s) are subdivided into piecewise curvesC′1,i (t), (0≤
i <m), andC′2, j (s), (0≤ j < n), at the intersection points with

144 LEE, KIM, AND ELBER

FIG. 11. Hodograph subdivision.

the rays in the set of Eq. (22). The intersection points of a line
and a curve can also be computed using symbolic and numeric
computation tools. The original curves,C1(t) and C2(s), are
subdivided at the parameter values corresponding to the end
points of the hodograph curve segmentsC′1,i (t) and C′2, j (s),
respectively (see Fig. 11(c)).

Each curve segment,C1,i (t) or C2, j (s), is recorded in the
sector-form regionRk which includes the corresponding hodo-
graph curveC′1,i (t) or C′2, j (s). All the pairs (C1,i (t),C2, j (s))
that are recorded in the same sector-form region are compa-

FIG. 12. (a) Two planar curves and (b) their hodograph subdivisions (also with additional subdivisions along thex- andy-axes).

tible pairs; that is,N (C1,i) = N (C2, j). Figure 11(d) shows
the resulting convolution curves generated fromC1(t) and
C2(s).

In convolution curve computation, it is convenient to assume
that each curveC(t) is convex/concave and its Gauss mapN (C)
has length less thanπ . For each normal vectorN ∈ N (C), we
can then compute a unique curve pointC(t) that corresponds to
the normal vectorN as follows:

〈C′(t), N〉 = 0. (23)

Such subdivision ofC1(t) and C2(s) can be done by insert-
ing extra vertices at all inflection points and at the intersection
points of their hodographs with some extra rays. One simple
method is to use thex-and y-axes as extra rays (see Fig. 12).
Figure 12 shows two planar curves and their hodograph subdi-
visions so that each Gauss map belongs to a quadrant of the unit
circle S1.

In general situations, the boundary curves may have cusps at
vertices; that is, the object boundary may not beG1-continuous
(see Fig. 13). Then the algorithm becomes more complex. Each
cusp point may be treated as an edge with a sector-form Gauss
map. Each concave cusp point (represented as¯ in Fig. 13) is
treated in a similar way. In the hodograph subdivision process,
the Gauss map of each point edge is also subdivided by the rays
from the origin as shown in Fig. 11 (b).

3.3. Computing Convolution Edges

After compatible subdivision, a convolution edge is computed
for each pair of compatible edges. As mentioned in the previous
subsection, the compatible pair may be a curve–curve or curve–
point pair. For simplicity of explanation, we consider the case
of polygonal objects first.

MINKOWSKI SUM BOUNDARY CURVES 145

FIG. 13. Hodograph subdivision of curves with cusps.

3.3.1. Polygonal Objects

Given two polygonal objects, we apply the following three
rules [19, 33] to compute the convolution edges:

1. For a pair of points,P1 andP2, such thatN (P1) ∩N (P2)
6= ∅,

P1 ∗ P2 = P1+ P2.

2. For a pointP1 and a line segmentP2P3 such thatN (P2P3)
⊂ N (P1),

P1 ∗ P2P3 = (P1+ P2)(P1+ P3).

3. For a pair of compatible line segmentsP1P2 andP3P4 such
thatN (P1P2) = N (P3P4),

P1P2 ∗ P3P4 = (P1+ P3)(P2+ P4).

The above rules imply that the strict compatible subdivision
(described in Section 3.2) is not necessary for the convolution of
two polygonal objects. Figure 14 shows an example of convolu-
tion edge computation for two convex polygonal objects. Each
convolution edgeCi is computed based on the above three rules.
Clearly, we can ignore Rule 1 because it generates convolution
vertices only.

For nonconvex polygonal objects, there are some subtle cases
which need careful treatment. In Fig. 15, two verticesa7 and
b7 are concave vertices. The Gauss map of each concave vertex
has a clockwise orientation. For example, the normal angle of
a7 changes from 280◦ to 260◦, instead of changing from 260◦ to
280◦. The clockwise orientation has an important implication in
the determination of the orientation for each convolution edge
generated from a compatible pair of a concave vertex and a line
segment.

In Fig. 15, each convolution edge has its edge direction inher-
ited from that of component edge(s). For example, the convolu-
tion edgec5 = a4 ∗ b7 is obtained from the parallel translation

of a4 by a vectorb7. The edge direction ofc5 in this figure is the
same as that ofa4. Similarly, the convolution edgesc12 = a8∗b7

andc15 = a7∗b6 are given the same directions as those ofa8 and
b6, respectively. Unfortunately, this strategy does not produce a
consistent orientation for each closed loop of convolution edges.
For example, the edge direction ofc5 is inconsistent with those
of c4 andc6. Moreover,c12 andc15 have inconsistent directions
with those ofc13 andc14.

To make the orientation of a convolution loop consistent with
the directions of all its component convolution edges, we take
the simple strategy of reversing the direction of each convolu-
tion edge generated from a concave vertex and a line segment.
(We have a similar problem in computing the convolution edge
for each pair of compatible curve segments; more details will
be discussed in Section 3.3.2.) Figure 16(a) shows two convo-
lution loops which have consistent orientations. The loops sub-
divide the planeR2 into four disjoint connected regions, each
of which is assigned a unique winding number. The winding
number provides an important theoretical tool in characterizing
the Minkowski sum boundary from the superset consisting of
all convolution edges; namely, a convolution edge belongs to
the Minkowski sum boundary if and only if it is on the bound-
ary of a region with winding number zero. (This characteriza-
tion holds under the assumption that two input objects have no
holes.)

FIG. 14. Convolution computation for convex polygons.

146 LEE, KIM, AND ELBER

FIG. 15. Convolution computation for nonconvex polygons: each convolution
edge direction is inherited from its component edge directions.

Guibaset al. [19] introduced the concept of winding num-
ber to computational geometry. A geometric interpretation of
winding number in the convolution curve arrangement may be
given as follows. Consider two simply connected planar objects
O1 and O2 bounded byC1(t) andC2(s), respectively, and the
convolution curve (C1 ∗ C2)(t) which forms a superset of the

FIG. 16. Consistent edge directions and the winding number of each region.

Minkowski sum boundary∂(O1 ⊕ O2). When the reversed ob-
ject−O2 is translated so that its center is located in a region of
winding numberk (for the convolutionC1 ∗ C2), the two ob-
jects O1 and−O2 intersect ink disjoint regions. Figure 16(b)
shows four different translated instances of the reversed object
−O2, where the reference point of each instance is located in a
region of winding numberk(= 0, 1, 2). Note that each instance
of−O2 intersects withO1 in k disjoint regions (shown in gray).
When we move−O2 (with a fixed orientation) while its refer-
ence point is contained in the same region of winding number
k, the number of disjoint regions inO1 ∩ (−O2) is always fixed
to k. TheC-spaceobstacle boundary,∂(O1⊕O2), is in between
two different configurations: one for collision and the other for
collision-free. Therefore, it is clear that only the convolution
edges adjacent to regions of winding number zero can contribute
to the Minkowski sum boundary∂(O1 ⊕ O2). Moreover, each
point on the Minkowski sum boundary must be adjacent to a
region of winding number zero.

When the objectO2 is a circle with its center at the origin,
we have−O2 = O2 and the winding number theory can be
applied to the boundary construction of the offset ofO1, that is,
to the construction of∂(O1 ⊕ O2). It is interesting to note that
the offset boundary classification of Hansen and Arbab [21] is
equivalent to the winding number theory which has been known
in computational geometry for many years [19]. In the above
discussion of the winding number theory, we have restricted the
input objects to those with no holes. When an object’s holes
are sufficiently large for the other object to be totally contained
in each hole, we can apply the same characterization to clas-
sify the convolution edges which appear on the Minkowski sum
boundary. In NC machining, small holes are not allowed since
they introduce gouging when they do not contain the machining
tool completely. Therefore, the winding number theory can be
applied with no restriction to the offset operation in NC pocket
machining.

MINKOWSKI SUM BOUNDARY CURVES 147

The winding number technique provides a theoretical solution
to the construction of the Minkowski sum boundary. However, it
is still quite doubtful whether this technique can contribute to the
robustness and efficiency of a construction algorithm. When we
deal with nonpolygonal convolution curves, there has been no
known implemented algorithm that can robustly determine the
arrangement of convolution curves. The determination of curve
arrangement is the most crucial step in computing the winding
number of each connected region.

In dealing with polygonal convolution edges (or polygonal
approximations of convolution curves), a simple way to im-
plement a robust arrangement of line segments is to use exact
rational arithmetic. However, this strategy does not provide an
efficient solution to the arrangement of line segments, espe-
cially when a large number of line segments are used to approx-
imate curved convolution edges. Guibaset al. [20] presented an
efficient technique that uses floating-point arithmetic and de-
termines the arrangement of line segments robustly. In this pa-
per, we use a similar technique that was also implemented in
Ahn et al. [1].

The convolution edges generated from at least one concave
vertex do not appear on the final boundary of a Minkowski
sum. Moreover, they have no contribution to the robustness and
efficiency of an arrangement algorithm for convolution edges.
Consequently, we can simply remove all convolution edges gen-
erated from at least one concave vertex (Fig. 17(a)) and compute
the Minkowski sum boundary by eliminating other redundancies
(Fig. 17(b)). In fact, the elimination of as many redundant con-
volution edges as possible in a preprocessing step improves the
robustness and efficiency of the construction algorithm for a
Minkowski sum boundary. In Section 6, we will discuss some
preprocessing techniques which compute simpler Minkowski
sums and eliminate many redundant convolution edges based
on them.

3.3.2. Planar Curved Objects

The convolution rules for planar curved objects are similar to
those for polygonal objects:

FIG. 17. Elimination of redundant parts in the convolution of concave polygons.

1. For a pointP and a curve segmentC such thatN (P)=N (C)
(i.e., they are compatible),

P ∗ C = P + C.

2. For a pair of compatible curve segmentsC1 andC2, i.e.,
N (C1) = N (C2),

(C1 ∗ C2)(t) = C1(t)+ C2(s(t)),

where

C′1(t) ‖C′2(s(t)) and 〈C′1(t),C′2(s(t))〉 > 0.

In the curved case, the convexity of each curve segment is im-
portant. When the convexities of two compatible edges are dif-
ferent, the determination of convolution edge direction becomes
complex since it depends on the relative curvature distribution
of each component curve. Assume thatC1(t) andC2(s) are two
compatible curve segments which are concave and convex, re-
spectively (see Figs. 18(a)–18(b)). Moreover, assume thatC1(t)
andC2(s) are arc-length parametrized byt ands, respectively.
The first derivative (C1 ∗ C2)′(t) is computed as follows:

(C1 ∗ C2)′(t) = C′1(t)+ C′2(s(t))s′(t).

Since the convexities ofC1(t) andC2(s) are different, the repara-
metrizations(t) decreases as the parametert increases; that is,
we haves′(t) < 0, for all t . When the curvature ofC1(t) is larger
than that ofC2(s(t)), the speed ofs(t) is larger than 1 and we have
s′(t) < −1 (see Figs. 18(d)–18(e)). Therefore, the direction of
(C1∗C2)′(t) is opposite to that ofC′1(t), and it is parallel to that of
s′(t)C′2(s(t)) (equivalently, to that of−C′2(s(t))). This explains
why we need to reverse the edge direction in each convolution
edge that is generated from a concave vertex and a line segment
(see Section 3.3.1).

A convolution curve (C2∗C1)(s) having the same curve trace
as that of (C1 ∗C2)(t) can be constructed by switching the roles
of C1(t) andC2(s),

(C2 ∗ C1)(s) = C1(t(s))+ C2(s),

148 LEE, KIM, AND ELBER

FIG. 18. Convolution curve for a compatible pair of convex–concave edges.

where

C′1(t(s)) ‖C′2(s) and 〈C′1(t(s)),C′2(s)〉 > 0.

The first derivative (C2 ∗ C1)′(s) is then computed as follows:

(C2 ∗ C1)′(s) = C′1(t(s))t ′(s)+ C′2(s).

When the curvature ofC1(t(s)) is larger than that ofC2(s), the
speed oft(s) is smaller than 1 and we have−1< t ′(s)< 0 (see
Figs. 18(f)–18(g)). Therefore, the direction of (C2 ∗C1)′(s) is
the same as that ofC′2(s). Note that this direction is opposite to
that of (C1 ∗C2)′(t). This may look self-contradictory. However,
note that the two convolution curves (C1∗C2)(t) and (C2∗C1)(s)
have the same curve trace; nevertheless, they are parametrized in
opposite directions when the convexities ofC1(t) andC2(s) are
different (see Figs. 18(d) and 18(f)). Therefore, we have to select
the convolution edge direction from the two opposite directions
of (C1 ∗C2)(t) and (C2 ∗C1)(s). In the convolution graph of

Fig. 18(c), we can easily notice that the edge direction of (C1 ∗
C2)(t) will produce a consistent orientation for the convolution
loop.

When we slightly bend a line segment into a concave circular
arc with a very large radius and also slightly round a concave
vertex into a concave circular arc with a very small radius, the
resulting convolution edge (i.e., a circular arc with a large ra-
dius) must have almost the same curve shape and edge direction
as the convolution linear edge generated by the line segment
and the concave vertex. That is, the convolution edge must have
the opposite direction to that of the two input concave edges.
Figures 19(a)–19(b) show two input objects. The boundary of
each object consists of two line segments and a concave circular
arc. The convolution edge of two concave circular arcs is also a
circular arc, the radius of which is given by the addition of the
radii of two input circular arcs. Note that the convolution edge
direction is opposite to that of the two input concave edges (see
Fig. 19(c)).

MINKOWSKI SUM BOUNDARY CURVES 149

FIG. 19. Convolution curve for a compatible pair of concave–concave edges.

When we examine the winding number of each connected
region in the planar convolution graph, we find that the winding
number of the region to the left of each convolution edge is one
larger than that of the region to the right (see Fig. 19(c)). In par-
ticular, the convolution edge generated by two compatible con-
cave edges reverses its edge direction from that of the two input
edges so that it correctly reflects the more complex interference
between two input objects in its left rather than its right-hand
side. Note that the right-hand side of such a convolution edge
also belongs to the Minkowski sum interior (see Fig. 19(c)).
Consequently, the convolution edges generated by the compat-
ible pairs of concave edges cannot appear in the Minkowski
sum boundary. Using a similar argument, we can also show
that the convolution edges generated by at least one concave
vertex do not contribute to the Minkowski sum boundary. Figures
19(d)–19(f) show the relationship between the winding number
of a region in the convolution graph and the number of disjoint
regions inO1 ∩ (−O2).

In computing the Minkowski sum of two curved objects, we
cannot simply ignore the convolution curve segments generated

from convex–concave (or concave–convex) edge pairs. They
may also contribute to the final boundary of a Minkowski sum
[3]. However, a convolution curve segment is redundant when
it is generated by a convex curveC1(t) with smaller curvature
than its compatible concave curveC2(s) (see Section 6 for more
details).

Figure 20(a) shows two nonconvex planar curved objects.
Their untrimmed convolution curves are shown in Fig. 20(b) and
the Minkowski sum boundary of the two curved objects is shown
in Fig. 20(c). Figure 20(b) and the table in Fig. 20 represent dif-
ferent types of convolution curves. Comparing the curve/vertex
types of two compatible input edges and their convexities, the
convolution edge can be classified as in the table of Fig. 20.
For example, Type 3 convolution curves are generated from the
pairs of concave–concave curve segments and the pairs includ-
ing at least one concave vertex. Convolution curves of Type 3
cannot appear on the Minkowski sum boundary. However, we
must consider all other types of convolution curve segments (see
Fig. 20(b)). An algorithm for eliminating redundant convolution
curve segments will be described in Section 6.

150 LEE, KIM, AND ELBER

FIG. 20. Computing convolution edges for curved objects: (a) two planar objectsO1 andO2, (b) Type 1 (light solid curves), Type 2 (bold solid curves), and Type
3 (bold dashed curves) convolution curves (see the table), and (c) the Minkowski sum boundary.

4. CONVOLUTION CURVE APPROXIMATION
METHODS

In this section, we present several methods to compute a
convolution curve segment for each pair of compatible curve
segments. These methods can be classified into four types of
approach:control point based, interpolation based, quadratic
curve approximation based, andreparametrization based. All
these convolution curve approximation methods are conceptu-
ally similar to offset curve approximation methods [10].

Let C1(t), t0≤ t ≤ t1, andC2(s), s0≤ s≤ s1, denote two com-
patible freeform curve segments. Without loss of generality, we
may assume

C′1(t0) ‖C′2(s0) and C′1(t1) ‖C′2(s1). (24)

Moreover, let (C1 ∗a C2)(t) denote an approximation curve of
(C1 ∗ C2)(t).

4.1. Control Point Based Method (CTC)

The control point based method is the simplest method. This
method does not consider the relationship between the normal
directions of two input curves. Therefore, this method does not
generate very precise approximations compared with other ap-

proximation methods. However, the control point based method
uses simple arithmetic operations only. The implementation is
also quite straightforward.

Let C(t) be a B-spline curve of degreed with n control points
{Pi }, 0≤ i < n, and knot vector{ki }, 0≤ i < d + n + 1. The
following sequence{ξi }, 0≤ i < n, representsnode, or Greville
abscissae [12], parameter values ofC(t):

ξi =
∑i+d

j=i+1 kj

d
. (25)

Hence, a node parameter value is an average ofd consecutive
knots in{ki }. Each control pointPi of C(t) is associated with
the nodeξi . C(ξi) is typically close toPi ; however, it is not the
closest point ofC(t) to Pi , in general.

Let Pi andξi , 0≤ i < n, be the control points and the node
parameter values ofC1(t). An approximated convolution curve
can be computed by translating each control pointPi by C2(ξ̂i),
where

C′1(ξi) ‖C′2(ξ̂i), s0 ≤ ξ̂i ≤ s1. (26)

The unique parameter̂ξi can be computed by solving the

MINKOWSKI SUM BOUNDARY CURVES 151

FIG. 21. CTC approximation (C1 ∗a C2) of C1(t) andC2(s). Two internal
control pointsP1 and P2 are translated byC2(ξ̂1) and C2(ξ̂2) (two dots on
C2(s)).

equation (see Section 3.2)

〈N1(ξi),C
′
2(ξ̂i)〉 = 0, (27)

whereN1(t) is the unit normal vector field ofC1(t). This method
of convolution curve approximation is calledCTC (control point
translation convolution). This approximation method may be
considered as a generalization of Cobb’s offset approximation
method [5]. Figure 21 shows an example ofCTC approximation.

4.2. Interpolation Based Methods

A natural approach to the approximation of a convolution
curve is to interpolate the convolution points which are computed
from some sample points on the input curves. Although interpo-
lation based methods need intensive computation, they generate
better approximations than control point based methods.

4.2.1. Convolution Using Least Squares Approximation (LSC,
BIC)

LSC (least squares convolution) andBIC (B-spline interpo-
lation convolution) methods compute the convolution points at
finite sample parameters. After that, they approximate or inter-
polate these discrete points with spline curves. Letχ0, χ1, . . . ,

χm−1, bem finite sample parameters ofC1(t), whereχ0= t0 and
χm−1= t1. For eachχi , the exact convolution point (C1 ∗C2)(χi)
is computed as

(C1 ∗ C2)(χi) = C1(χi)+ C2(χ̂i), s0 ≤ χ̂i ≤ s1, (28)

where

C′1(χi) ‖C′2(χ̂i). (29)

The parameters ˆχi can be computed using Eq. (27).
There are many well-known methods for the approximation or

interpolation of a given point set by a B-spline curve [23]. A set
of convolution points,{(C1 ∗ C2)(χi) | i = 0, 1, 2, . . . ,m− 1},
can be either (i) approximated by a B-spline curve using the least
squares method (LSC) or (ii) interpolated by a B-spline curve
(BIC).

4.2.2. Convolution Using Hermite Interpolation (HIC)

The derivative of an exact convolution curve is computed as
follows:

∂(C1 ∗ C2)

∂t
(t) = ∂C1

∂t
(t)+ ∂C2

∂s
(s(t))

∂s

∂t
(t). (30)

From Eq. (3), we have

∂x1

∂t

∂y2

∂s
− ∂x2

∂s

∂y1

∂t
= 0. (31)

By differentiating Eq. (31) with respect tot , we have

∂2x1

∂t2

∂y2

∂s
+ ∂x1

∂t

∂2y2

∂s2

∂s

∂t
− ∂

2x2

∂s2

∂s

∂t

∂y1

∂t
− ∂x2

∂s

∂2y1

∂t2
= 0, (32)

and

∂s

∂t
=

∂x2
∂s

∂2y1

∂t2 − ∂2x1
∂t2

∂y2

∂s
∂x1
∂t

∂2y2

∂s2 − ∂2x2
∂s2

∂y1

∂t

. (33)

Equation (33) implies that we can compute the first derivative
(C1 ∗ C2)′(t̄), for somet̄ ∈ [t0, t1], once we can find the cor-
responding parameter̄s ∈ [s0, s1] such thatC′1(t̄) ‖C′2(s̄), even
without knowing the exact reparametrizing functions(t).

BecauseC1(t) andC2(s) are compatible with each other, we
haveC′1(t0) ‖C′2(s0) andC′1(t1) ‖C′2(s1); namely, we have two
exact tangent vectors at the two end points of the convolution
curve segment. An approximated convolution curve can be com-
puted using the cubic Hermite interpolation of the two end points
and the two tangent vectors,

(C1 ∗ C2)(t0) = C1(t0)+ C2(s0),

(C1 ∗ C2)(t1) = C1(t1)+ C2(s1),

∂(C1 ∗ C2)

∂t
(t0) = ∂C1

∂t
(t0)+ ∂C2

∂s
(s0)

∂s

∂t
(t0),

∂(C1 ∗ C2)

∂t
(t1) = ∂C1

∂t
(t1)+ ∂C2

∂s
(s1)

∂s

∂t
(t1),

where (∂s/∂t)(t0) and (∂s/∂t)(t1) are computed using Eq. (33).
Figure 22 shows an example ofHIC approximation curve.

152 LEE, KIM, AND ELBER

FIG. 22. Approximated convolution curve of the Hermite interpolation
method.

4.3. Quadratic Curve Approximation Based Method (QAC)

Assume thatC2(s) is approximated by a quadratic curve seg-
ment Q2(s). A quadratic curveQ2(s) has a linear hodograph
(derivative curve)Q′2(s) = (as+ b, cs+ d), s0≤ s≤ s1, where
a, b, c, d ∈ R. From the parallel relation,Q′2(s(t)) ‖C′1(t), that
is,

(as(t)+ b, cs(t)+ d) ‖ (x′1(t), y′1(t)), (34)

we have

cs(t)+ d

as(t)+ b
= y′1(t)

x′1(t)
. (35)

Consequently, we have a reparametrization functions(t) as fol-
lows:

s(t) = by′1(t)− dx′1(t)

cx′1(t)− ay′1(t)
. (36)

Then the approximated convolution curve is defined by

(C1 ∗a C2)(t) = C1(t)+ Q2(s(t)), t0 ≤ t ≤ t1, (37)

wheres(t) is given in Eq. (36). For a polynomial curveC1(t) of
degreed, the reparametrized curveQ2(s(t)) is a planar rational
curve of degree 2(d − 1). Thus, the approximated convolution
curve (C1 ∗a C2)(t) is a planar rational curve of degree 3d − 2.
For a rational curveC1(t) of degreed, the functions(t) is a ratio-
nal polynomial of degree 2d − 2. (Note that the highest degree
terms both in the numerator and the denominator are canceled.)
Therefore,Q2(s(t)) is a rational curve of degree 2(2d− 2), and
(C1 ∗a C2)(t) is a rational curve of degree 5d − 4.

The quadratic B´ezier curve approximationQ2(s) (Fig. 23) has
three control points,P1, P2, andP3; thus the curve equation of

Q2(s) is given by

Q2(s)= (1− s)2P0+ 2s(1− s)P1+ s2P2, s0 ≤ s≤ s1. (38)

The simplest construction ofQ2(s) is based on (i) identifying
the two end points ofQ2(s) with the two end points ofC2(s),
i.e.,C2(s0) = Q2(s0) = P0, andC2(s1) = Q2(s1) = P2, and (ii)
setting the middle control pointP1 as the intersection point
between the two tangent lines ofC2(s) at s0 and s1, respec-
tively. This simple approximation method guarantees theG1-
continuity between any two consecutive quadratic approxima-
tion curve segments, when the original curve segments are con-
nected withG1-continuity.

The approximation error ofC1(t) ∗a C2(s) in Eq. (37) is
bounded by the approximation error ofQ2(s). The approxi-
mation error betweenC2(s) and Q2(s)= (xq(s), yq(s)) can be
estimated with a distance function. The distance betweenC2(s)
and Q2(s) is bounded by the maximum of the following error
function:

ε(s) = ‖C2(s)− Q2(s)‖
=
√

(x2(s)− xq(s))2+ (y2(s)− yq(s))2. (39)

Instead of usingε(s) which has a square root term, we may use
the following functionε(s) for the error estimation,

ε(s) = ‖C2(s)− Q2(s)‖2, (40)

which can be computed using symbolic and numeric computa-
tion tools [8].

Algorithm 4.1 shows a divide-and-conquer algorithm for the
computation ofQAC. (See Elber and Cohen [7] for a similar
algorithm that approximates an offset curve.) For the sake of
simplicity, we assume that the two input curves have the same
convexity (see Definition 3.2). When bothC2(s) andQ2(s) are
polynomial/rational curves, the error functionalε(s) in Line (1)
of Algorithm 4.1 is a polynomial/rational function. Because of

FIG. 23. Approximation of C2(s) by quadratic B´ezier curveQ2(s) (bold
curve).

MINKOWSKI SUM BOUNDARY CURVES 153

FIG. 24. QAC approximation of two cubic B-spline curves.

the convex hull property ofε(s), we can easily bound max(ε(s))
by scanning for the largest coefficient of its control polygon.
Moreover, the node parameter value of the control point (with
the largest coefficient) may be used as the subdivision parameter
for Line (2) of Algorithm 4.1. In Line (3), we use a numeric
computation function to refine the parametertm.

Algorithm 4.1
Input:

C1(t) = (x1(t), y1(t)), t0 ≤ t ≤ t1, and
C2(s) = (x2(s), y2(s)), s0 ≤ s ≤ s1: two compatible

regular freeform curves;

ε: maximal tolerance of approximation;

Output:
(C1 ∗a C2)(t), t0 ≤ t ≤ t1: an approximated

convolution of C1(t) and C2(s);

Algorithm: QAC (C1(t),C2(s), ε)
begin

Q2(s)⇐ quadratic approximation of C2(s);
(1) if

√
max‖C2(s)− Q2(s)‖2 < ε then begin

(as+ b, cs+ d)⇐ Q′2(s);

s(t)⇐ by′1(t)−dx′1(t)
cx′1(t)−ay′1(t) ;

return C1(t)+ Q2(s(t));
end

else begin

(2) sm⇐ parameter of C2(s), s0 ≤ sm ≤ s1,
where ‖C2(s)− Q2(s)‖2 has a maximum

value;

(3) Compute tm such that 〈C′1(tm), N2(sm)〉 = 0;
C1,1(t),C1,2(t)⇐ subdivide C1(t) at tm;
C2,1(s),C2,2(s)⇐ subdivide C2(s) atsm;
return MergeCurves(QAC(C1,1(t),C2,1(s), ε),

QAC(C1,2(t),C2,2(s), ε));
end

end

Figure 24 shows theQAC approximation of two cubic B-
spline curves.C1(t) andC2(s) in Fig. 24(a) are cubic B-spline
curves with five and 27 control points, respectively. After the
compatible subdivision, we compute theQAC approximation
curves with various tolerance values of approximation error,
ε. Figures 24(c)–24(f) show theQAC approximations and the
numbers of their control points. TheQAC approximations are
piecewise rational B-spline curves of degree seven. In Fig. 24(b),
the trace of theQAC approximation curve (bold solid curve) is
verified by sweepingC2(s) (a family of light curves) alongC1(t)
(dashed curve).

When we approximateC1(t) with a quadratic curveQ1(t) (as
well as approximatingC2(s) with Q2(s)) and computes(t) using
Q′1(t), QAC approximation is a rational curve of degree four.
Figure 25 shows the degree and the number of control points of
variousQAC approximations computed by the following four
methods:

• C1(t)+ Q2(s(t)): approximate onlyC2(s) with Q2(s). s(t)
is computed usingC′1(t).
• C2(s)+ Q1(t(s)): approximate onlyC1(t) with Q1(t). t(s)

is computed usingC′2(s).

154 LEE, KIM, AND ELBER

FIG. 25. VariousQAC approximations computed from cubicC1(t) and ratio-
nal cubicC2(s).

• Q1(t) + Q2(s(t)): approximate bothC1(t) andC2(s) with
Q1(t) andQ2(s), respectively.s(t) is computed usingQ′1(t).
• Q2(s)+ Q1(t(s)): approximate bothC1(t) andC2(s) with

Q1(t) andQ2(s), respectively.t(s) is computed usingQ′2(s).

Note that theQAC approximations shown in Fig. 25 are com-
puted from a cubic B-spline curveC1(t) and a rational cubic B-
spline curveC2(s). Figure 25(c) verifies the convolution curve
by sweepingC2(s) (a family of light curves) alongC1(t) (dashed
curve).

4.4. Reparametrization Based Methods

Another natural approach to the approximation of a convolu-
tion curve is to approximate the reparametrization functions(t)
in Eq. (2) using a polynomial/rational function, rather than ap-
proximating the whole convolution curve (C1 ∗ C2)(t). In this
section, we present three such methods.

4.4.1. Convolution Using Linear Reparametrization (LRC)

The simplest approximation of the reparametrizations(t) is a
simple translation and scaling of the parameter domain [s0, s1]
to [t0, t1]; that is,

s(t) = s0+ t − t0
t1− t0

(s1− s0). (41)

We call this methodLRC (linear reparametrization convolution).
The implementation ofLRC requires a simple linear reparametr-
ization of s(t) and the addition of two curve segmentsC1(t)
+C2(s(t)). Figure 26 shows an example ofLRC approximation.

4.4.2. Convolution Using Tangent Field Matching (TMC)

We may approximate the reparametrizations(t) using the
technique oftangent field matchingsuggested in Cohenet al. [6].
The basic concept of this method is explained below.

Given a freeform curve, its specific parametrization has an
important implication for the processing of the curve. The arc-
length parametrization provides many useful properties. For ex-
ample, in computer animation, motion speed control becomes
much easier when we have an almost arc-length parametrization
of the motion curve. In computer aided geometric design, the
major concern is how to design various geometric shapes using
freeform curves and surfaces. In this case, the curve and surface
traces are more important than the parametrization itself. How-
ever, further geometric processings on these freeform shapes are
heavily dependent on the parametrization of the curves and sur-
faces. Proper reparametrization can also improve the rendering
quality of freeform curves and surfaces significantly, when the
freeform objects are rendered with polygonal approximation.
Kosters [28] used a curvature dependent parametrization to ren-
der the freeform curves and surfaces with more line segments
in high curvature regions. In many geometric operations on two
operand curves, theirtangent field matchingplays an important
role. We provide a formal definition of this concept as follows:

DEFINITION 4.1. Let C1(u), u0≤ u≤ u1, and C2(v), v0≤ v
≤ v1, be two regularC1 parametric curves. Consider two repara-
metrizations,U : u 7→ t andV : v 7→ t , which mapC1(u) into
the curveĈ1(t), t0≤ t ≤ t1, andC2(v) into the curveĈ2(t), t0≤ t
≤ t1, respectively. If two unit tangent fields

T1(t) = Ĉ′1(t)

‖Ĉ′1(t)‖ and T2(t) = Ĉ′2(t)

‖Ĉ′2(t)‖ (42)

are the same for allt ∈ [t0, t1], the two parametrized curves
Ĉ1(t) and Ĉ2(t) have a completetangent field matching, and
the two tangent fields ofC1(u) andC2(v) arematched by the
reparametrizations U and V.

When the two curves have a complete tangent field matching,
the inner product〈T1(t), T2(t)〉 = 1, for all t ∈ [t0, t1]. Cohen
et al. [6] presented an algorithm to approximate the matching
by solving the optimization problem

max
v(u)

∫ u1

u0

〈
C′1(u)

‖C′1(u)‖ ,
C′2(v(u))

‖C′2(v(u))‖
〉

du, (43)

FIG. 26. LRC approximation (C1 ∗a C2)(t) of C1(t) andC2(s).

MINKOWSKI SUM BOUNDARY CURVES 155

wherev(u)=V(U−1(u)), v(u0)= v0, andv(u1)= v1. This opti-
mization problem is bounded from above byu1 − u0, since the
normalized inner product does not exceed one. While the solu-
tion of Eq. (43) is difficult, we can solve instead an associated
discrete optimization problem which may produce an arbitra-
rily close approximation to the solution of Eq. (43). We sample
bothC1(u) andC2(v) atn uniform parameter locations and com-
pute their unit tangents asT1,i andT2, j , 0 ≤ i, j < n. Then, the
problem is reduced to a discrete optimization problem,

max
j (i)

n−1∑
i=0

〈
T1,i , T2, j (i)

〉
, (44)

subject to

j (0)= 0, j (n− 1)= n− 1, j (i) ≤ j (i + 1). (45)

Cohenet al. [6] suggested a method to solve the optimization
problem of Eq. (44) withinO(n2) time, wheren is the number of
sample locations. This method employs a dynamic programming
technique and provides a globally optimal solution. The more
sample points we use, the closer is the resulting reparametrized
curveC2(v(u)) to the completely matching curve withC1(u). In
Ref. [6], a method is also described to approximate a continuous
functionv(u) from the discrete match ofj (i), by using a least
squares fitting to a B-spline curve. The composition ofC2(v(u))
can then be computed using symbolic computation tools [8, 26],
while resulting in a B-spline curve representation. The tangent
field matching can be used for various practical geometric oper-
ations. Cohenet al. [6] suggested efficient algorithms which can
prevent self-intersections in the construction of ruled surfaces,
blending surfaces, sweep surfaces, and metamorphosis between
two parametric curves.

Tangent field matching allows the computation of an approx-
imated convolution betweenC1(t) andC2(s) by first comput-
ing the proper reparametrizations(t) for C2(s(t)) = (x2(s(t)),
y2(s(t))). Unfortunately, the approximation error cannot be com-
puted with the distance function which we used in the quadratic
curve approximation (see Section 5.2.1). Instead of the distance
function, we use the following formula which represents the
value of cos2 α, whereα is the angle between the tangent vector
of C1(t) and the normal vector ofC2(s(t)),

δ(t) = 〈C′1(t), N̄2(s(t))〉2
‖C′1(t)‖2‖N̄2(s(t))‖2 , (46)

whereN̄2(s(t)) = (y′2(s(t)),−x′2(s(t))) is an unnormalized nor-
mal vector field ofC2(s(t)). Then, the angle deviation can be
represented asε = ∥∥π2 − arccos(

√
maxδ(t))

∥∥.

Algorithm 4.2
Input:

C1(t) = (x1(t), y1(t)), t0 ≤ t ≤ t1, and
C2(s) = (x2(s), y2(s)), s0 ≤ s ≤ s1: two compatible

regular freeform curves;

1: maximal tolerance of angle deviation in

approximation;

Output:
(C1 ∗a C2)(t), t0 ≤ t ≤ t1: a TMC approximation of

C1(t) and C2(s);
Algorithm : TMC (C1(t),C2(s),1)

begin

N ⇐ N0;
do

(1) C2(s(t))⇐ TangentFieldMatching(C1(t),C2(s),
N);

N2(s(t))⇐ (y′2(s(t)),−x′2(s(t)));

δ(t)⇐ 〈C′1(t),N2(s(t))〉2
‖C′1(t)‖2‖N2(s(t))‖2 ;

N ⇐ 2N;
(2) while (

∥∥π
2 − arccos

√
max(δ(t))

∥∥ > 1)
return C1(t)+ C2(s(t));

end

Algorithm 4.2 is an iterative algorithm for computing the
TMC approximation. The accuracy of the matching algorithm
[6] is controlled by the sampling value ofN= N0. According to
experimental results,N0= 15 has been found to be a reasonable
starting value for computingj (i) for a single cubic polynomial
curve segment with no inflection point. As in the case ofQAC,
max(δ(t)) in Line (2) of Algorithm 4.2 can be found by scanning
the control polygon ofδ(t). Figure 27 shows theTMC approxi-
mations computed from two cubic B-spline curves with six and
ten control points, respectively. All theTMC approximations
of Fig. 27 are piecewise cubic B-spline curves, while using a
linear reparametrizations(t). Note that the open B-spline curve
has a curve direction from left to right. In Fig. 27(b), the upper
envelope curves do not contribute to the convolution curve since
they are generated by the closed B-spline curve points, at which
the curve tangent directions are opposite to those of the open
B-spline curve.

4.4.3. Convolution Using Sample Reparametrization (SRC)

Instead of approximatings(t) with tangent field matching, we
may approximates(t) by a simpler method. For each sample pa-
rameter valuēti ∈ [t0, t1] of C1(t), the correspondinḡsi ∈ [s0, s1]
of C2(s) can be computed by solving Eq. (27). Using these sam-
ple parameter values, the reparametrizations(t), t0 ≤ t ≤ t1,
such thats(t̄i) = s̄i , can be approximated or interpolated using
the same techniques for theLSC andBIC methods. LetN be
the number of sample parameter values. The simplest linears(t)
in uniform B-spline representation hasN control points,

{s̄i | 0≤ i < N}, (47)

and the following knot vector:

{t̄0, t̄0, t̄1, t̄2, . . . , t̄N−2, t̄N−1, t̄N−1}. (48)

This method, calledSRC (sample reparametrization convolu-
tion), is much simpler than the tangent field matching proce-
dure ofTMC. In Algorithm 4.2, we can replace the procedure

156 LEE, KIM, AND ELBER

FIG. 27. TMC approximation of two cubic B-spline curves.

TangentFieldMatching by the code segment described in Al-
gorithm 4.3. Figure 28 shows an example of theSRC approxi-
mation and the refinement procedure of the error functionδ(t)
by increasing the number of sample parameters.

Algorithm 4.3
{t̄i }, 0≤ i < N ⇐ N parameter values uniformly

sampled in [t0, t1];
for each i = 0, 1, . . . , N − 1 do

Compute s̄i such that 〈C′2(s̄i), N1(t̄i)〉 = 0;
s(t)⇐ reparametrization defined by Equations (47)

and (48);

C2(s(t))⇐ symbolic composition of C2(s) and s(t);

5. COMPARISONS OF CONVOLUTION CURVE
APPROXIMATION METHODS

In Section 4, we presented several methods for convolution
curve approximation. In this section, we report various results
of comparing these approximation methods.

5.1. Qualitative Comparisons

Each approximation method presented in the previous section
has advantages and disadvantages. In terms of complexity of
computation and implementation,LRC is the simplest method.
LSC, BIC, andTMC require more computation time and due
to the intermediate steps such as least squares approximation,
interpolation, and tangent field matching.

QAC is the only method in which we can guarantee that the
resulting approximated convolution curve is within theε-band
from the exact convolution curve, whereε is the given toler-
ance of quadratic curve approximation. (In fact, this statement
is true only for nontrimmed (close or infinite) input curves and
for the convolution curves after eliminating the self-intersection
loops; see Ref. [30] for more details.) As we will describe in
Section 5.2, other methods do not guarantee that the approxi-
mated convolution curve is within a certain given distance from
the exact convolution curve. Furthermore, in theQAC method,
the approximation error can be estimated in ana priori fashion;
that is, we can estimate the convolution curve approximation
error by measuring the approximation error of quadratic curve
approximation, even without computing any approximated con-
volution curve at all. In other methods, the approximation error
can be estimated only after an approximated convolution curve
is constructed (see Section 5.2). In a subdivision based algorithm
(Algorithm 5.1), the approximation error estimation is required
at each subdivision step. For some input curves of special types
(e.g., circles), the quadratic curve approximation error is already
known. In that case,QAC saves computation time since there is
no need to estimate the convolution curve approximation error
at each subdivision step.

In some approximation methods such asLSC andBIC, we
can easily control the degree of an approximated convolution
curve. TheHIC method produces cubic curves only. InCTC,
QAC, andLRC methods, the degree of an approximated con-
volution curve depends on the degrees of two input curves; thus
we cannot control the degree of a convolution curve arbitrarily.

MINKOWSKI SUM BOUNDARY CURVES 157

FIG. 28. SRC approximation for two planar curves: (a)C1(t), C2(s), and (C1 ∗a C2)(t). (b) Error functionδ(t) for variousN (the number of sample parameters).

Moreover, theQAC method always generates rational curves.
The degree of a convolution curve generated byTMC or SRC
is mainly dependent on the degree of the reparametrizations(t).
When two input curves are both polynomial curves,TMC and
SRC generate lower degree convolution curves thanQAC. Note
that the reparametrized curveC2(s(t)) in TMC or SRC has the
same degree asC2(s) after composition when we use a linear
reparametrization functions(t). Table 1 compares the degrees of
approximated convolution curves generated by different meth-
ods. Note that we do not consider variants ofQAC (see Fig. 25).
We also use a linear reparametrizations(t) for TMC andSRC.

5.2. Quantitative Comparisons

5.2.1. Error Estimation

The distance between the exact and approximated convolution
curves is given by

‖(C1 ∗ C2)(t)− (C1 ∗a C2)(t)‖
= ‖C1(t)+ C2(s(t))− (C1(t)+ C2(sa(t)))‖
= ‖C2(s(t))− C2(sa(t))‖, (49)

TABLE 1
Degrees of Various Convolution Approximations

C1 C2 CTC LSC, BIC HIC QAC LRC TMC, SRC

d1 d2 max(d1, d2) any 3 rt. (3d1 − 2) max(d1, d2) max(d1, d2)
d1 rt. d2 rt. max(d1, d2) any 3 rt. (3d1 − 2) rt. (d1 + d2) rt. (d1 + d2)

rt. d1 d2 rt. max(d1, d2) any 3 rt. (5d1 − 4) rt. (d1 + d2) rt. (d1 + d2)
rt. d1 rt. d2 rt. max(d1, d2) any 3 rt. (5d1 − 4) rt. (d1 + d2) rt. (d1 + d2)

Note. “rt.”represents rational curve.

wheresa(t) is an approximation of the exact reparametrization
s(t). The main difficulty in measuring the convolution approxi-
mation error is that we do not have the exact reparametrization
s(t), in any convolution approximation method we have con-
sidered in this paper. Furthermore, in the control polygon and
interpolation based approaches, we do not even have the approx-
imated reparameterizationsa(t).

In this subsection, we suggest two different criteria which
can be applied to divide-and-conquer algorithms. In Section
5.2.3, these error estimation functions will be used in quanti-
tative comparisons of various convolution curve approximation
methods.

Distance sampling. From Eq. (2), we have

(C1 ∗ C2)(t)− C1(t) = C2(s(t)). (50)

Note thatC2(s(t)) has the same curve trace as that ofC2(s),
wheres(t) is an exact reparametrization. Let

C̃2(t) = (C1 ∗a C2)(t)− C1(t). (51)

We can use the Hausdorff distance betweenC̃2(t) and C2(s)

158 LEE, KIM, AND ELBER

to estimate the approximation error. However, the relationship
between the two parameterst ∈ [t0, t1] ands ∈ [s0, s1] of C̃2(t)
andC2(s), respectively, is not well defined for most approxi-
mation methods such as the control polygon and interpolation
based approaches. Although distance sampling does not guaran-
tee the maximum global error [8], this seems the only available
method that can measure the maximum distance betweenC̃2(t)
andC2(s).

Let C̃2(t̄i) andC2(s̄i), (i = 0, 1, . . . ,n − 1), ben finite sam-
ple points on the curves̃C2(t) andC2(s), respectively, where
t̄0= t0, t̄n−1= t1, s̄0= s0, ands̄n−1= s1. The distance from a point
C̃2(t̄i) to the curveC2(s) is approximated by

n−1
min
j=0
‖C̃2(t̄i)− C2(s̄j)‖, (52)

and the maximum distance betweenC̃2(t) andC2(s) is approx-
imated by

max
i
{min

j
‖C̃2(t̄i)− C2(s̄j)‖}. (53)

Note that the distance sampling function (Eq. (53)) cannot
be used in theLRC, TMC, andSRC methods. In these three
methods, the reparametrizations(t) is approximated while main-
taining the same trace withC2(s). Thus, the distance‖C̃2(t)
− C2(s)‖ always vanishes.

Normal deviation. Another criterion to measure the error in
each convolution curve approximation method is to compare the
normal directions of̃C2(t) andC1(t). For the exact convolution
computation,̃C

′
2(t)‖C′1(t). The normal vector deviation between

C̃2(t) andC1(t) can be represented by the equation

δ(t) = 〈C′1(t), Ñ2(t)〉2
‖C′1(t)‖2‖Ñ2(t)‖2 (54)

whereÑ2(t) is an unnormalized normal vector field ofC̃2(t).
The angle betweenN1(t) andÑ2(t) is measured by∥∥∥∥π2 − arccos

√
maxδ(t)

∥∥∥∥, (55)

as mentioned in Section 4.4.2. Note that Eq. (54) is the same as
Eq. (46) in theTMC approximation method.

Nevertheless, for theQAC method, we cannot use the nor-
mal deviation function to estimate the approximation error. In
the QAC method, (C1 ∗a C2)′(t) is always parallel toC′1(t)
because

(C1 ∗a C2)(t) = C1(t)+ Q2(s(t)), (56)

whereC′1(t) ‖ Q′2(s(t)). Thus,C̃
′
2(t) = Q′2(s(t)) is also parallel to

C′1(t). In other words,QAC preserves the exact normal direction,
while generating distance deviation.

5.2.2 Subdivision Based Algorithm

Algorithm 5.1
Input:

C1(t) = (x1(t), y1(t)), t0 ≤ t ≤ t1, and
C2(s) = (x2(s), y2(s)), s0 ≤ s ≤ s1: two regular

compatible freeform curves;

ε: maximal tolerance of approximation;

Output:
(C1 ∗a C2)(t), t0 ≤ t ≤ t1: an approximated

convolution of C1(t) andC2(s);
Algorithm: SubdivConvolution (C1(t),C2(s), ε)
begin

(C1 ∗ C2)a(t)⇐ an approximated convolution curve;

ε∗ ⇐ distance computed by sampling, or normal

deviation;

(1) if ε∗ < ε then return (C1 ∗ C2)a(t);
else begin

(2) tm⇐ (t0+ t1)/2;
Compute sm such that 〈C′2(sm), N ′1(tm)〉 = 0;
C1,1(t),C1,2(t)⇐ subdivide C1(t) at tm;
C2,1(s),C2,2(s)⇐ subdivide C2(s) atsm;
return MergeCurves

(SubdivConvolution (C1,1(t),C2,1(s), ε),
SubdivConvolution (C1,2(t),C2,2(s), ε));

end

end

A general subdivision based algorithm for convolution curve ap-
proximation is described in Algorithm 5.1, where an appropri-
ate error estimation function is assumed. In Line (1), we apply
a distance sampling function or a normal deviation function to
compute the error in the convolution curve approximation. In-
stead of using the naive bisection method as shown in Line (2),
we can subdivide the parameter domain at the parameter value
corresponding to the maximum of an error function computed
from Eq. (53) or Eq. (55).

5.2.3. Comparison Results

Figures 29–32 show the results of quantitative comparison
among different convolution curve approximation methods in
terms of the tolerance of distance,εd, and the tolerance of nor-
mal deviation,εn, using Algorithm 5.1. The numbers in each
table show the number of control points in each approximated
convolution curve. Although theQAC method can compute the
global approximation error representing the distance between
the approximated and exact convolution curves, we apply the
same distance sampling function toQAC for the sake of fair
comparison with other methods.

In most of the test results, theLSC andBIC methods perform
better than other methods. (Similar results can be found in the
comparison of offset curve approximation methods reported in
Reference [10].) Next in performance rank isHIC, which is
also an interpolation based method, followed byQAC, and the
reparametrization based methods such asTMC andSRC. The

MINKOWSKI SUM BOUNDARY CURVES 159

FIG. 29. Convolution curve approximation of two cubic B-spline curves.

control polygon based method,CTC, performs pretty badly, even
worse thanLRC. For the convolution of a circular arc (Fig. 31),
LRC, TMC, andSRC generate exact results. Although the table
on the left-hand side of Fig. 31 does not contain the results of
LRC, TMC, andSRC, it is obvious that theLRC, TMC, and
SRC methods produce exact results in terms ofεd.

6. ELIMINATION OF REDUNDANT PARTS

In this section, we consider how to compute the Minkowski
sum boundary of two planar curved objects. When two objects

FIG. 30. Convolution curve approximation of two quadratic B-spline curves.

are convex, the Minkowski sum boundary is the same as the
convolution curve of the two objects’ boundary curves. However,
for nonconvex objects, the Minkowski sum boundary is a subset
of the convolution curve.

For the construction of the Minkowski sum boundary, we first
construct the convolution curve; after that, all local and global
self-intersections are detected and redundant curve segments
are eliminated. The determination of self-intersection loops is
closely related to the arrangement of planar curve segments [19].
A robust implementation of curve arrangement is one of the
most difficult open problems in geometric modeling. The only

160 LEE, KIM, AND ELBER

FIG. 31. Convolution curve approximation of two exact circular arcs (rational quadratic B-spline curves).

reliable robust implementation today involves using polygonal
approximations of the convolution curve segments and deter-
mining the arrangement of resulting line segments. (See Guibas
and Marimont [20] for the state-of-the-art of robust arrangement
algorithms for line segments in the plane.)

Ahnet al.[1] demonstrated the efficiency and robustness of an
arrangement technique for line segments in approximating the
boundary of a 2D general sweep. General sweep is the most

FIG. 32. Convolution curve approximation of two cubic B´ezier curves.

general form of sweep in which the moving object changes
its shape dynamically while moving along a trajectory curve.
Minkowski sum computation is a special case of general sweep
computation. Therefore, the general technique of Ahnet al. [1]
can be applied to the case of the Minkowski sum computation.
However, there are some computational shortcuts in the special
case of the Minkowski sum computation [29]. In this section we
consider other advantages in eliminating redundant convolution

MINKOWSKI SUM BOUNDARY CURVES 161

FIG. 33. Computation steps for the elimination of self-intersection loops.

curve segments. We assume that the two planar curved objects
are bounded by piecewise parametric curves. Note that in many
applications of the Minkowski sum computation, we need to
consider closed objects only.

With the exception of some obvious redundancies (to be dis-
cussed below), we approximate convolution curve segments by
using discrete points and their connecting piecewise line seg-
ments (Fig. 33(c)). In the next step, we use a plane sweep algo-
rithm [34] to detect all the intersections among the convolution
line segments (Fig. 33(d)), and construct a polygonal approxi-
mation of the Minkowski sum boundary (Fig. 33(e)).

Once we have computed a polygonal approximation of the
Minkowski sum boundary, we can easily extract the parameter
interval corresponding to each convolution curve segment on
the Minkowski sum boundary. In particular, the coordinates and
parameters corresponding to the self-intersections of the convo-
lution curves (approximated by line segments) must be refined to

more precise intersection points among exact convolution curve
segments. For this purpose, the parameter values corresponding
to each pair of intersecting line segments are used as an initial
solution and numeric procedures are applied to improve the pre-
cision. Figure 33(f) shows the final Minkowski sum boundary
thus constructed.

The true convolution curves are shown in Fig. 33(b). Fig. 33(c)
shows polygonal approximations of some convolution curves
(i.e., except some obviously redundant segments). One can eas-
ily notice that some curves of Fig. 33(b) are missing in Fig. 33(c)
(in the polygonal approximation). To reduce the size of polyg-
onal approximation data and to improve the robustness of line
segment intersection in the plane sweep algorithm, we eliminate
some obviously redundant edges from further consideration. The
elimination procedure is based on the following three rules (see
also Section 3.3):

• Rule 1: The convolution curves generated from two con-
cave edges do not contribute to the final Minkowski sum bound-
ary.
• Rule 2: The convolution curves generated from at least one

concave vertex do not contribute to the final Minkowski sum
boundary.
• Rule 3: The convolution curves that belong to a local self-

intersection loop can be eliminated.

The elimination based on Rules 1 and 2 is explained in Sec-
tion 3.3. In Rule 3, it is not easy to detect and eliminate all
redundant convolution curve segments that belong to a local
self-intersection loop. However, it is relatively easy to remove a
certain portion of each self-intersection loop. Let (C1∗C2)(t) be
an exact convolution curve segment that is computed from two

FIG. 34. Trimming by a rectilinear subset of the Minkowski sum.

162 LEE, KIM, AND ELBER

FIG. 35. Trimming by a polygonal subset of the Minkowski sum.

input curve segments,C1(t) andC2(t) = C2(s(t)), wheres(t) is
a proper reparametrization. The convolution curve (C1 ∗ C2)(t)
has a cusp at the parametert̄ such that

k1(t̄) = −k2(t̄), (57)

that is, the curvature ofC1(t) at t̄ has the same magnitude as the
curvature ofC2(s(t)) at t̄ , but with a different sign. In this case,
C1(t) andC2(s) have different convexities.

When we subdivide the convolution curve (C1 ∗ C)(t) at
each cusp (equivalently, the compatible edgesC1(t) andC2(s(t))
at each̄t such thatk1(t̄)=−k2(t̄)), each resulting convolution
curve segment (C1 ∗ C2)(t) is generated by a pair of convex–
concave edges in which the concave edges has larger (respec-
tively, smaller) curvature than the convex edge. The convolution

FIG. 36. Transformation from bird to butterfly.

curves generated by concave edges with larger curvature than
the corresponding convex edges belong to redundant local self-
intersection loops; thus they can be eliminated (see the part “A”
in Fig. 33(b)). All cusps can be approximated by computing the
cusps of approximated convolution curves (C1 ∗a C2)(t).

Even after eliminating redundant convolution curve segments
based on Rules 1–3, there are still many redundant segments in
the planar graph of remaining convolution curves. Moreover,
the elimination based on Rule 3 requires the construction of
approximated convolution curves or the curvature comparison
between two input curve segments. A more efficient solution is
to generate a simpler Minkowski sum which is a proper subset
of the Minkowski sum and then to eliminate convolution curve
segments which appear in the interior of the simpler Minkowski
sum.

Given two input objectsO1 andO2, we approximate them with
simpler proper subsetsP1 and P2, respectively. Then,P1 ⊕ P2

is also a proper subset ofO1 ⊕ O2. Figure 34 shows an exam-
ple which uses rectilinear polygonsPi (i = 1, 2). The resulting
Minkowski sumP1⊕ P2 is also a rectilinear polygon. The con-
volution curve segments ofC1 ∗ C2 that belong to the interior
of P1⊕ P2 can be eliminated from further consideration, where
C1 andC2 are the boundary curves ofO1 andO2, respectively.
Figure 35 shows another example in which inscribed polygons
P1 and P2 are used for the approximation ofO1 and O2, re-
spectively. In this case, the Minkowski sumP1 ⊕ P2 is also a
polygonal object. Figures 34(d) and 35(d) show the elimination
procedure based on Rules 1–2, and a simpler Minkowski sum
P1⊕P2. Note that the remaining convolution curves in Fig. 34(d)
and 35(d) have relatively few redundancies compared with other
elimination procedures based on Rules 1–3.

In Figure 36, we show a sequence of shape transformations
from a bird to a butterfly. The intermediate shapes are the
Minkowski sums of the bird and butterfly shapes while scaling
the bird from 100% to 0% and the butterfly from 0% to 100%,
simultaneously (see also Kaul and Rossignac [24]). Bird and but-
terfly objects are bounded by piecewise cubic B-spline curves.
In this example, we use theQAC method for the curve–curve

MINKOWSKI SUM BOUNDARY CURVES 163

FIG. 37. Offsetting.

FIG. 38. C-space obstacles.

convolution computation. Thus, the Minkowski sum boundary is
a piecewise rational B-spline curve of degree seven. Figure 37
shows the offset boundary curves that are generated by com-
puting the Minkowski sums of the horse-shaped object and the
circles with different radii. The horse shape is represented by
eight cubic B-spline curves and six line segments, and the circles
are represented by rational quadratic curves. Figure 38 demon-
strates the generation of C-space obstacles of a robot (Fig. 38(b))
and the obstacles consisting of “CSPACE” character shapes (Fig.
38(a)). Figures 38(d) and 38(e) show the untrimmed convolution
curves and the Minkowski sum boundary, respectively. In Figure
38(f), we verify the computed C-space obstacle by sweeping the
robot, while its local reference point follows along the C-space
obstacle boundary.

The polygonal approximation may miss some valid loops
in the exact boundary of a Minkowski sum or include some
invalid loops. A simple way to resolve this problem might be
to approximate the convolution curve with line segments us-
ing high precision. However, this approach generates many tiny
line segments which cause problems in robustness as well as

164 LEE, KIM, AND ELBER

in computational efficiency. The missing valid loops are due to
the tangential and/or multiple intersections of the convolution
curve segments. These degeneracies correspond to the topolog-
ical changes of the Minkowski sum boundary as the shapes of
input objects are slightly changed. For each degeneracy, the cor-
responding convolution curve segments must be intersected with
higher precision to determine a correct topology. However, it is
not always possible to determine the correct topological arrange-
ment while making it consistent with the numerical curve inter-
section data, especially when the curve segments have (almost)
tangential/multiple intersections [22].

7. CONCLUSION

This paper presented new methods to approximate convo-
lution curves. We demonstrated that many techniques devel-
oped for offset curve computation can be extended to convolu-
tion curve computation. As aresult, we suggested several new
methods that approximate the convolution curves with polyno-
mial/rational curves, motivated by applications in conventional
CAD systems.

In particular, we proposed the techniques based on the curve
reparametrization: for example,quadratic curve approximation
andtangent field matching.Quadratic curve approximation and
reparametrization based approaches have many advantages such
as simple error analysis and output data reduction. We expect that
the concepts of quadratic curve approximation and tangent field
matching can also be used for many other geometric operations
which are closely related to the normal and/or tangent directions
of planar curves.

The 3D extension of convolution curve approximation tech-
niques remains an important problem for future research. Bajaj
and Kim [2,4] showed that 3D offset and convolution of algebraic
surfaces are also algebraic; however, their algebraic degrees are
very high. Therefore, for the applications in practice, it is very
important to approximate the 3D convolution surfaces by poly-
nomial/rational surfaces. Considerable research effort in CAGD
is required for the 3D extension of the work presented in this
paper.

Qualitative and quantitative comparisons are also made among
many convolution curve approximation methods. We believe
that these comparison results provide an important guideline for
future research in convolution curve computation.

We also demonstrated the effectiveness of the piecewise linear
approximation and the plane sweep algorithm in the elimination
of redundant parts. Nevertheless, a robust implementation of the
plane sweep algorithm for planar curve segments still remains
an important open problem.

REFERENCES

1. J.-W. Ahn, M.-S. Kim, and S.-B. Lim, Approximate general sweep bound-
ary of a 2D curved object,CVGIP: Graphical Models Image Process.55,
1993, 98–128.

2. C. Bajaj and M.-S. Kim, Generation of configuration space obstacles:
The case of a moving sphere,IEEE J. Robotics Automat.4(1), 1988, 94–
99.

3. C. Bajaj and M.-S. Kim, Generation of configuration space obstacles: The
case of moving algebraic curves,Algorithmica4(2), 1989, 157–172.

4. C. Bajaj and M.-S. Kim, Generation of configuration space obstacles: The
case of moving algebraic surfaces,Internat. J. Robotics Research9(1),
1990, 92–112.

5. B. Cobb,Design of Sculptured Surface Using the B-spline Representation,
Ph.D. thesis, University of Utah, Computer ScienceDepartment, 1984.

6. S. Cohen, G. Elber, and R. Bar-Yehuda, Matching of freeform curves,
Computer-Aided Design29(5), 1997, 369–378.

7. G. Elber and E. Cohen, Error bounded variable distance offset operator
for free form curves and surfaces,Internat. J. Comput. Geom. Appl.1(1),
1991, 67–78.

8. G. Elber,Free Form Surface Analysis Using A Hybrid of Symbolic and
Numerical Computation, Ph.D. thesis, Department of Computer Science,
The University of Utah, 1992.

9. G. Elber,IRIT Version 7.0 Programmer’s Manual, 1997.

10. G. Elber, I.-K. Lee, and M.-S. Kim, Comparing offset curve approximation
methods,IEEE Comput. Graphics Appl.17(3), 1997, 62–71.

11. G. Farin,Curves and Surfaces for Computer-Aided Geometric Design: A
Practical Guide, 4th ed. Academic Press, San Diego, 1996.

12. G. Farin,NURB Curves and Surfaces: From Projective Geometry to
Practical Use, Peters, Wellesley, MA, 1995.

13. R. T. Farouki and V. T. Rajan, Algorithms for polynomials in Bernstein
form, Computer Aided Geom. Design5(3), 1988, 1–26.

14. R. T. Farouki and C. A. Neff, Algebraic properties of plane offset curves,
Computer Aided Geom. Design7(1–4), 1990, 101–127.

15. P. Ghosh and S. P. Mudur, The brush-trajectory approach to figure specifi-
cation: Some algebraic-solutions,ACM Trans. Graphics3(2), 1984, 110–
134.

16. P. Ghosh, A mathematical model for shape description using Minkowski
operators,Comput. Vision Graphics Image Process.44, 1988, 239–
269.

17. P. Ghosh, An algebra of polygons through the notion of negative shapes,
Comput. Vision Graphics Image Process. Image Understanding54, 1991,
119–144.

18. P. Ghosh, A unified computational framework for Minkowski operations,
Computers and Graphics17(4), 1993, 357–378.

19. L. Guibas, L. Ramshaw, and J. Stolfi, A kinetic framework for computer
geometry, inProc. of 24th Annual Symp. on Foundations of Computer
Science, pp. 100–111, 1983.

20. L. Guibas and D. Marimont, Rounding arrangements dynamically, inProc.
of 11th Annual Symp. on Computational Geometry, pp. 190–199, 1995.

21. A. Hansen and F. Arbab, An algorithm for generating NC tool paths for
arbitrarily shaped pockets with islands,ACM Trans. Graph.11(2), 1992,
152–182.

22. C. Hoffman,Geometric and Solid Modeling, Morgan Kaufmann, San
Mateo, CA, 1989.

23. J. Hoschek and D. Lasser,Fundamentals of Computer Aided Geometric
Design, Peters, Wellesley, MA, 1993.

24. A. Kaul and J. R. Rossignac, Solid interpolating deformations: Construc-
tion and animation of pip,Computers and Graphics16(1), 1992, 107–
115.

25. A. Kaul and R. Farouki, Computing Minkowski sums of plane curves,
Internat. J. Comput. Geom. Appl.5 (4), 1995, 413–432.

26. K. Kim and G. Elber, New approaches to freedom surface fillets,J.
Visualization Comput. Animation8 (2), 1997, 69–80.

MINKOWSKI SUM BOUNDARY CURVES 165

27. M. Kohler and M. Spreng, Fast computation of the C-space of convex
2D algebraic objects,Internat. J. Robotics Research14 (6), 1995, 590–
608.

28. M. Kosters, Curvature-dependent parametrization of curves and surfaces,
Computer-Aided Design23(8), 1991, 569–578.

29. I.-K. Lee and M.-S. Kim, Primitive geometric operations on planar
algebraic curves with Gaussian approximation, inVisual Computing(T. L.
Kunii, Ed.), Springer-Verlag, Tokyo, pp. 449–468, 1992.

30. I.-K. Lee, M.-S. Kim, and G. Elber, Planar curve offset based on circle
approximation,Computer-Aided Design28(8), 1996, 617–630.

31. I.-K. Lee, M.-S. Kim, and G. Elber, New approximation methods of
planar offset and convolution curves, inGeometric Modeling: Theory
and Practice (W. Strasser, R. Klein, and R. Rau, Eds.), pp. 83–101,
Springer-Verleg, Heidelberg, 1997.

32. T. Lozano-P´erez and M. A. Wesley, An algorithm for planning collision free
paths among polyhedral obstacles,Comm. ACM22(10), 1979, 560–570.

33. T. Lozano-P´erez, Spatial planning: A configuration space approach,IEEE
Trans. Comput.32 (2), 1983, 108–120.

34. F. P. Preparata and M. I. Shamos,Computation Geometry: An Introduction,
1985, Springer-Verlag, Berlin/NewYork.

