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Abstract: We present algebraic algorithm to generate the boundary of 
cotyigwation space obstacles arising from the transhatory motion qf objects 
amongst obstacles. In particular we consider obtaining compliant motion 
paths where a carved convex object with&d orientation moves in continu- 
ous contact with the booundary of curved convex obstacles in three Dimen- 
sions. Both the boundaries of the objects and obstacles are given by 
patches of algebraic surfoccs. We also give a method to obtain approti- 
mate geodesic paths on convex C-space obstacles with algebraic bottn- 
duty swjaces. 

1. Introduction 

Using configuration space, (C-Space), to plan motion for a single 
rigid object amongst physical obstacles, reduces le problem to planning 
motion for a mathematical point amongst “grown” configuration space obs- 
tacles, (the points in C-Space which correspond to the object overlapping 
one or more obstacles). Lorano-Peru (1983). For example, a rigid 
polyhedral object in compliant motion, via., in continuous contact with the 
boundary of obstacles in 3-Dimensions can be represented as a point con- 
strained to move on the three (or higher) dimension bound&a of grown 
obstacles embedded in 6-Dimension C-Spuce , Donald (1984). Compliant 
motion is then simply moving a point on connected boundary regions of the 
coofiguratim space obstacles, (C-spocc obstacles). Lorano-Perez, Mason 
and Taylor (1984), Sharir and Schorr (1984). Franklin and Akman (1984). 
O’Rourke, Suri and Booth (1985), Mount (1985), Mitchell, Mount MIMI 
Papadimitriou (1985). The technique thus n&s, (and this is in general the 
more difficult part), in efficiently generating the boundary of 
C-Spuce obstacles. Numerous applications such as tie motion strategies 
for assembly, machining parts, etc., exist where compliant motion proves 
necessary, Lozano-Perez, Mason and Taylor (1984). 

Early uses of the configuration space approach wem, Freeman 
(1975). Udupa (1977). and more recently. Lozano-Perez and Wesley 
(1979), Loxano-Perez (1983). Lozano-Perez, Mason and Taylor (1984). 
Schwartz and Shark (1983). Sharir and Schorr (1984). Franklin and Akman 
(1984). Canny (1984). Donald (1984), O’Rourke, Suri and Booth (1985), 
Mount (1985). Mitchell, Mount and F’apadimit&u (1985). Yap (1985), 
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Bajaj and Kim (1986, 87). The only efficient algorithms known for 
gamating C-Spuce obctacks have been for polyhedral (degree 1) surface 
objects and obstacks. using methods for efficiently computing convex 
hulls, Lozm~Perez (1983), and recenlry efficient convolution algorithms 
for Minkowski addition, Guibas and Seidcl (1986). However it has pro- 
gressively become easier for geometric modeling systems to deal with 
objects that are defined by quadrics (degree 2) and higher degree surfaces, 
Raquicha and Voekker (1983). Further, motion planning in these sophid- 
cated modeling environments for example for pocess simulation, Hopcroft 
and KmfFt (1985). suggests the need to characte~izc and efficiently generate 
the sutface huundmy of C-Spuce obstacles arising fmm the motion of 
objects amatgst obstacles with curved surface boundaria. 

The methods based on generating a cylindrical cell decomposition of 
free C-Space, though applicabk for general objects and obstacles defined 
by semi-algebraic sets, am compuWonally too r@rictive. Schwartz and 
Shatit (1983). Yap (1985). Thus. in the past the object representations that 
have been considered for planning motion in Uuee dimensions, have been 
polyhedral approximations to the curved object. However if we approxi- 
mate object and obstack by polyhedra, then for example, the compliant 
motion paths obudocd arc “jumpy” or provide discrete contact motion. One 
solution to obtaining a continimus compliant motion includes generation of 
the cmved surface boundmy of the C-space obstack. As we show in this 
paper, one needs to geneaate only the specific part of the C-space obstacle 
boundary which contains the desii compliant path. Algebraic approxi- 
mate shot&t path (qqnmimatc &mtksics) can then also be obtained by 
pmjecting on the curved C-space obstacle the shortest path obtained on 
approximated polyhedraJ C-spuce obstacks. 

The main contributions of this paper are as follows. In 63 we show 
that the boundary of C-Space obstucles for general curved objects moving 
with only translation can be vkwed as either the convolution between the 
obstacle houdary and the reversed object boundary (mversed with respect 
to a reference point on the object) or by computing certain envelopes of 
boundary smfaces of the moving reversed object with the reference point 
moving on the physical obstacle. Next in Q4 we give algebraic algorithms to 
generate the curves and smfaces which make up the bo~,~idary of the three 
dimmciottal C-Space obstacles. Hem we only consider objects and obsta- 
cles which are convex. These objects and obstacks are re~sented by a 
general algebraic bowulary mpresentation model discussed in 52. Crucial 
too hae is the internal representation of curves and surfaces, i.e., whet&r 
they arc parametrically or implicitly defined+. We present algorithms for 
both these it~tunaI tcpmentaUons. Furthc~ in 05 we show how to consttuct 
the top~bgy of the C-spuce obstacle boundmy. Use is made of a Gaussian 
(sphuical) model discussed in 52. 

t A mail ckk is imptidy @a II x*+yLi = 0 ml in nriaul pammaric fam as 
x = (I-t3/(1+ts) and Y = 21(1+t?. 
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In 96 we consider motion of a point on the boundary of C-space 
obstacles. With only translational parameters for the moving object one 
essentially considers compliant motion wherein the contact points between 
object and obstacle change during motion. Requiring the contact points to 
remain the same during compliant motion necessitates the introduction of 
rotational parameters and thus higher dimension C-spaces. For compliant 
motion we give algebraic algorithms to compute paths on curved surfaces in 
three dimensions. Locally shortest or geodesic curves on algebraic surfaces 
are aIs0 considered. Exact algebraic algorithms for geodesics are impossible 
in general because of the existence of non-algebraic or transcendentaI gee- 
desic curves. Here we also introduce a Gaussian polyhedral approximation 
model which allows efficient algebraic approximations of geodesic paths on 
curved surfaces. 

2. Geometric ModeIs 

2.1. Solid Algebraic Model 

In a boundary representation an object with general algebraic sur- 
faces consists of the folIowing: 

(1) A finite set of vertices usually specified by Cartesian coordinates. 

(2) A finite set of directed edges, where each edge is incident to two ver- 
tices. Typically. an edge is specified by the intersection of two faces, 
one on the left and one on the right Here left and right are defined 
relative to the edge direction as seen from the exterior of the object. 
Further an interior point is also provided on each edge which helps 
remove any geometric ambiguity in the representation for high degree 
algebraic curves, Rquicha (1980). Geometric disambiguation may 
also be achieved by the methods of Hoffmann and Hopcroft (19%). 

(3) A finite set of faces, where each face is bounded by a single oriented 
cycle of edges. Bach face also has a surface equation, represented 
either in implicit or in parametric form. The surface equation has 
been chosen such that the gradient vector points to the exterior of the 
object. 

In addition edge and face adjacency information is provided. Additional 
conventional assumptions are also made, e.g.. edges and faces are non- 
singular except at vertices and edges, two distinct faces intersect only in 
edges, etc. The objects and obstacles that we consider are solids and are 
assumed to enclose non-zero finite volume. Hence non-regularities such as 
dangling edges and dangling faces which depending on one’s viewpoint 
enclose zero or inIinite volume, are not permitted. The C-spaces that we 
construct are also regularized in this fashion and assumed to be solids 
enclosing non-zero finite volume. 

2.2. Gaussian Model 

LetS2betheunitsphereinRS,andBdr(S)bctheboundarysurface 
of a convex set S c R3. Bdr(S) is homeomorphic to S’. The 
Gaussiun hfup of S is defined as follows. For any set K c E&(S), we 
shall define a set N(S,K) c S2 as follows. A point e E S* belongs to 
N(S,K) if there exists a point p E K and a supporting plane Lp at p such 
thattheexteriornormaltoLp hanslatedtothecenterofS2hase asitsend 
point. This set N(S,K) is called the Gaussian Image of K. The function 
N(S;) : P(Edr(S)) + P(S’) is called the Galrssian Map of S, where 
P(Bdr(S)) and P(Sz) are the power sets ofEdr(S) and S’. It is a bijective 
map and its inverse N-‘(S :) : P(S’) -a P(Bdr(S)) is called the Inverse 
Gaussian Map of S I For any G c Ss. the Inverse Gaursian Itnoge of G is 
defined as N-‘(S, G). The Gaussion Curvurure of p E Bdr (S) is the limit 
oftheratio(AreaofN(S.K))/(AreaofK)asK shrinkstothepointp,see 
Pogorelov (1978). Horn (1986). 

Gaussian Image of Faces, Fdges and Vertices 

Since all faces are patches of algebraic surfaces, we may assume that 
each face is either a slrictly convex face (Gaussian curvature is positive on 
each point), a ruled surface patch, or a planar patch. The Gaussian Model of 
a curved object then consists of a finite set of vertices, edges and faces on 
the surface of a unit sphere as follows. 

(1) For a strictly convex face F , the Gaussian Image N (S , F ) is a patch 
of S2 with its boundary curves determined by the normals to the 
tangent planes of F at the boundary. That is, the boundary of 
N(S.F) consists of the set of points V!(p) / I IVf@)l I for p E 
uE‘rE,whereristhesetofbwndaryedgesofF. Foraruledsur- 
face patch F , N (S , F ) is a degenerate curve on S*. And fcr a planar 
patchF,N(S,F)isa&g~emtepointonS*. 

(2) ForanedgeE,therearetwofacesFandG iatersectinginE. By 
subdividing E if necessary, we may assume that F and G either cross 
each other along E or are tangent to each other along E. When F 
and G cross each other, each point p E E determines two different 
~&US np and no on S2 determined by the exterior normals of the 
tangentplanesofF andG atp. N(S,p)isthegeodesicarcy, con- 
necting n, and no on S2 and N(S.E) = upcETp is a patch of S2. 
N(S,E) has 4 boundary curves, one is the set of points V!(p) I 
IIVf@)ll forp E E,oneisIhesetoTpointsVg(p)/IIVg(p)lI 
for p E I?, and the others are the geodesic arcs y,, and y,,, where 
f =Oandg =OarethesurfacecquationsofF andG,andp,andp2 
are two end points of E. When Ir and G are tangent to each otbcr 
along E, N(S , E) is a degenerate curve on S*. N (S .E) is the com- 
monboundarycurveofN(S,F)andN(S.G).Tbatis,itisthesetof 
pointsVf(p)/IIVf(p)lI=Vg(p)/I1Vg(p)lIforp~E,When 
F and G are planar patches, E is a linear edge and N(S,E) is a 

degenerate geodesic arc y connecting n, and n, on S*, where nr and 
no am he exterior normals of F and G . 

(3) For a vertex p , suppose that there rue k adjacent faces (ordered in a 
counterclockwise direction) F,, F2, . . . . Fk intersecting at p. Bach 
face Fi determines a point ni on S* determined by the normal Of Fi at 

p. Let yi (i = 1. . . . . k) be the geodesic arc (greatest circle) on S2 con- 
nectmg xi and %+I where ni+, = ni. Then N (S.p) is the convex 

patch on S2 bounded by the cycle of geodesic ams Tl, 7s. . . . . yk. 
When Fi and Fi+l is tangent on p. 1 is a degenerate point In the 
special case of all k faces being tangent at p , N (S .p ) is a degenerate 
point. N(S,p) can also be a degenerate geodesic arc on S2 when 
Bdr(S) is locally singular only along a curve which is tangent at p. 
Otherwise, N (S .p) is a patch on S2. 

Topology of Gaussian Model 

The Gaussian Image of Bdr(S) covers S* completely and subdivides 
S2 into faces, edges aad vertices as described above. We shall fudge the 
physical distinctions of face, edge and vertex of S* a little bit and deal with 
the degenerate edges and vertices in the same way as with the faces. Let us 
assume the Gaussian Image of each face, edge and vertex is a generic face 
of S2. If any of these Gaussian Images are not faces, we can represent this 
fact by tagging it as degenerate curves or degenerate points and consider it 
as faces. By using the connectivity graph of E&(S) we can connect there 
generic faces with the correct topology. We can funber include the edges 
and vertices determined by these faces into the connectivity graph of the 
Gaussian Image. The edge equations and vertex coordinates are given by 
the face boundary equations described above. Doing it in this way, we con- 
shuct a graph on S* with degenerate curves and points consider& as gen- 
eric faces tagged appropriatf4y. 



Figure 1 (b) and (d) show the Gaussian Models for the convex objects 
in Figure 1 (a) and (c). In Figure 1 (a), all the faca are strictly convex, and 
ah the edges and vertices are singular edges and singular vertices. Hence, 
ah the corresponding Gaussian Images are patches of S2. In Figure 1 (c). 
the face F, is a ruled surface and the fact F2 is a planar patch. lhe 
corresponding Gaussian Images are a degenerate curve and a degenerate 
point. Further since faces F, and F3 am tangent to each other along E,. the 
Gaussian Image of E2 is a degenerate curve. 

3. C-space Obstaclea, Convolutten and Envelopes 

Lot A be a moving object with its reference point at the origin and E 
be a fixed obstazle in the 3dimensiomd real Euclidean plane R’. Both A 
and E are modeled by the above boundary repmsenrations. For the sake of 
notation and preciseness in our usage we make the following distinctions. 
WedcnoteIaf(A)astheinteriorofA amiBdr(A)astheboundatyofA. 
Note that A = fnr(A)yEdr(A) = Cl(A) = closure of A by regularity. 

Further, the exterior of A is denoted by En (A) = AC (the complement of 
A) = R’-A, where the set difference P-Q = 
(p~R’lpeP andpe Q,. Note~tlnr(A)andExr(A)artopcnsets. 

Throughout we consider object A to be free to move with fixed orien- 
tation. In this case configuration spece is also 3dimensionat. We fix a 
reference point on A and denote A,, to be A located in R’ with its reference 
pointatthepointpnR’. Wealsohaved(p.q)astheEuclideandistance 
between p and q; fVB,@) = (q~R31d(p,q)<e) = e-neighborhood 
amundapointp;-A = (-pIpeA) =Mnkowskiinvase.AfB = 
(pfq IpcA andqEE)=Minkowskisumanddiffcrcnce. 

One also needs the following distinctions (1) AF is&e from B c=c 
Ai n B = 0. (2) Ai collides with E w Inr (Ai) n Iar (E ) + 0 (3) A,- 
conrucrs with E c=c A$ n B # 0 and fnr(AF) n fnr(E) = 0 (Note 

that these conditions imply Sdr(Ar) n Edr(E) # 0.) (4) CO(A.E) = 

C-space obstacle due to A and E = (PER’ lAF n B # 0 ). (5) 

0-Eavelope(-A,E)=Outercuvelopedueto-AandE =(BaR’lpe 
Bdr((-A),) for some p E E&(E). andp u Iar((-A),) for any q E E ) 
(Having q E B as opposed to q E B&(B) implies that only the outer 
envelope is considered.) (6) Convolurion (Edr(-A),E&(B)) = Convolu- 
tionofE&(-A)andEdr(B)=(jjaR’IF=p-qwherepnE&(B) 
andq E B&(A)andB hasanoutwardnormaldircctionatp exacttyoppo- 
sitetoanoutwardnormaiA hasatq). 

We now note the following. 

Theorem 3.1: CO (A .E) = E -A 

Proof: LozanoPcrex and Wesley (1979). Cl 

From the above Theorem and our prior definitions we obtain, 

Cordlary 3.2 : (1) CO(fnr(A),fnr(B)) = fnr(E)-fnr(A) - 
E-fnr(A) (Thisisanopenset) 
(2) A,- is free from B Q F E Exr (CO (fnr (A).fnr (E ))) 

(3) A,- collides with B w B E Inf (CO (far (A ),fnr (E ))) 

(4)Ai contacts withB c+ FE Bdr(CO(fnr(A),fn~(B))) 

We next obtain the following important characmriaarions. 

Lemma 3.3 : Bdr(C0 (fnr(A).h(E))) = O-Envelope (-A .E) 

Roof : (s) : Let F E Edr(CO(fnr(A),fnr(E))). then AF conracrs 

with E, (Corollary 3.2 (4)). and 3 p E Edr(A,-) n B&(E). Since 

p-j?~ Edr(A),wehaveJ-p E Edr-A)andFo Edr((-A),)forp 
E Bdr(B). FurthcrF 4 fnr((-A),) for any q E B. Assuming the 
contrary, if f? E fnr((-A),) for some q E 8, thenp E E-h(A) = 

fnt(E )-fnr (A) = fnr (CO (fnr(A).fnr(E))), (contradiction). 
b):LetjFe 0-Envelope-A,E),thenFEE&((-A),,)formmep 
E E&(E). and p r? fnt ((-A&) for any q E B. Equivalently, p E 
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B&(A,-) n E&(B) and q Q fnr(A,-) for any q E B. J’his implies 
AFnB+O&f~(A,-)nf~(B)=O. Hence.Aacomac~wi~ 

B. 0 

Theorem 3.4 : E&(COo\,B)) c 0-Envelopc(-A.B) c 
Con wl vrion (Bdr (-A ). Edr (E )) 

Pmof : (1) Using Theorem 3.3 we show Bdr(CO(A,E)) c 
E&(CO(fnr(A).fnr(E))) : For anyF E CO(A.E), AF n E + 0, 

qrdvakntly p’ E Cl (CO (fnr(A).fnt(E))). (Corollary 3.2 (2)). 
Hence, CO(fnr(A).fnr(E)) c COCA .B) c Cf(CO(fnr(A),fnr(E))) 
and Cl(CO(A.B)) = Cl(CO(fnr(A).fnr(B))). Sin02 
fnr(CO(hr(A),fnr(B))) c fnr(CO(A,B)), we have 
Edr(CO(A.E)) cEd@O(fnr(A),fnr(E))). 
(2) 0-Enwlope(-A .E) c Convoludon(Edr(-A),Edr(E)) : For 
any a E 0-Envelopc(-A .E) = Edr(CO(fnr(A).fnr(E))). since AF 

contacts with E at some p E B&(E). Ai has an outward normal 
direction atp which is opposite to an outward normal direction E has 
atp. Forq =p-p’~ Edr(A),wehaveji=p-q andE hasanout- 
ward normal direction at p exactly opposite to an outward normal A 
has at q. I’hsfF E Convo/urion(Bdr(-A),Bdr(B)). Also see Gti- 
has. Ramshaw. and Stolfi (1983). Cl 

In the special case wbm both A and B are convex, both the set canain- 
ments of lheorem 3.4 become qualitks. This follows from the properties 
of convexity. In particukr we use the following simple fact. For convex A 
and E, if A,- and E have opposite outward normal directions at p E 

Bcli(Ai) n E&(E). fhen &exe is a common supporting plaac. P, such that 
Ai and E are on opposite sides of the plane P, , Kelly and Weiss (1979). 

Theorem 3.S : For convex A and B, we have Bdr(CO(A,E)) = 
0-Env~l~pc(-A .B) = Convolurion(B&(-A),Edr(E)) and is con- 
vex. 

Proof : Using llkCOmn 3.4, all we need to show is 
Conwluriott(Edr(-A),Edr(E)) c Bdr(CO(A .E)) for convex A and 
B. Supposej? E Conwlurion(Edr(-A).Edr(E)). We first showp 
d Exr(CO(A.E)). lfp E Exr(CO(A.E)). then 3 E > 0 such that 
tA,+~~&W n B = 0 and “(A,-) n Cl(B) = 0. Hence, i e 
BW-A Jr) for any p E B&(B), (contmdiction), and so F Q 
Eti (CO(A ,E)). Now. we show E 4 fnr.(CO (A .B)). Since 3 p E 
Edr(A,) n Bdr(E) such that A,- and E have opposite outward nor- 
mal directions at p , a common supporting plane Pr separates A* and 
8. Foranye>O,kte beanouhvardnormalvectortoE atp such 
that tic II =eande isorthogonaltoP,,thenA~~,andE are 
separated by the banded region bounded by P G,.l and Pp. and so 
A$+,) n E = 0. Hence, F e fnr(CO(A.E)). Thus p Q 

~nr(CO(A,E))yExl(CO(A.E))implics~~ B&(CO(A,B)). 0 

For convex A and E , the faces of Conwludon (Edr (-A ).Edr (E)) have no 
singuhuities in the interior with possibility of singularities occuring only at 

the verdicts and edges of C-spece obstacle bmmdary. Singular vertices 
can occur only from sing&r vertex-vertex contacts between A and B . 
Singular edges can occur either from singular vertex-edge contacts or 
pumflel singulx edge-edge contacts between A and B . This may then sug- 
gest a natural method for handling son-convex object and obstacle shapes. 
On0 first obtains a c0nve.x decomposition consisting of the union of convex 
pkces and then generates the C-space obstacle as the union of C-space 
obstdes fa convex object and obs@k pairs. Such convex decomposi- 
tions are possible for polyhedral objects, see Chaaelk (1984). Howeva not 
all objects with algetraic curve and surface bdmndaries pumit decomposi- 
tions consisting of the union of convex pieces - for example a torus. To 
obtain convex decomposition of gene4 caved solii objec\s (say in tams 



I- 
I of union, intersection and difference) is a difficult and as yet unsolved prob- 

lem. see Requicha and V~elckez (1983). Thus for the time beiig one is ns- 
tricted to considering convex shaped objects and obstacles. 

4. Generating the Boundary of C-space Obstacles 

Suppose S kc -A or B, p E B&(S) be a boundary point, E c 
BB(S)beanedge,andF cBdr(S)beaface. Let(Fs,N,,)beapairsuch 
lhatF,cBdr(S)isafaceandN~~=N(S,F~),whereN(S,.)istheGallr- 
siunhfapofs. (Es.N~)beapairsuchthatEscBdr(S)isanedgeand 
N~cN(S,Es)withN~,nN(S,p)#0forallpE Es. k,N,,,)beapair 
such that ps E B&(S) is a vertex and NP, c N(S,ps) with NpI # 0. 
FunherletK~ beFe,Ee orpB,andletC-,, LRF-,,.E-~ orp4. Thereare 
nine (KB , G& pairs. We define sub-compatible and compatible pairs as 
foltows. 

(1) KB and GA are sub-compafible w N(B,K#) n N(-A,G,)+ 

0 

(2) (KB , Nb) and (C, , NG,) are compatible ti N& = Na, 

Further denote by KB ~0 G-,, that KB and G-,, are sub-compatible. Since 
only subcompatible pairs can contribute to the Convolution, one can show 

that fh~luli~t~ (Edr(-A),Bdr(B)) = ub -ad Convolution (Gd .Ke). 
We CM fur&r refine the right-hand side to be a union of only the comp&- 
ble pairs as follows. For a sub-compatible (KB , G4) pair, let N(K,, , G,) 

= N(B ,Ks) n N(-A .GA) be the nonempty intersection of two Gaussian 
Images of Ks and G-,, , K(K.q.G-,,) = N-‘(B,N(Ks,GA)) c K, and 
G(& .G-A) = N-‘(-A ,N (KB .C-,,)) c GeA be the hwsc Gaussian 
Images of NWB.G-A). Then (K(KB.G-~),N(K,,G,)) and 
(G(K,y .GA),N(Ke .G-,,)) ~IV compdble. One can easily show that 
Conwluri~n (Bdr (-A ). Bdr (B )) = u&-G.. 
Convolution (G (Ke , G-J. K (Ke, G,)). Hence, we only riced to consider 
compatible pairs to generate the Convolution. The computation of compa- 
tible pairs is discussed in 94.4 . 

When (K, ,N&) and (G-,, ,Nc,) are compatible with at least one of 
KB or G, being a vertex, the Convolution generation is especially easy, 
i.e. Convolution(G-A,KB) = Ks+GA. Let Ch@) = the 
charucteri~tic setofp=(p=p+q IN(E,p)nN(-A,q)+0). Ch(E) 

= y,,eCh(p) is called the characmistic se1 of E, and CL(F) = 

u,, l p Ch (p) is called the characrerisdc set of F. One can easily show 
that Convolution (Bdr (-A ). Bdr (B )) = (Urer, Ch(F)) u 
(user, (X(E)) u (u,,<r, Ch(g)), where rl is the set of all faces of 
B&(B ), r, is the set of all edges of Bdr (E), and rs is the set of aU vertices 
ofB&(B). 

Generating Faces 

For a face F c Bdr(B ). OIIC urn e&y show lhfd CL(F) = 

(VFW Convolurion (G (F , F ‘). K (F , F ‘))) U 
(uEIF Convolution(G(F,E),K(F,E))) U 
(upWF Convolufion(q,K(F .q))). One can use Q4.1 to compute 
Conwhtion(G(F,F’j,K(F,F’)) and 54.2 to compute 
Conwlurion(G(F,E),K(F,E)). while direclly computing 
Conwlution(G(F,q),K(F,q)) = K(F.q)+ (q) as simply translated edge 
segments. 

Generating Edges 

For an edge E E Bdr(B), cm can easily show that Ch(E) = 

b-e Convolution (G (E ,F), K (E , F))) U 
(UEkE Convolution (G (E , E 3, K (E , E 3)) U 
L’q “E Conwlution(q,K(E .q))). One can use 84.2 to compute 

I 
Conwiution(G(E.F).K(E,F)). and 54.3 to compute 

Conwlution(G(E,E’),K(E,E’)), while directly computing 
Conwlution(q.K(E.q)) = (q)+K(E,q) as simply translated edge seg- 
merits. 

Generating Vertices 

For a vatex p E B&(B), one. can easily show that Ch@) = 

(UF -p Convolution(G(p,F),p)) u (ue-pConwlution(G (p.E),p)) 

u u-p Convolution (q .p)). Since one has Conwlufion (G (p .F).p) = 

G@.F)+@). Conwlution(G@.E),p) = G(p.E)+(gl, and 
Convolution(q,p) = (q +p), computing Ch@) is easy. 

Note: (1) For a singular edge E and a singular vertex p the convolu- 
tionedgeConvolution(G(p,E).p)=G@,E)+(p) isasingularedge,and 
(2) for singular vertices p and q the convolution ver@x Convolution (q ,p) 
= (q +p ) is a singular vertex. As we will see in $4.3, (3) we can also have 
a singular convolution edge Convolufion (E-,, .Ee) for parallel edge pair 
E-A and Ee. These are all the singularities we can have on the C-space 
obstacle boundary. As we see in this classification, all the singtdaritics on 
the C-space obstacle boundary result from very special relations bctwcen 

the singularities of A and B. Most of the singularities of A and B are 
removed whiie generating the C-space boundary. 

In 54.1-4.3 we consider both the implicit and rational parametric 
representation of surface patches since not all algebraic curves and surfaces 
have rational parametrization, see. Waker (1978). For the class of rational 
algebraic CWKXS and surfaces (which have a rational parametric form), 
algebraic algorithms also exist for convening between the implicit and 
parametric rcprcsentations. However their efticicncy are limited to curves 
and surfaces of low degree, see Abhyankar and Rajaj (1987.1986a. b). 

4.1. Generating Convolurion (F-,, .Fe) 

In this section, we consider how to generate the algebraic surface 
eIpXiOIl and boundary conditions of a convolution surface 
Conwtution (FA, Fe). We can use Theorem 4.1 for the case of F, and 
Fe being implicitly defined algebraic surfaces. Corollary 4.1 is useful 
when F, is implicit and Fe is parametric, or the other way around. Corol- 
lary 4.2 is useful when both F-A and FB are parametrically &fined. 

Theorem 4.1 : Let F’s c Bdr (E ) be a patch of an algebraic surface 
f=OwithgradientsVf. Furthe.rktF,cBdr(-A)beapatchofan 
algebraic surhce g =0 with gradients Vg , and suppose that 
(F#,N(B.Fe)) and (FA,N(-A,F-,,)) are compatible. Then 
Convolution (F-,+ ,Fe) is the set of points p = (!i. 7, i) = p +q = 
(x+a,y+p.z+y)suchthat 

f fb.y,z)=O ad P=CX,Y,Z)EFB (0 

t 

s(%P,r)=O and q =(a.P.r)E F, (2) 
vf Xv8 =o (3) 
Vf.Vg>O (4) 

Proof : (3)-(4) are equivalent to the outward normal direction of B 
atp tobethesameasthatof-A atq. Cl 

We use Theorem 4.1 as follows. First substitute x = X - a, y = y - p and 
z = C-y in the above equations (1) and (3). Then one can obtain the 
implicit algebraic equation of the Convolution (FA .Fe) in terms of Z, y 
and 2 by eliminating a, p and y from the. equations (l)-(3). The vector 
equation Vf xVg = 0 give-s 3 scalar equations. Since one of these cqua- 
tions is redundant, we can have 2 independent scalar equations from (3). 
Hence, we have 4 equations and eliminate 3 variables a, p, y to get an 
implicit equation in terms of I. 7, i-. Elimination of variables can be per- 
formed by computing resultants on pairs of equations, see Collins (197 1) or 
the more direct method of Dixon (19O8) applicable in certain cases. Elim- 
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mating variables by considering pairs of equations in ge& may kad to 
extramxm faclors and special care needs to be taken in performing this 
step. A closed form msuhant for n - 1 variables with II equations is as yet 
unknown for n 2 3 and is a major unsolved problem of algebraic geometry, 

see Abhyankar (1976). 

Corollary 4.1: Let Fe c Bdr (B ) be a patch of an algebraic surface 
f =0 with gradients Vf . Further let F, c B&(-A) be a parametric 
surface patch G (U $)=(a(~ .v). B(u .v). 7(u ,v)) with gradients 
G,xG,,andsupposethat(F,.N(B.F,))and(F,,N(-A.F,))are 
compnrible. Then Conwlution(F,, F,) is the set of pointi i = 
(~.~,~=~+~=(x+a(u,v),y+~(u,v),z+7(Ir,v))suchthat 

c ftx.y.z)=O and p=(x,y.s)s F,, (1) 
q =ta(u,v). i3b.v). %~U.V))E F-A (2) 
vj X(G,XG,)=O (3) 
Vj .(G, XC,) > 0 (4) 

Firstsubstitutex=~-a(u,v),y=y-p(u.v)andz=f-~~,v)inche 
above quations (1) and (3). Then one can obtain the implicit algebraic 
q&on of the Convoltion (F-,, , Fd) in terms of 3, f and T by eliminating 
u and v from the quations (1) and (3) by computing resuhants. Since (3) 
gives 2 independent scalar quations. we have 3 equations and eliminate 2 
variables u , v to get an implicit qua&n. 

ThecaseofFs bemgaparamenicsurfzeandF~ baiianalge- 
braic surface is similar to CaoUary 4.1. 

Cordlary 4.2 : Let Fa c B&(B) be a parametric surface patch 
F(s.r)=(~(~.r).y(s~).z(~,~)) with gradients F, xF,. Fmtber let 
F-A c B&(-A) be a parametric surface patch 
G(u,v)=(a(u,v), p(u.v), l(u.v)) with gradients G,xG,. and sup- 
pose that (FB.N(B.Fg)) and (F,.N(-A.F,)) are cotnpudble. 
Tim Conwlurion (F ~,Fd)iSthesetofpoints~=(~.~,~==++q 
=(xts,r)+atr,vXyts,r)+B(rr,v), rtsr)+tiu.v))suchthat 

I 

q =ta(u,v), B(w). I<u.v))E F-A (2) 
(F, xF,)x(G, XC,) = 0 (3) 
(F, xF,)-G. xc.1 ’ 0 (4) 

One can obtain the implicit algebraic equation of the Conwludon(FA , F,) 
by eliminating s, r , I( and v from the equations i = x(s .r) + a@ .v). 
~=y(s,r)+p(~,v), ~=z(s,r)+*r(u,v) and the above quation (3). 
Since (3) gives 2 independent scalar equations, we have 5 equations and 
need to eliminate 4 variables s , I, u , v to get an implicit equation. Further 
details and a time complexity analysis is given in Bajaj and Kim (1986). 

4.2. Generating Conwhtion(E, .F#) and Conwhtion(F_A ,E,) 

In this section, we consider how to generate the algebraic surface 
quations and boundary conditions of convolution surfaces 
Conwlutim (E+ , FB) and Conwlution (FA, ED). We can use Iluorem 
4.2 for the case of E, being defined by the intersection of two implicit 
algebraic surfaces and F, being an implicit algebraic surface. The other 
combinations of implicit and parametric surfaces defining E, and Fd have 
similar results as easy CotolJaries of Theorem 4.2 Similar results hold for 
generating Convoludon (F,,E,). 

Tbeorem4.2: LetFs cB&(B)beapatchofana@braics~ 
f = 0 with gmdients Vj . Further let E, c Bdr (-A ) be a segment of 
the common edge of two faces G-., and H,, when G+ and H, c 
Bdr (-A ) are pat&es of algebraic surfaces g =0 with gradiints Vg 
and h=O with gradients Vh. Suppose that (F,,.N(B.F#)) aed 

&&J are compodble with Vg xVh + 0 on Ed. Then 
Conwhtion (Ed, F, ) is the set of points p’ = Q. y. I) = p + q = 

(x+a,y+&z+dsuchthat 

j(x,y,r)=O ami ~=tx,y.zkF~ 

I Vj.(VgxVh)=O and $$-eNs- 

Proof : (3) is equivalent to an outward normal direction of B at p to 
be he same as one of the outward normal directions of -A at q . Cl 

One can obtain the implicit algebraic equation of Ihe Conwludon (E-,, .F,) 
inasimilarwayaain’Ihcorem4.1. WhcnthefaceFs isapammetticsur- 
face patch F(st)=OE(s.r),y(~s),zO,r)) with gradients F, xF,. one can 
obtain the cormsponding ComIhuy by changing every V j into F, x F, and 
lbe Statement “f(x.y,z)=O and p=(x,y,r)~F.,” into 
“p=(x(sc)y(s~)~(s~))e F#” in the above Iheotem. One can make 
simii changes to get corresponding Corollaries for the case of Cd andor 
H, being pammetric surface patches. 

When two faces GA and H, are tangent to each other along E, , 
Conwludon(fi_A,Fd) is a degenerate curve on the C-space obstacle 
boundary. Actually, it is a common edge of two convolution faces gen- 
erated in 8 4.1. 

4.3. Generating Convolution (E+( , E,) 

In this section, we consider how to gmtemte the algebraic surface 
equations and boundary coo&ions of a convolution surface 
Convolution (E+ .E, ). We can use Tbwrem 4.3 for the case of both E-,, 
and E,, being defined by two implicit algebraic s&aces. The other combi- 
nations of implicit and parametric surfaces de5ting E-,, and Ed have simi- 
lar results as easy corollaries of Theorem 4.3. 

Theorem 4.3 : Let E,, c B&(B) be a segment of the common edge 
oftwofacesF, a~lG,.whereF~ andGs cBdr(B)arepatchesof 
algelxaic smfaces f =0 with gradients Vj and g =0 with gradients 
VS. Further let E-,, c Bdr(-A ) be a segment of the common edge 

oftwofacesHd andK,.whcmH4 andK4 cBdr(-A)are 
patches of algebraic surfaces h =0 with gradients Vh and k =0 with 
gr&ents Ok. Suppose that (Es, N&) and (EA. NE+) am compatible 
with Vf xVg#O on Es and VhxVk+O on IL,,. Then 
Conwlutien(E,,Ed) is the set of points i = (Z. 7. r) = p +q = 

(x+a,y+~.r+~auchthat 

f(x,y.~)=gtx.y.~)=0 ad P=(x.Y.z)~ 4 

h(a.b.d=k(a.l3.d=O and 9=(a$.y)~ E, 

(1) 

(2) 
x~vj+(l-a)~vg EN 

Ila~vj+(l-n)*Vgll B,. and 

p.Vh+(l-p).Vk 
Iljt.Vh+(l-p).VkIl 

EN& forsome O~&~~l (3) 

Proof: (3)isq~valeattoanoutwardwrmal~tionofB atpto 
bethesamcasanoutwardnmnaldirectionof-A atq. 0 

One can obtain the implicit algebraic equation of the Conwlution(E, ,E,) 
inatdmihuwayasinTlteorem4.1. 

whenF# andGe aretangenttoeachotheraIongEs,orH, and 
K-,+ tut tangent 10 each other along E, , Convolution (Ed, Ed ) is a degen- 
crate clw~ on the C-space &tack boundary and is a common edge of 
two convolution faces generated in 9 4.2. In the special case of F, and Gs 
being tangent along E, , and also H-,, and KS,, being tangent along E-,, , 
Convolution (Ed, I&) is a degenerate point 
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jet N&(p) = Ne n N(S,p), then NE,(p) is a geodesic arc on S’. 
When two line segments in a plane intersects. either there is a unique inter- 
section point or they overlap entirely on the same line. One can show a 
similar fact for minimal geodesic arcs on S* as f0llOWS. 

Fact4.1: IfNE@)nNE..(4)fa,eiurer(1)NE(P)nNE,(e)is 
apointor(2)Ns.(p)=NE,(9). 

By subdividing E, and E, if necessary, we may assume only one of 
the conditions (1) or (2) holds for the whole edges EB and E, . We call Es 
and E, to be parallel if the condition (2) holds on the whole edges EB and 
E, . If EB and E-,, is a porailef edge pair, the Convolution (E+ ,EB) gen- 
erated in Theorem 4.3 is a degenerate curve on the C-space obstacle. Oth- 
erwise it is a surface patch. 

5. Obtaining Gaussian Model of C-space Obstacles 

We now show how to construct the Gaussian (Spherical) Model of 
CO(A ,B), see Figures 2 (a)-(c). Let Sf and Sf be the Gaussian 
Models of B and -A, These define graphs on S* with degenerzies tagged 
appropriately. Let a new graph S2co(A,s, on S* be the overlay of S 2B and 
Pd. Then S2,w,,, is the Gaussian Model of CO(A ,B) and determines 
ail compatible face, edge and vertex pairs between B&(B) and Bdr (-A ). 
Further the topology of the B&(CO (A, B )) is given by the topology of the 
tesselated S*,,,,,, smface. Construction of S2coti,s) requires computing 
the in~tions of edges of S*, with edges of S*-*, These intersections 
can be computed by using the following Theorems. The intersection of two 
geodesic any can be computi by Theorem 5.1. The intersection of one 
general curve segment and one geodesic arc can be computed by Theorem 
5.2. The intersection of two general curve segments can be computed by 
Theorem 5.3. 

Next by using a spherical sweep algorithm where one can move a 
great circle around the sphere and amongst the edge segments, it is possible 
to compute all the overlay curve intersections. The details are somewhat 
intricate but a straightforward generalization of moving a line in a plane- 
sweep algorithm. 

Theorem 5.1 : Let y be a geodesic m connecting n1 to n2 on S*, 
and~beageodesicarcconneclingn’,ton’~onS*_*. Tbenyandy’ 
intersectat(h.nl+(l-)i).nz)/ I IJ.*nl+(l-l).nzl I ifandonlyif 

I 

(a~n,+(l-~)~nz)x(p~n’~+(l-p)~n’*)=O (1) 

(X.n,+(l-X).n2). (p.n’,+(l-p)*n’*) > 0 (2) 

forsomeO5~~cIl. 

Proof: Thesetwoconditionsareequivalenttothath,n,+(l-~).nz 
isinthesamedirectionas~~nl+(1-~)~~n;forsomeO61,~~l. 

Since the vecta equation (1) gives two independent scalar equations in two 
VtittbleS h, H One can solve this system of polynomial equations either 
numerically or symbolically by using polynomial resultants or Grobner 
Bases, see Buchberger. Collins, and Loos (1982). 

Theorem 5.2 : Let y be a curve scgmcnt on S’, given by the set of 
pointsVf@)lIIVf’f@)lI forp E E,whcreE cBdr(B)isaseg- 
ment of the common edge of two faces F and G ho& being patches 
of algebraic surfaces f = 0 with gradients Vf and g = 0 with gra- 
dientsVg. And,let~beageodesica~connectingn,ton~onS~~. 
Thenyand1/intersectatVff)/I IVj’f@)l I ifandonlyif 

I 

f(*sy,r)=g(x,y,z)=O and p=(x,y,z)e E (1) 
Vf .(nlXn2)=0 (2) 
Vf .(nl-(n,.n&tl) > 0 (3) 
Vf .(n2-(n2.nl)n2) 5 0 (4) 

Rod : (2)-(4) are equivalent to that vf is in the same direction as 
5.n1+(l-X).n2forsomeO<3.5 1. 

Since (l)-(2) give three equations in three variables x1 y , 2 , one can solve 
this system of polynomial equations. 

Theorem 53 : Let y be a curve segment on S2, given by the at of 
pointsV~f)lIIVff)liforp~Ea,whereEsc~dr(~)isascg- 
ment of the common edge of two faces F and C both being patches 
of algebraic surfaces f = 0 with gradients Vf and g = 0 with 
gradients Vg. And, let y’ be a curve segment on S*, given by the 
set of points Vh(q)/l tVh(q)l I for 9 E E,, where E, c 
B&(-A) is a segment of the common edge of two faces H and K 
both being patches of algebraic surfaces h = 0 with gradients Vh and 
t=O with gradients Vk. Then 7 and 1/ intersect at 
Vf(p)/IIVf@)IIifandonlyif 

1 

f(x,y,~)=g(x.y,~)=O and p =(X,YJ)E 4, (1) 
h(a.~,y)=k(a.~.~=O and q=(a,B,y)E EA (2) 
Vf xVh = 0 (3) 
Vf .Vh >O (4) 

Proof : (3)-(4) are equivalent to that Vf is in the same direction as 
Oh. 

Since the vector equation (3) gives two independent scalar equations, one 
has 6 scalar equations in 6 variables from (l)-(3) and can solve this system 
of polynomial equations. 

Each face of the subdivision S2cocA.s, corresponds to a compatible 
pair ((Ka.Nh).(G-A.NG,)) of boundary elements of B&(B) and 
B&(-A). Note that we consider the degenerate curves and degenerate 
points as generic faces of S*c . Using the formula &fining KB and G-,, one 
can compute the equation for Conwfnrion (G, ,KB). The boundary cm-ves 
of surface ptchs or the end points of edges for 
C~nwhdon (Bdr (B ),Bdr (-A )) can be computed by using the boundary 
informations given by NC (= NC,). In various applications we do not need 
to construct the entire C-space obstacle boundary or the entire Gaussian 
Model S*cow.~b For example, consider the compliant motion which we 
will describe in 8 6. In the first approach, one can construct only the faces 
of C-space obstacle boundary which correspond to the sequence of faces 
of S*cot,,,,, along which one plans a compliant path. In the second 
approach, once one obtains a shonest path on the approximating convex 
polyhedron, one needs to generate only part of S2coti,,, and C-spuce obs- 
tacle boundary faces which correspond to the approximating shortest path. 

6. Compliant Motion in C-space 

Having seen ways of constructing the curved surface boundary of the 
C-space obstacles our next step is to generate continuous curves on the 
C-spocc obstacle boundary connecting various speciticd start and end 
points. IXese correspond to continuous ccxnplian~ paths for the original 
object and obstacles. 

In the past several authors have posed solutions to finding paths 
between points on C-s-e obstacles hounded by planar faces. Sharir and 
Schorr (1984) presented an O(nslogn) algorithm for finding shortest paths 
on n vertex convex polyhedra. Thii was subsequently improved to 
O(nqogn), Mount (1985). O’Rourke, Suri, and Booth (1985) gave an 
0 (n’, algorithm for finding shor&zst paths on non-convex polyhedra which 
was latez improved to O(nbgn) in Mitchell, Mount, and Papadimibiou 
(1985). 

Fiiding shortest paths on curved C-space obstacles with algebraic 
boundary surfaces as generated in the earlier section, is correspondingly 
more difficult, On single surfaces such paths are known as geodesics, and 

76 



arise in cutter tool paths in machining, efficient terrain navigation and wind- 
ing rotor coils. etc. There are closed solutions of gecdesics for various qua- 
dries and surfaces of revolution. For given two points p and q on a closed 
surface there exists a minimal geodesic joining p and q. see du Carmo 
(1976). However computing exact analytical solutions for geodesics in 
general is quite diflicult since these are given as solutions of nonlinear ordi- 
nary differential equations. Beck, Farouki, and Hinds (1986). Even for cer- 
tain simple algebraic surfaces the geodesic curves are non-unique and non- 
algebraic in nature, e.g., a non-algebraic helical curve is geodesic on a 
cylindrical surface (algebraic degree two). 

6.1. Arbitrary Compliant Paths 

Before considering shortest paths on curved convex C-spuce obsta- 
cle boundaries however we first consider the generation of certain algebraic 
curves which lie on the botmdsry and connect specilicd start points (ri) and 
end points (ej) on the bouudary. Such curves provide compliant paths for a 
certain object and obstacle pair. perhaps the simplest method is to choose a 
point p in the interior of the convex C-spuce obstacle and consider the 
unique plane PL containing a specified pair Si and cj , and the mtmior point 
p. ‘Ihe intersection of PL with the convex C-space obstacle boundary 
yields an algebraic curve on the boundary with breakpoints on vertices and 
edges. The correctness of this procedure is justified by the following Fact. 

Fad 6.1: A plane passing through an interior point of a convex 
object intersects the convex object boundary in a planar convex curve 
which is a Jordan curve (i.e. a curve hurneomorphic to a circle). 

The disadvantage of this simplistic approach is that the arbitrary 
choice of the interior point p may yield undesirable algebraic curves which 
consist of complete singular edges and also pass through various singular 
vatices of the C-space obstacle boundsry. Such paths than correspond to 
vertices and edges of the object riding on vertices and edges of the obsurcle 
during compliant motion, see path y, in Figure 3. 

To circumvent thii undesirable prospect an alternate method for 
choosing compliant paths may be adopted as follows. Consider the Guus- 
siun (Spherical) Model of the C-spece obstacle ss consmrcted in 65. The 
start and end points of the C-space obstacle surface are easily mapped to 
this spherical model. Next piecewise geodesic curves on the sphere can be 
constructed connecting these start and end points which avoid degeneracies 
on the C-space obstacle boundary. Various interior points to surface 
patches on the sphere can be chosen and for each triple of points ( two 

surface points and the center of sphere ) the corresponding plane intersec- 
tion with the sphere provide geodesic curve segments on the sphere, see 
path y2 in Fii 3. These piecewise curves on the sphere ate then mapped 
to algebraic curves on the C-spuce obstacle boundary. Jn this way compli- 
ant paths which are piecewise algebraic can be determined which traverse a 
specific desired sequence of surface patches or desired se~uencc of sttrhtce 
and edge contacts between object and obstacle. 

6.2. Geodesic Approximation 

We now describe a method of obtaining piccewise algebraic appmxi- 
mate geodesic paths on convex C-space obst&as witb algebraic smfrces. 
One first computes a “good” approximate convex polyhedron of the curved 
convex C-spuce obstacle as we now describe. Next the start and end 
points on the C-space obstacle boundary are mapped onto the convex 
polyhedron and the shortest path between these points is computed on this 
polyhedron by using say the 0 (n210gn) algorithm, Mount (1985). Finally 
the approximate shortest path of the C-spuce obstacle boundary 
L3dr (CO (A Jr)) can be obtained by projecdng me shortest path of the 
polyhedron onto Bdr (CO (A ,B )). 

Hierarchical Convex Polyhedral Approximation 

Suppose S is strictly convex, i.e. S is convex and for each point p E 
B&(S) the supporUng plane L,, has only one common point (i.e. p) with S. 
Strictly convex objects exclude degeneracies like NM swfacc patches, 

plsrm patches. etc. We consider the strictly convex case first and then con- 
sider the geneml convex case by adding special features to the strictly con- 
vex case. llte following Theorems bold for the boundaries of strictly con- 
vex objcas. 

Theorem 6.1: Let F c B&(S) bc a ptch of an algebraic surface 
f = 0 with gradients Vf. Suppose (e) =N(S.p) for somep E F. 
thcnp = (x,y,x) is the solutionof the following equations. 

I f(x,y,r)= 0 and p =(x,~,z)E F (1) 
Vf xc =0 (2) 
Vf ‘C 70 (3) 

Proof : (2)-(3) are equivalent to that Vf is in the same direction as 
e. 0 

Theorem6.2: Let(E,NE)beapairsuchthatE cB&(S)beaseg- 
mentofthecommonedgeoftwofacesFandG,whereFandGc 
B&(S) are gatches of algebraic surfaces f =0 with gradients Vf and 
g=Owithgr&entsVg,andN, cN(S,E)withNs nN(S,p)+0 
forallp E E. Supposee E Ns nN(S,p)forsomep E E.thenp 
= (x,y , 2) is the solution of the following quatious. 

F 

t 

f GL,y,Z)=g(x.y.z)=O ad P=(X,Y,Z)E E 

e.(Vf XV;)=0 and ealvs- 
(1) 

(2) 
e.m%-Vti)Vf -(Of .Vg)Vt?)>O 0) 
e.Vf*Vf)% -(vf .Vs)Vf)>O (4) 

Roof: (2)-(4)amequivaknttothatc E NE nN(S.p). Cl 

When F is a parametric surface patchF(s.r)=(x(s~),y(s~),z(s,l)) with 
@ems F, x F, . one can obtain the correspatding Corollaries by changing 
Vf into F,xF, and the statement “f(x.y.r)=O and p=(x.y.z)~ F” 
into”p=(x(s.r).y(s/).z(s,r))~F” in theaboveThaorans. Simihulyin 
the case of G being a parametric surface patch. Note the simultaneous 
solution of systems of polyttomiaJ equations can be. solved either numeri- 
cally or symbolically by using polynomial reaultauts. see atso Buchberger. 
Collins. and Loos (1982). 

Using the above Theorems we can approximate a strictly convex 
object S by convex polyhedra as follows. Our approximation scheme is 
hierarchical and curvature dependent At the coarsest level we inscribe a 
regular polyhedron (say, icosahedrou) inside a unit sphere and project it 
onto the smface of the sphere. see Figmu 4 (a)+. ‘Ibis projection defines 
a regtdar subdivision or tcssehuico on S’. We can further triangulate each 
polyhedral fact ifit is not trim@ar. Let S2, be this triangular subdivision 
of S*, and S2s be the subdivision given by the Gaussian Model of S. 
Further Jet Szr, be the overlay of S’r and S”,. lbe overlay S2v, can be 
computed by using Theorems 5.1-5.2. To compute au approximating 
polyhedron of S cormsponding. to ti triangulation Sr one computes the 
boundary points of S at which B& (S ) have gradients canz3ponding to ver- 
ticcsofsr. Foreachvatexe ofS2~,byJookingatthevertexe inS2r,one 
canteJlwhichface,edgeorvertexofB&(S)hase asoneofitsoutwarcl 
nmmal direction(s). Suppose a face F with a sutfw.? q&on f = 0 with 
g&ientsVf base ssoneofitswtwardnannaldirectionsaLp.thenrht 
pointpcanbacomputedbyusingTbeorem6.1. Whenanedgeg whose 
adjt%entfaccsaregivenbyf =Oandg =OwithgradientsVf andVg,has 
e asoncofitsourwardnormal~tionsatp,thenthepointp~becom- 
putedbyusing?heorem6.2. Ife isintheGaussianJmageofavertexp, 
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the point p is directly obtained by the coordinates of p. When any of the 
faces am parametiic surfaces, one can use a modified version of Theorem 
6.1 or 6.2 as discussed before. 

Further we can approximate S by two related polyhedra V and W (an 
inner and an outer) determined by the points p corresponding to the vertices 
c of s’r. Let P be the set of all these points p. Since S is convex, V = 
Convex-Hull (P ) c S . Let I& be the supporting plane of S at p and HP = 
the half-space defined by L,, such that S c HP, then S c W = ncp Hp. 

For a strictly convex object S each face of V is a triangle Fijr determined 
by three boundary points pi, pi and pk such that the corresponding Gaus- 
sian Images ei, ej and ei makes a triangular face Nijk on the tesseEation of 
the Gaussian Sphere. Fijk is a planar apprOXilIlation Of the bOUndary SurfaCe 

patch S,, on which S has normal directions corresponding to angukr range 
N;ii. Each vertex of W is a common intersection point Hiit of thmz sup- 
porting planes l+,, , L,,, and LPI. Ihe distance between the vertex Hijr and 

the face Fijk gives an estimation of how closely V and W appmximates S 

over Stir. If the difference is bigger than a predelincd bound (say, e > 0). 
we can further triangulate Nijs into a finer resolution and modify V and W 
locally by repeating the above procedure. We can continue this refinement 
eves all coarsely approximated faces and recursively to all the sub faces 
thus obtained, see Figure 4 (c). 

When a convex object S is not strictly convex, Bdr(S) WI have 
some ruled surface padres and planar patches which have degenerate curves 
and points as Gaussian Images. The degenerate point for the Gaussian 
Image of a planar patch can be on the interior of a single triangular patch, 
on the common edge of two triangular patches, or at a common vertex of 
several triangular patches. PolygonaJ approximation can be obtained by 
connecting the vertices of the planar patch and the vertices of the uiangular 
patches where the degenerate point lies. ‘Ibe degenerate curve for the 
Gaussian Image of a rukd surface patch passes through a sequence of tri- 
angular patches of the Gaussian Sphere. By subdividing this curve into 
finite subsegments we can approximate the ruled surface into a Enite 
sequence of planar patches. Each comer of this planar patches can be con- 
nected to the vertices of the triangular patches where the segments of the 
degenerate curve he. 

Approximating Shortest Path 

By continuing ihe above finer reEnements upto an arbitrarily small e 
> 0, we can construct a sequence (V, ) of inscribed convex polyhedra con- 
verging to S. It can be shown mat the areas of E&(V,) converges to those 
of B&(S). Hence, this fact justiEes our strategy of using the shortest paths 
of Bdr (V,) as approximate shortest paths of E&(S) for sufEcientIy large n . 

Convex Polyhedral Approximation of C -space Obstacle 

One may compute a convex polyhedral approximation of CO (A .B) 
by applying the above procedure to the boundary reIuesentation and the 
Gaussian Model of CO(A ,B). But, since the degrees of C-space obstacle 
boundary surfaces are extremely high, it is more efficient to deal with the 
boundary surfaces of -A and B to approximate CO (A .B). One can start 
with a triangular subdivision S2r as before. But. at this time, instead of 
computing the point p E Bdr(CO(A,B)) which has an outward normal 
direction e at the C-space obstacle boundary, one can compute pe E 
Bdr(B) and p-,, E Bdr (-A) which correspond to e on the object and obs- 
tack boundary surface, and compute pe +p-*. One can condnue the 
refinement steps as above. 

In this way we do not need to even construct the entire Gaussian 
Model of CO (A ,B) either. Computation of ps and p-,, requires comput- 
ing the overlays of S*, with S2s and S2-4, Only a panial boundary of 
S* cow,e, needs to be constructed to obtain the topology of the correspond- 

ing partEd boumkry of B& (CO (A. B )) where the approximate shortest 
path lies. 

Shortest path on Convex Polyhedron and Prnjection onto Curved 
C-spuce obslacle 

Once we have a convex polyhedron V approximating CO (A, B ) we 
can compute a shortest path y on B&(V) by using say the 0 (nbgn) algo- 
rithm, Mount (1985). By projecting y from an interior point onto 
Bdr (CO (A, B )) one can get an approximate sborkst path on the C-space 
obstacle boundary. Gee can choose the center of mass c of V as the pmjec- 
tion point and consider the intersections of the plane (contahting each line 
segment of the shatest path on V and c) with the caresponding surface 
patch of Edr(CO(A,B)). This surface patch wnesponds to the trianguhlr 
facet of V which contains the line segment which we are projecting. For 
certain applications with complicated C-space obstrkles. a single pmjec- 
tion point may not give nice properties for dk projected curve. We may 
have this difficulty for instance when the C-space obstacle has many 
degenerate boundary surfaces. In this case, we can choose a variety of pm- 
jection points or use other projection methods, whichever is appropriate for 
the application, 

7. Conclusion 

We have described algorithmic methods for computing C-space 
obstacles and determining paths on their boundary, using boundary 
representation and Gaussian image geometric models. Many fwtber algo- 
rithmic developments need to be made before which one can use computer 
models of the workspace and the objects being manipulated and simulate 
and reason with them. Such reasoning for instance could allow a mbot sys- 
tem with off-line programming: to figure out a grip, to determine the stabil- 
ity of an assembly, to figure out a part assembly sequence and so forth. 
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Figute l-(a) Convex object ’ 

Figure l-(b) Gaussian Model for the object (a) 

179 



Figure l-(c) Convex object with ruled surface patch and 

planar surface patch on the boundary 

N(S.FJ 

Fipre l-(d) Gaussian Model for the object (c) 

Figure Z-(a) Gaussian Model for -A 

Figure Z-(b) Gaussian Model for B 
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Figure Z-(c) Gaussian Model for CO (A, B ) 

Figure 3 Compliant path on C-JPOCC obstacle boundary 

Figure 4-(b) Icosahedron projected onto the unit sphere 

Figure 4-(c) Selective refinement 

Figure 4-(a) Icosahedmn inscribed in the unit sphere 


