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Abstract: We present algebraic algorithms to generate the boundary of
configuration space obstacles arising from the translatory motion of objects
amongst obstacles, In particular we consider obtaining compliant motion
paths where a curved convex object with fixed orientation moves in continu-
ous contact with the boundary of curved convex obstacles in three Dimen-
sions. Both the boundaries of the objects and obstacles are given by
patches of algebraic surfaces. We also give a method to obtain approxi-
mate geodesic paths on convex C—space obstacles with algebraic boun-
dary surfaces.

1. Introduction

Using configuration space, (C—Space), to plan motion for a single
rigid object amongst physical obstacles, reduces the problem to planning
motion for a mathematical point amongst "grown" configuration space obs-
tacles, (the points in C—Space which correspond to the object overlapping
one or more obstacles), Lozano-Perez (1983). For example, a rigid
polyhedral object in compliant motion, viz., in continuous contact with the
boundary of obstacles in 3-Dimensions can be represented as a point con-
strained to move on the three (or higher) dimension boundaries of grown
obstacles embedded in 6-Dimension C—-Space, Donald (1984). Compliant
motion is then simply moving a point on connected boundary regions of the
configuration space obstacles, (C—space obstacles), Lozano-Perez, Mason
and Taylor (1984), Sharir and Schorr (1984), Franklin and Akman (1984),
O'Rourke, Suri and Booth (1985), Mount (1985), Miichell, Mount and
Papadimitriou (1985). The technique thus relies, (and this is in general the
more difficult pant), in efficiently generating the boundary of
C~Space obstacles. Numerous applications such as fine motion strategies
for assembly, machining parts, ¢tc., exist where compliant motion proves
necessary, Lozano-Perez, Mason and Taylor (1984).

Early uses of the configuration space approach were, Freeman
(1975), Udupa (1977), and more recently, Lozano-Perez and Wesley
(1979), Lozano-Perez (1983), Lozano-Perez, Mason and Taylor (1983),
Schwartz and Sharir (1983), Sharir and Schorr (1984), Franklin and Akman
(1984), Canny (1984), Donald (1984), O'Rourke, Suri and Booth (1985),
Mount (1985), Mitchell, Mount and Papadimitriou (1985), Yap (1985),
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Bajaj and Kim (1986, 87). The only efficient algorithms known for
generating C~Space obstacles have been for polyhedral (degree 1) surface
objects and obstacles, using methods for efficiently computing convex
hulls, Lozano-Perez (1983), and recently efficient convolution algorithms
for Minkowski addition, Guibas and Seidel (1986). However it has pro-
gressively become easier for geometric modeling systems to deal with
objects that are defined by quadrics (degree 2) and higher degree surfaces,
Requicha and Voelcker (1983). Further, motion planning in these sophisti-
cated modeling environments for example for process simulation, Hopcroft
and Krafft (1985), suggests the need to characterize and efficiently generate
the surface boundary of C~Space obstacles arising from the motion of
objects amongst obstacles with curved surface boundaries.

The methods based on generating a cylindrical cell decomposition of
free C—Space, though applicable for gencral objects and obstacles defined
by semi-algebraic sets, are computationally oo restrictive, Schwartz and
Sharir (1983), Yap (1985). Thus, in the past the object representations that
have been considered for planning motion in three dimensions, have been
polyhedral approximations to the curved object. However if we approxi-
mate object and obstacle by polyhedra, then for example, the compliant
motion paths obtained are "jumpy” or provide discrete contact motion. One
solution to obtaining a continuous compliant motion includes gencration of
the curved surface boundary of the C—space obstacle. As we show in this
paper, one needs to generate only the specific part of the C—space obstacle
boundary which contains the desired compliant path. Algebraic approxi-
mate shortest paths (approximate geodesics) can then also be obtained by
projecting on the curved C—space obstacle the shortest path obtained on
approximated polyhedral C-space obstacles.

The main contributions of this paper are as follows. In §3 we show
that the boundary of C—Space obstacles for general curved objects moving
with only translation can be vicwed as either the convolution between the
obstacle boundary and the reversed object boundary (reversed with respect
to a reference point on the object) or by computing certain envelopes of
boundary surfaces of the moving reversed object with the reference point
moving on the physical obstacle. Next in §4 we give algebraic algorithms to
generate the curves and surfaces which make up the boundary of the three
dimensional C~Space obstacles. Here we only consider objects and obsta-
cles which are convex, These objects and obstacles are represented by a
general algebraic boundary representation mode) discussed in §2. Crucial
too here is the internal representation of curves and surfaces, i.e., whether
they are parametrically or implicity defined!. We present algorithms for
both these internal representations. Further in §5 we show how to construct
the topology of the C—space obstacle boundary. Use is made of a Gaussian
(spherical) model discussed in §2.

+ A unit circle is implicitly given as x%+y%-1 =0 and in rstional parametric form as
x = (1=(1+%) and ¥ = /(1413



In §6 we consider motion of a point on the boundary of C-space
obstacles. With only translational parametcrs for thc moving object one
esscntially considers compliant motion wherein the contact points between
object and obstacle change during motion. Requiring the contact points to
remain the same during compliant motion necessitates the introduction of
rotational parameters and thus higher dimension C —spaces . For compliant
motion we give algebraic algorithms to compute paths on curved surfaces in
three dimensions. Locally shortest or geodesic curves on algebraic surfaces
are also considered. Exact algebraic algorithms for geodesics are impossible
in general because of the existence of non-algebraic or transcendental geo-
desic curves. Here we also introduce a Gaussian polyhedral approximation
model which allows efficient algebraic approximations of geodesic paths on
curved surfaces.

2, Geometric Models

2.1. Solid Algebraic Model

In a boundary representation an object with general algebraic sur-
faces consists of the following;
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A finite set of vertices usually specified by Cartesian coordinates.

A finite set of directed edges, where each edge is incident to two ver-
tices. Typically, an edge is specified by the intersection of two faces,
one on the left and one on the right. Here left and right are defined
relative to the edge dircction as seen from the exterior of the object.
Further an interior point is also provided on cach edge which helps
remove any geometric ambiguity in the representation for high degree
algebraic curves, Requicha (1980). Geometric disambiguation may
also be achieved by the methods of Hoffmann and Hopcroft (1986).
A finite set of faces, where éach face is bounded by a single oriented
cycle of edges. Each face also has a surface equation, represented
either in implicit or in parametric form. The surface equation has
been chosen such that the gradient vector points to the exterior of the
object.
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In addition edge and face adjacency information is provided. Additional
conventional assumptions are also made, e.g., edges and faces are non-
singular except at vertices and edges, two distinct faces intersect only in
edges, etc. The objects and obstacles that we consider are solids and are
assumed to enclose non-zero finite volume. Hence non-regularities such as
dangling edges and dangling faces which depending on one’s viewpoint
enclose zero or infinite volume, are not permitted. The C-spaces that we
construct are also regularized in this fashion and assumed t0 be solids
enclosing non-zero finite volume.

2.2. Gaussian Model .

Let $2 be the unit sphere in B3, and Bdr () be the boundary surfa
of a convex set § < R2 Bdr(S) is homeomorphic to S2. The
Gaussian Map of S is defined as follows. For any set K < Bdr(S), we
shall define a set N(5,K) < 52 as follows. A point e € S? belongs to
N(S,K) if there exists a point p € K and a supporting plane L, at p such
that the exterior normal to L, translated to the center of $2 has € as its end
point. This set N(S,K) is called the Gaussian Image of K. The function
N(S,") : P(Bdr(S)) — P(5?) is called the Gaussian Map of S, where
P (Bdr(S)) and P (S are the power sets of Bdr(S) and S2. Tt is a bijective
map and its inverse N'X(S,-) : P(§%) — P(Bdr(S)) is called the Inverse
Gaussian Map of S. For any G < S, the Inverse Gaussian Image of G is
defined as NY($,G). The Gaussian Curvature of p € Bdr(S) is the limit
of the ratio (Area of N(§,K)) / (Area of K') as K shrinks to the point p, see
Pogorelov (1978), Hom (1986).
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Gaussian Image of Faces, Edges and Vertices

Since all faces are patches of algebraic surfaces, we may assume that
each face is either a strictly convex face (Gaussian curvature is positive on
each point), a ruled surface patch, or a planar patch. The Gaussian Model of
a curved object then consists of a finite set of vertices, edges and faces on
the surface of a unit sphere as follows.

(1) For a strictly convex face F', the Gaussian Image N (S, F) is a patch
of §2 with its boundary curves determined by the normals to the
tangent planes of F at the boundary. That is, the boundary of
N(S.F) consists of the set of points Vf (p) / 1IVFf(p)li forp €
\UEer E. where T is the set of boundary edges of F. For a ruled sur-
face patch F, N(S,F) is a degencrate curve on § 2, And for a planar
paich F,N (S, F) is a degenerate point on 2

(2) For an edge E, there are two faces F and G intersecting in E. By
subdividing E if necessary, we may assume that F and G either cross
each other along E or are tangent to each other along E. When F
and G cross each other, each point p € E determines two different
points np and ng on §? determined by the exterior normals of the
tangent planes of F and G atp. N(S,p) is the geodesic arc y, con-
necting np and ng on S> and N(S,E) = \,.p", is a paich of §%
N(S,E) has 4 boundary curves, one is the set of points Vf (p) /
HIVF(p)Ii for p € E, one is the set of points Vg(p) / 1 I1Vg(p)l!
for p € E, and the others are the geodesic arcs ¥,, and ¥,,, where
f =0and g = 0 are the surface cquations of F and G, and p; and p,
are two end points of E. When F and G arc tangent to cach other
along E, N(S,E) is a degenerate curve on $2. N(S,E) is the com-
mon boundary curve of N(§,F) and N(§,G). That is, it is the set of
points Vf (p) / {IVf(p)11 = Vg (@) / 11Vg(p)li forp € E, When
F and G are planar patches, E is a linear edge and N(S,E) is a
degenerate geodesic arc y connecting #, and ng on S2, where ny and
ng are the exterior normals of F and G.

For a vertex p, suppose that there are k adjacent faces (ordered in a
counter-clockwise direction) F,, F,, ..., F, intersecting at p. Each
face F; determines a point #; on $2 determined by the nomal of F; at
p. Lety; (i =1, ..., k) be the geodesic arc (greatest circle) on S2 con-
necting m; and a;,; where n.,, = n,. Then N(S,p) is the convex
patch on $2 bounded by the cycle of geodesic arcs vy, ¥z, . Yi-
When F; and F;,, is tangent on p, v; is a degenerate point. In the
special case of all k faces being tangent at p, N (S, p) is a degenerate
point. N(S,p) can also be a degenerate geodesic arc on §2 when
Bdr(S) is locally singular only along a curve which is tangent at p.
Otherwise, N(S,p) isa patchon §2.
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Topology of Gaussian Model

The Gaussian Image of Bdr(S) covers §2 completely and subdivides
52 into faces, edges and vertices as described above. We shall fudge the
physical distinctions of face, edge and vertex of $2 a little bit and deal with
the degenerate edges and vertices in the same way as with the faces. Let us
assume the Gaussian Image of each face, edge and vertex is a generic face
of §2. If any of these Gaussian Images are not faces, we can represent this
fact by tagging it as degenerate curves or degencrate points and consider it
as faces. By using the connectivity graph of Bdr(S) we can connect these
generic faces with the cdrrect topology. We can further include the edges
and vertices determined by these faces into the connectivity graph of the
Gaussian Image. The edge equations and vertex coordinates arc given by
the face boundary equations described above. Doing it in this way, we con-
struct a graph on 52 with degencrate curves and points considercd as gen-
eric faces tagged appropriately.



Figure 1 (b) and (d) show the Gaussian Models for the convex objects

in Figure 1 (8) and (¢}. In Figure
all the edges and vertices are singular cdges and singular vertices. Hence,
all the corresponding Gaussian Images are patches of $2. In Figure 1 (c),
the face F, is a ruled surface and the face F, is a planar patch. The
corresponding Gaussian Images are a degenerate curve and a degencrate
point. Further since faces F, and F , are tangeni to each other along E,, the

Gaussian Image of E, is a degenerate curve,

Py o' b B o afoabi. mmmiian s
1 {a}, all the faces are stricily convex, and

3. C-space Obstacles, Convolution and Envelopes

Let A be a moving cbject with its reference point at the origin and B
be a fixed obstacle in the 3-dimensional real Euclidean plane R*. Both A
and B are modeled by the above boundary representations, For the sake of
notation and preciseness in our usage we make the following distinctions.
We denote Int(A) as the interior of A and Bdr (A) as the boundary of A.
Note that A = Int(A)\Bdr(A) = Cl(A) = closure of A by regularity.
Further, the exterior of A is denoted by Ext(A) = A® (the complement of
A) = R3-A, where the set difference P~Q =
{peR*IpeP and pe Q). Notethat Int(A) and Ext(A) are open sets.

Throughout we consider object A to be free to move with fixed orien-
tation. In this case configuration space is also 3-dimensional. We fix a
reference point on A and denote A, to be A located in R? with its reference
point at the point p e R3, We also have d(p,q) as the Buclidean distance
between p and ¢; NB.(p) = {g€R*1d(p.q) <t} = e-neighborhood
around a point p; -A = {~p | pe A} = Minkowski inverse, AtB =
{ptq lpe A andq e B }=Minkowski sum and difference.

One also needs the following distinctions (1) AF is free from B
A; N B =D. (2) A; collides withB = Int{A;) N Int(B) # D (3) A5
contacts with B = A‘7 NB#Q and lnt(AF) M Int(B) = @ (Note
that these conditions imply Bdr(AF) N\ Bdr(B) # @) (4 CO(A,B) =
C-space obstacle due to A and B = {.5eR3IA‘F NEB#D) (5
O—Envelope (-A ,B) = Outer envelope due to~A andB = {F e R?* 15 ¢
Bdr((-A),) for some p € Bdr(B),andp ¢ Int((-A),) foranyq € B }
(Having q € B as opposed to g € Bdr(B) implies that only the outer
envelope is considered.) (6) Convolution (Bdr(—A),Bdr(B)) = Convolu-
tion of Bdr(-A) and Bdr(B) = ( f € R*| j = p — q where p € Bdr(8)
and g € Bdr(A) and B has an outward normal direction at p exactly oppo-
site to an outward normal A hasat q}.
‘We now note the following.

Theorem 3.1: CO(A,B)=B-A

Proof : Lozano-Perez and Wesley (1979). 0O
From the above Theorem and our prior definitions we obtain,

Corollary 3.2 : (1) COUnt{A),Int(B)) = Iu(B)—Int(A) =

B —Int(A) (This is an open set)

() A; isfree fromB = p € Ext(CO(nt(A),Int(B))

(3) A; collides withB < [ e Int(CO{nt(A),Int(B)))

“ Ai contacts withB = p € Bdr(CO (Int(A),int (B)))
‘We next obtain the following important characterizations,

Lemma 3.3: Bdr(CO (Int(A),Int (B))) = O-Envelope (-A,B)

Proof : (C) : Let 5 € Bdr(CO(Int(A).Int(B))), then A contacts

with B, (Corallary 3.2 (4)),and 3 p € Bdr(4;) ~ Bdr(B). Since

p-p € Bdr(A), we have p-p € Bdr(-A) and p € Bdr((-A),) forp

€ Bdr(B). Further p ¢ Int((-A),) for any ¢ € B. Assuming the

contrary, if p € Int((-A),) for some ¢ € B, then p € B-Int(A) =

Int(B)-Int(A)=Int (CO (Int (A),Int (B))), (contradiction).

(2):Letp € O-Envelope (-A,B), then p € Bdr((-A),) for some p

€ Bdr(B), and p & Int((-A)y) for any q € B. Equivalently, p €
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Bdr(A;) N\ Bdr(B)and q ¢ Int{A;) forany g € B. This implics
A B + @ and Ini (A;)  Int(8) = @. Hence, A; contacts with
A’—nn F 0 aNG IRI\RG) (i W = X, » Ag

B. O

Theorem 3.4 Bdr(COA,B)) < O-Envelope(-A,B) c
Convolution (Bdr(—A ), Bdr(B))
Proof : (1) Using Theorem 3.3 we show Bdr(CO(A,B)) c
Bdr(COUnt(A),Int(B))) : Forany p € CO(A.B), A; N\ B # O,
equivalently p & CI{COUnt(A),Im(B))), (Corollary 32(2)).
Hence, CO(Int(A).Int(B)) c CO(A,B) < CI(CO(Int(A),Int(B)))
and CHCO@A.BY)Y = CHCO(Unt(A),Int(B))). Since
Int(CO(Int(A),In(B))) < Im(COA,B)), we have
Bdr(CO{A,B)) cBdr(CO(Int(A),Int(BY)).
(2) O-Envelope(-A,B) c Convolution(Bdr(-A),Bdr (B)) : For
any p € O-Envelope(=A ,B) = Bdr{(CO (Int(A),Int(B))), since AE
contacts with B at some p € Bdr(B), Ai has an outward normal
direction at p which is opposite to an outward normal direction B has
atp. Forq =p—p € Bdr(A), we have j =p —q and B has an out-
ward normal direction at p exactly opposite to an outward normal A
has at g. Thus p € Convolution(Bdr(-A),Bdr(B)). Also see Gui-
bas, Ramshaw, and Stolfi (1983).
In the special case when both A and B are convex, both the set contain-
ments of Theorem 3.4 become equalitics. This follows from the properties
of convexity. In particular we use the following simple fact. For convex A
and B, if AF and B have oppositc outward normal directions at p €
Bdr(A;) ¢\ Bdr (B), then there is a common supporting planc P, such that
A; and B are on opposite sides of the plane P, , Kelly and Weiss (1979).

Theorem 3.5 : For convex A and B, we have Bdr(CO(A,B)) =
O-Envelope(-A ,B) = Convolution(Bdr (-A),Bdr(B)) and is con-
vex.

Proof : Using Theorem 34, all we need w0 show is
Convolution (Bdr (-A), Bdr (B)) < Bdr (CO(A,B)) for convex A and
B. Suppose p € Convolwion(Bdr(-A),Bdr(B)). We first show j
¢ Ext(CO(A,B)). If p € Ext(CO(A,B)), then 3 € > 0 such that
(A5+NB;(0)) N B =2 and CI(AF) N Cl(B)=@. Hence, p ¢
Bdr((-A),) for any p € Bdr(B), (contradiction), and so 7 ¢
Ext(CO(A,B)). Now, we show p ¢ Int(CO(A,B)). Sincedp ¢
Bdr(Ai) M Bdr(B) such that A‘i and B have opposite outward nor-
mal directions at p, a common supporting plane P, separates Ag and
B. Forany € > 0, let ¢ be an outward normal vector to B at p such
that lle Il = ¢ and ¢ is orthogonal to P, then A, and B are
separated by the banded region bounded by P 54y and P, and so
A(’_“) M B =3 Hence, g ¢ Im(CO(A,B)). Thus p ¢
Int{(CO(A,B)) U Ext(CO(A,B)) implies 7 € Bdr(CO(A,B)). O

For convex A and B, the faces of Convolution (Bdr (-A ), Bdr (B)) have no
singularities in the interior with possibility of singularities occuring only at
the vertices and edges of C~space obstacle boundary. Singular vertices
can occur only from singular vertex~vertex contacts between A and B.
Singular edges can occur either from singular vertex-edge contacts or
parallel singular edge—~edge contacts between A and B. This may then sug-
gest a natural method for handling non ~convex object and obstacle shapes.
One first obtains a convex decomposition consisting of the union of convex
pieces and then generates the C-space obstacle as the union of C-space
obstacles for convex object and obstacle pairs. Such convex decomposi-
tions are possible for polyhedral objects, see Chazelle (1984). However not
all objects with algebraic curve and surface boundaries permit decomposi-
tions consisting of the union of convex pieces — for example a torus. To
obtain convex decomposition of general curved solid objects (say in terms



of union, intersection and difference) is a difficult and as yet unsolved prob-
lem, see Requicha and Voelcker (1983). Thus for the time being one is res-
tricted to considering convex shaped objects and obstacles.

4. Generating the Boundary of C—space Obstacles
Suppose S be —A or B, p € Bdr(S) be a boundary point, E <
Bdr(S) be an edge, and F < Bdr(S) be a face. Let (Fg,Np,) be a pair such
that Fs < Bdr(S) is a face and Np, = N (S, Fy), where N(S, ") is the Gaus-
sian Map of S. (Eg,Ng,) be a pair such that Eg < Bdr(S) is an edge and
Ng, cN(§,Es) with Ng, \\N(S,p)# @ forall p € E5. (p5,N,,) be a pair
such that ps € Bdr(S) is a vertex and N, < N(S,ps) with N, = O.
Further let Ky be Fy,Eg orpg,andlet G_, be F_4,E_4 or p_4. There are
nine (Kp,G_,) pairs. We define sub—compatible and compatible pairs as
follows.
(1) Kp and G_, are sub~compatible &= N(B,Kz) \\N(-A,G_,)=
1]

(2) (Kp.Nx,)and (G_4,Ng_) are compatible <> Ny, =Ng,

Further denote by K o G_, that K and G_, are sub~compatible. Since
only sub-compatible pairs can contribute to the Convolution , one can show
that Convolution (Bdr(—A),Bdr(B)) = \ U, ~g. Convolution(G_,,Kp).
‘We can further refine the right-hand side to be a union of only the compati-
ble pairs as follows. For a sub-compatible (K5 ,G_,) pair, let N(Kz,G_,)
=N(B,Kz) yN(-A,G_4) be the nonempty intersection of two Gaussian
Images of Kz and G_,. K(K3.G_,) = N'(B,N(Kz,G_,)) c K5 and
G(Kp.G4) = NN-A,N(K5,G_,)) © G_4 be the Inverse Gaussian
Images of N(K;.G.,). Then (K(Ks,G_4)N(Kz,G_.)) and
(G(Kp,G_4).N(Kp,G_,)) are compatible. Onc can easily show that
Convolution (Bdr (—A),Bdr(B)) = \UKe =G
Convolution (G (Kg,G_4).K (Kg,G_,)). Hence, we only nced to consider
compatible pairs to generate the Convolution. The compatation of compa-
tible pairs is discussed in §4.4 .

When (K ,Ny,) and (G_, ,Ng_,) are compatible with at least one of
Ky ot G_, being a vertex, the Convolution generation is especially easy,
ie. Comvolution(G_,.Kg) = Kz+G_,. Let Chip) = the
characteristic set of p = (p=p+q |NB.p) \N(-Aq)= D). Ch(E)
= UperCh(p) is called the characieristic set of E, and Ch(F) =
Upe pCh(p) is called the characteristic set of F. One can easily show
that  Convolwtion(Bdr(-A),Bdr(B)) = (Urer,CA(F)
OUEer, CHEYN \U WUper, Ch(p)), where T, is the set of all faces of
Bdr(B), T, is the set of all edges of Bdr (B), and T, is the set of all vertices
of Bdr(B).

Generating Faces
For a face F < Bdr(B), onc can easily show that Ch(F) =

(Urwg Convolution(G(F,F"),K(F ,F")) U
(g wr Convolution(G(F,E),K(F,E))) U
(g wr Convolution @,.K(F,q))). One can use §4.1 to compute
Convolution (G (F ,F"),K (F ,F")) and §4.2 to compute
Convolution (G (F ,E),K(F ,E)), while direcdy computing

Convolution (G (F,q),K(F.q)) = K(F.q)+ {q) as simply translated edge
segments,

Generating Edges
For an edge £ € Bdr(B), onc can easily show that Ch(E) =

(Ur ..z Convolution (G (E ,F),K(E,F))) U
(Ug’wg Convolution(G (E .E"),K(E E")) U
(Jy g Convolution @q.K(E,q)). One can use §4.2 to compute
Convolution(G(E ,F),K(E,F)), and 843 to compute

174

Convolution (G (E.E").K(E ,E")), while directly computing
Convolution(q ,K(E,q)) = {g)}+K(E,q) as simply translated edge scg-
ments.

Generating Vertices

For a vertex p € Bdr(B), one can easily show that Ch(p) =
(Ur. p Convolution (G (p,F).p)) U (kg - Convolution (G (p ,E).p))
(X (" » Convolution(q,p)). Since one has Convolution(G (p ,F),p) =
G@p,F)+{p), Convolution(G({p.E).p) = G@,E)+{p), and
Convolution(q,p) = {g +p}, computing Ch(p) is easy.

Note: (1) For a singular edge E and a singular vertex p the convolu-
tion edge Convolution(G(p ,E),p)= G (p,E)+ {p) is a singular edge, and
(2) for singular vertices p and q the convolution vertex Convolution(q,p)
= {q +p} is a singular vertex. As we will see in §4.3, (3) we can also have
a singular convolution edge Convolution(E_4 ,Eg) for parallel edge pair
E_4 and Ep. These are all the singularities we can have on the C—space
obstacle boundary. As we see in this classification, all the singularitics on
the C—space obstacle boundary result from very special relations between

the singularities of A and B. Most of the singularities of A and B are
removed while generating the C —space boundary.

In §4.1-4.3 we consider both the implicit and rational parametric
representation of surface patches since not all algebraic curves and surfaces
have rational parametrization, see Walker (1978). For the class of rational
algebraic curves and surfaces (which have a rational parametric form),
algebraic algorithms also cxist for converting between the implicit and
paramefric representations. However their cfficiency are limited to curves
and surfaces of low degree, see Abhyankar and Bajaj (1987, 1986a, b).

4.1. Generating Convolution(F_, ,Fg)

In this section, we consider how o generate the algebraic surface
equation and boundary conditions of a convolution surface
Convolution(F_, ,Fg). We can use Theorem 4.1 for the case of F_, and
Fp being implicitly defined algebraic surfaces. Corollary 4.1 is useful
when F_, is implicit and Fy is parametric, or the other way around. Corol-
lary 4.2 is useful when both F_, and F are parametrically defined.

Theorem 4.1 : Let Fy < Bdr(B) be a paich of an algebraic surface
f =0 with gradients Vf . Furtherlet F_, c Bdr(~A) be a patch of an
algebraic surface g=0 with gradients Vg, and suppose that
(F3.N(B,Fg)) and (F_,,N(-A.F_,)) are compatible. Then
Convolution(F _4 ,Fp) is the sct of points p = (x,y.2) =p +g =
(x +a, y +B, z +7) such that

f(x,y.z)=0 and p=(x,y,z)eFy n
g(a.p,)=0 and ¢=(a.B,VeFf_, @
Vf xVg =0 3)
Vf-Vg >0 @

Proof : (3)-(4) are equivalent to the outward normal direction of B
at p to be the same as thatof -A atg. O

We use Theorem 4.1 as follows. First substitute x =x —a,y =% — Pand
z =z — ¥ in the above equations (1) and (3). Then one can obtain the
implicit algebraic equation of the Convolution(F_4,Fp) in terms of X,y
and 7" by eliminating a, B and vy from the equations (1)-(3). The vector
equation Vf x Vg = 0 gives 3 scalar equations. Since one of these equa-
tions is redundant, we can have 2 independent scalar equations from (3).
Hence, we have 4 equations and eliminate 3 variables o, B,y to get an
implicit equation in terms of X, y, z. Elimination of variables can be per-
formed by computing resultants on pairs of equations, see Collins (1971) or
the more direct method of Dixon (1908) applicable in certain cases. Elim-



inating variables by considering pairs of equations in general may lead (o
extraneous factors and special care needs to be taken in performing this
step. A closed form resultant for n — 1 variables with a equations is as yet
unknown for n 2 3 and is a major unsolved problem of algebraic geometry,
sec¢ Abhyankar (1976).

Corollary 4.1 : Let Fy <« Bdr(8) be a paich of an algebraic surface
f =0 with gradients Vf . Further let F_, < Bdr(-A) be a parametric
surface patch G(u,v)=(c(u,v), B(x,v), Wu,v)) with gradients
G, xG,, and suppose that (F5 N(B,Fp)) and (F_,,N(~A,F_,)) are
compatible. Then Convolution(F_,,Fy) is the set of points p =
&.y.0)=p+q=(x+a(u.v),y+p,»), z+¥u,v)) such that

f(x.y,2)=0 and p=(x,y,2)eFp (D)
g =(o{uy), Buy), vuy)eF_, 2
Vf x(G,%G,)=0 3
Vf -(G,xG,) >0 @

First substitute x = % — o(u,v), y =y — P(u,v) and z =7 — YWu v) in the
above equations (1) and (3). Then one can obtain the implicit algebraic
equation of the Convolution (F_, ,Fy) in terms of X, ¥ and Z by eliminating
u and v from the equations (1) and (3) by computing resultants. Since (3)
gives 2 independent scalar equations, we have 3 equations and eliminate 2
variables u, v to get an implicit equation,
The case of Fp being a parametric surface and F_, being an alge-
braic surface is similar to Corollary 4.1.
Corollary 4.2 : Let Fy < Bdr(B) be a parametric surface patch
F(s.0)=(x(s.t),y(s ),2(s,t)) with gradients F, xF,. Further let
F_, < Bdr(-A) be a parametric surface patch
G (uv)=(o(u,v), Bu,v), Wu,v)) with gradients G, xG,, and sup-
pose that (Fy N(B,Fp)) and (F_,.N(-A,F_,)) are compatible.
Then Convolution(F_, .Fy)isthe setof poinis p = (X, y,z)=p +¢
=(x(s,0)+a(u,v), y(s.£)+Bu,v), z(s £)+¥(u,v)) such that

p=&(sa),y(sa) 2(s,t))€ Fp ¢y
g=(u.v), Buy), Yuy)eF . (2
(F, xF)x(G,xG,)=0 3
(F, xF))-(G.xG,) >0 ()

One can obitain the implicit algebraic equation of the Convolution(F _, ,Fy)
by climinating s, ¢, 4 and v from the equations X = x(s.t) + a(u,v),
¥ =y(st)+Bu,v), £=2z(s,)+Yx,v) and the above cquation (3).
Since (3) gives 2 independent scalar equations, we have 5 equations and
need to eliminate 4 variables s, ¢, 4, v to get an implicit equation. Further
details and a time complexity analysis is given in Bajaj and Kim (1986).

4.2, Generating Convolution(E_, ,Fy) and Convolution(F _, ,Ez)

In this section, we consider how o generate the algebraic surface
cquations and boundary conditions of convolution surfaces
Convolution(E_, ,Fg) and Convolution(F_.,,Eg). We can use Theorem
4.2 for the casc of E_, being defined by the intersection of two implicit
algebraic surfaces and Fp being an implicit algebraic surface. The other
combinations of implicit and parametric surfaces defining E_, and F, have
similar results as easy Corollaries of Theorem 4.2. Similar results hold for
generating Convolution (F_, ,Ey).

Theorem 4.2 : Let Fy < Bdr(B) be a patch of an algebraic surface

f =0 with gradients Vf . Further let E_, < Bdr(-A) be a segment of

the common edge of two faces G_, and H_,, where G_, and H_, <

Bdr(-A) are patches of algebraic surfaces g =0 with gradients Vg

and h=0 with gradients Vi. Supposc that (Fy,N(B,F,)) and
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(E_s.Ng,) are compatible with VgxVh #0 on E_,. Then
Convolution (E_4 ,Fg) is the set of points § = (X,y,2) =p+q =
(x +a, y +P, z +7) such that

f&.y,2)=0 and p=(x,y.2)€Fp ()

8(0.B,=h(c,p,)=0 and ¢ =(o,B.PeE_, @
. _ vf

Vf-(VgxVh)=0 and TV €Ng, A

Proof : (3) is equivalent to an outward normal direction of B at p to

be the same as one of the outward normal directions of -4 atq. O
One can abtain the implicit algebraic equation of the Convolution(E_, ,Fp)
in a similar way as in Theorem 4.1. When the face Fp is a parametric sur-
face patch F (s,1)=(x(s,t),y{(s#),z(s,t)) with gradients F, xF,, one can
obtain the corresponding Corollary by changing every Vf into F, xF, and
the statement "f(x.y,z)=0 and p=(x,y,z)e Fp" into
"p=(x(s4)y(s4)z(s£))€ Fp" in the above Theorem. One can make
similar changes to get corresponding Corollaries for the case of G_4 and/or
H_, being parametric surface patches.

When two faces G_, and H_, are tangent to each other along £_,,
Convolution(E_,,Fy) is a degenerate curve on the C-space obstacle
boundary. Actually, it is a common edge of two convolution faces gen-
erated in § 4.1,

4.3. Generating Convolution(E_, ,Ey)

In this section, we consider how to generate the algebraic surface
equations and boundary conditions of a convolution surface
Convolution (E_4,E;). We can use Theorem 4.3 for the case of both E_,
and E, being defined by two implicit algebraic surfaces. The other combi-
nations of implicit and parametric surfaces defining E_, and Ep have simi-
lar resulis as easy Corollaries of Theorem 4.3. ’

Theorem 4.3 : Let E5 « Bdr(B) be a segment of the common edge

of two faces Fp and G, , where Fy and G < Bdr(B) are patches of

algebraic surfaces f =0 with gradients Vf and g =0 with gradients

Vg. Further let E_, < Bdr(-A) be a segment of the common edge

of two faces H_, and K_,, where H_, and K_, < Bdr(-A) are

patches of algebraic surfaces k =0 with gradients VA and k =0 with
gradients Vk. Suppose that (Ey ,Ng,) and (E_4 ,Ng_,) are compatible
with VfxVg 20 on E; and VAxVk 20 on E_,. Then

Convolution(E_, ,Ep) is the set of points 5 = (X, ¥,2) =p+q =

(x +a, y +p, z +7) such that
fx,y,2)=g(x,y,2)=0 and p=(x,y.z)€ Ey [§))
h(e,B.)=k(c,p.7)=0 and g=(a,B. e E_, @
A-Vf +(1-2)-Vg
TTA-Vf+(1-%).Vg 11 <Ne. and
WVA+A-R) Ve o come 0shpsl ()

Ip-VA+(1-p)-VkItl

Proof : (3) is equivalent to an outward normal direction of B at p to

be the same as an outward normal direction of -A atg. O
One can obtain the implicit algebraic equation of the Convolution(E_, ,E;)
in a similar way as in Theorem 4.1.

When Fp and G, are tangent to each other along Ey, or H., and
K_, are tangent to each other along E_, , Convolution (E_4 , Ey ) is a degen-
erate curve on the C—space obstacle boundary and is a common edge of
two convolution faces generated in § 4.2. In the special case of F and G,
being tangent along E,, and also H_, and X_, being tangent along £_,,
Convolution(E_4 ,Ep) is a degenerate point.



Let Nz (p) = Ng, ( N(S.p), then Ng,(p) is a geodesic arc on §°.
When two line segments in a plane intersects, either there is a unique inter-
section point or they overlap entirely on the same line. One can show a
similar fact for minimal geodesic arcs on $2 as follows,

Fact 4.1: If Ng,(p) M Ng_ (q) 2D, either (1) Ng,(p) M Ng_ (q) is

apoint or (2) Ng,(p) = Ng _(q).

By subdividing Ey and E_, if necessary, we may assume only one of

the conditions (1) or (2) holds for the whole edges E; and E_,. We call Eg
and E_, to be parallel if the condition (2) holds on the whole edges Ep and
E_4. If Eg and E_, is a parallel edge pair, the Convolution (E_,, Eg ) gen-
erated in Theorem 4.3 is a degenerate curve on the C—space obstacle. Oth-
erwise it is a surface patch.

5. Obtaining Gaussian Model of C —space Obstacles

We now show how to construct the Gaussian (Spherical) Model of
CO(A,B), see Figures 2 (a)-(c). Let 5%y and §%, be the Gaussian
Models of B and —A. These define graphs on $2 with degeneracies tagged
appropriately. Let a new graph § zco(A_ gyons % be the overlay of §%; and
§2,. Then S2coq, 3y is the Gaussian Model of CO(A,B) and determines
all compatible face, edge and vertex pairs between Bdr(B) and Bdr (-A).
Further the topology of the Bdr(CO (A ,B)) is given by the topology of the
tesselated §%;q4 gy surface. Construction of S%cou gy requires computing
the intersections of edges of $% with edges of §2,. These intersections
can be computed by using the following Theorems. The intersection of two
geodesic arcs can be computed by Theorem 5.1. The intersection of one
general curve segment and one geodesic arc can be computed by Theorem
5.2. The intersection of two general curve segments can be computed by
Theorem 5.3,

Next by using a spherical sweep algorithm where one can move a
great circle around the sphere and amongst the edge segments, it is possible
to compute all the overlay curve intersections. The details are somewhat
intricate but a straightforward generalization of moving a line in a plane-
sweep algorithm.

Theorem 5.1: Let y be a geodesic arc connecting n, {0 n, on §2

and ¥ be a geodesic arc connecting n’; to n’, on S2,. Then yand ¥

intersect at (A -my+(1~A)-ny) / I -ny+(1-1) ny) ! if and only if

{a~n,+<1-x>-nz>x(u-n',+<1—u>-n'z)=o )
Aon+ (1= -n- (k-n"+(1-p)n2) >0 (D

for some0< A, u <1

Proof : These two conditions are equivalent to that A+ n, +(1-1)- 2,

is in the same direction as j1- 1, +(1-p) - 7, for some 0 SA, pu< 1.
Since the vector equation (1) gives two independent scalar equations in two
variables A, {1, one can solve this system of polynomial equations either
numerically or symbolically by using polynomial resultants or Grobner
Bases, see Buchberger, Collins, and Loos (1982).

Theorem 5.2 : Let ybe a curve segment on $2, given by the sct of
poins Vi (p)/ HIVf (p)1 ! for p € E, where E < Bdr (B) is a seg-
ment of the common edge of two faces F and G both being patches
of algebraic surfaces f = 0 with gradients Vf and g = 0 with gra-
dients Vg. And, let Y be a geodesic arc connecting n, tonyon §2_,.
Then yand ¥ intersect at Vf (p)/ 1 1Vf (p)1 | if and only if

fx.y,z)=g0x,y,2)=0 and p=(x,y,z)e E (1)

Vf -(n1xn3)=0 @
Vf (ny—(ny nm) >0 6]
Vf -(n2—(ny-nyny) > 0 : @)

Proof : (2)—(4) are equivalent to that Vf is in the same direction as
A-ny+(Q1-2A)-nyforsome0<AS 1.

Since (1)-(2) give three equations in three variables x, y, z, one can solve

this system of polynomial equations.
Theorem 8.3 : Let ybe a curve segment on § 2, given by the set of
points VF(p}/ 1 IVf(p)|iforp € Ey, where Eg < Bdr(B)is a scg-
ment of the common edge of two faces F and G both being patches
of algebraic surfaces f =0 with gradients VS and g =0 with
gradients Vg. And, let ¥ be a curve segment on S2_; given by the
set of points Vh(q)/|tVh(g)It for ¢ € E_,, where E 4, C
Bdr(-A) is a segment of the common edge of two faces H and K
both being patches of algebraic surfaces b = 0 with gradients Vi and
k=0 with gradiels Vk. Then vy and ¥ intersect at
Vi (@) 11Vf (@)1 if and only if

f@,y,z2)=gx,y,2)=0 and p=(x,y,z)e E, [¢))]
h(o.B.Y)=k(e,B,9)=0 and g=(c.B,V)e E, 2
VfxVh =0 3)
Vf-Vh>0 @

Proof : (3)-(4) are equivalent to that Vf is in the same direction as

Vh.

Since the vector equation (3) gives two independent scalar equations, one
has 6 scalar equations in 6 variables from (1)-(3) and can solve this system
of polynomial equations.

Each face of the subdivision %o ») comresponds to a compatible
pair ((Ky,Ng,).(G_4,Ng,)) of boundary elements of Bdr(B) and
Bdr(~A). Note that we consider the degenerate curves and degenerate
points as generic faces of §2.. Using the formula defining Kz and G_, one
can compute the equation for Convoluwtion (G ., ,K). The boundary curves
of surface pawchs or the end points of edges for
Convolution (Bdr (B),Bdr(—A)) can be computed by using the boundary
informations given by Ny, (= Ng_). In various applications we do not need
to construct the entire C~space obstacle boundary or the entire Gaussian
Model § 260(,., »#). For example, consider the compliant motion which we
will describe in § 6. In the first approach, one can construct only the faces
of C—space obstacle boundary which correspond to the sequence of faces
of $20g(,p) along which one plans a compliant path, In the second
approach, once one obtains a shortest path on the approximating convex
polyhedron, one needs to generate only part of $%.54 5, and C~space obs-
tacle boundary faces which correspond to the approximating shortest path,

6. Compliant Motion in C~space

Having seen ways of constructing the curved surface boundary of the
C-space obstacles our next step is to gencrate continuous curves on the
C~space obsiacle boundary connecting various specified start and end
points. These correspond to continuous compliant paths for the original
object and obstacles.

In the past several authors have posed solutions to finding paths
between points on C—space obstacles bounded by planar faces. Sharir and
Schorr (1984) presented an O (nlogn ) algorithm for finding shortest paths
on n vertex convex polyhedra. This was subscquently improved to
O(nzlogn), Mount (1985). O’'Rourke, Suri, and Booth (1985) gave an
O (n®) algorithm for finding shortest paths on non-convex polyhedra which
was later improved to O (n%logn) in Mitchell, Mount, and Papadimitriou
(1985).

Finding shortest paths on curved C—space obstacles with algebraic
boundary surfaces as generated in the earlier section, is correspondingly
more difficult. On single surfaces such paths are known as geodesics, and

176



arise in cutter tool paths in machining, efficient terrain navigation and wind-
ing rotor coils, etc. There are closed solutions of geodesics for various qua-
drics and surfaces of revolution. For given two points p and q on a closed
surface there exists a minimal geodesic joining p and ¢, see do Carmo
(1976). However computing exact analytical solutions for geodesics in
general is quite difficult since these are given as solutions of nonlinear ordi-
nary differential equations, Beck, Farouki, and Hinds (1986). Even for cer-
tain simple algebraic surfaces the geodesic curves are non-unique and non-
algebraic in nature, e.g., a non-algebraic helical curve is geodesic on a
cylindrical surface (algebraic degree two).

6.1. Arbitrary Compliant Paths

Before considering shortest paths on curved convex C—space obsta-
cle boundaries however we first consider the generation of certain algebraic
curves which lic on the boundary and connect specified start points (s;) and
end points (¢;) on the boundary. Such curves provide compliant paths for a
certain object and obstacle pair. Perhaps the simplest method is to choose a
point p in the interior of the convex C'-space obstacle and consider the
unique plane PL containing a specified pair s; and e;, and the interior point
p. The intersection of PL with the convex C—space obstacle boundary
yields an algebraic curve on the boundary with breakpoints on vertices and
edges. The correctness of this procedure is justified by the following Fact.

Fact 6.1: A plane passing through an interior point of a convex
object intersects the convex object boundary in a planar convex curve
which is a Jordan curve (i.e. a curve homeomorphic to a circle).

The disadvantage of this simplistic approach is that the arbitrary
choice of the interior point p may yield undesirable algebraic curves which
consist of complete singular edges and also pass through various singular
vertices of the C—space obstacle boundary. Such paths then correspond to
vertices and edges of the object riding on vertices and edges of the obstacle
during compliant motion, see path v, in Figure 3.

To circumvent this undesirable prospect an alternate method for
choosing compliant paths may be adopted as follows. Consider the Gaus-
sian (Spherical) Model of the C—space obstacle as constructed in §5. The
start and end points of the C—space obstacle surface are easily mapped to
this spherical model. Next piecewise geodesic curves on the sphere can be
constructed connecting these start and end points which avoid degeneracies
on the C—space obstacle boundary. Various interior points to surface
paiches on the sphere can be chosen and for each triple of points ( two
surface points and the center of sphere ) the corresponding plane intersec-
tion with the sphere provide geodesic curve segments on the sphere, see
path v, in Figure 3. These piccewise curves on the sphere are then mapped
to algebraic curves on the C—space obstacle boundary. In this way compli-
ant paths which are piecewise algebraic can be determined which traverse a
specific desired sequence of surface patches or desired sequence of surface
and edge contacts between object and obstacle.

6.2. Geodesic Approximation

We now describe a method of obtaining piecewise algebraic approxi-
mate geodesic paths on convex C~space obstacles with algebraic surfaces.
One first computes a "good” approximate convex polyhedron of the curved
convex C-space obstacle as we now describe. Next the start and end
points on the C—space obstacle boundary are mapped onto the convex
polyhedron and the shortest path between these points is computed on this
polyhedron by using say the O (nlogn) algorithm, Mount (1985). Finally
the approximate shortest path of the C-space obstacle boundary
Bdr(CO(A,B)) can be obtained by projecting the shortest path of the
polyhedron onto Bdr{(CO (A ,B)).

Hierarchical Convex Polyhedral Approximation

Suppose § is strictly convex, i.c. S is convex and for each pointp €
Bdr(S) the supporting planc L, has only one common point (i.c. p) with S.
Strictly convex objects exclude degeneracies like ruled surface patches,
planar patches, etc. We consider the strictly convex case first and then con-
sider the general convex case by adding special features to the strictly con-
vex case. The following Theorems hold for the boundaries of strictly con-
vex objects.

Theorem 6.1 : Let F < Bdr(S) be a patch of an algebraic surface

f =0 with gradients Vf. Suppose fe) =N(S,p) forsomep € F,

then p = (x,y,z) is the solution of the following equations.

fxy,2)=0 and p=(x,y,2)eF (1)
Vf xe =0 @
Vf-e>0 3)

Proof : (2)—(3) are equivalent to that Vf is in the same direction as
e. O

Theorem 6.2 : Let (E,N;) be a pair such that E < Bdr(S) be a seg-
ment of the common edge of two faces F and G, where F and G <
Bdr (S} are patches of algebraic surfaces f =0 with gradients Vf and
g =0 with gradients Vg, and Ng < N(S,E} with Ny A\N(S.p) 2D
forallp € E. Supposce € Ny \N(S,p)forsomep ¢ E,thenp
= (x,y,z) is the solution of the following equations.

fl,y,z)=g(x,y.2)=0 and p=(x,y,2)eE" (1)

e (VfxVg)=0 and eeNg (v}
e (Vg -Vg)Vf ~(Vf -Vg)Vg) >0 3)
e-((Vf-Vf)Vg - (Vf -Vg)Vf}>0 @

Proof : (2)—(4) arc equivalentto thate € Ny NS, p). O

When F is a patametric surface patch F (s £)=(x(s 1),y (s £),2(s,t)) with
gradients F, X F,, one can obtain the corresponding Corollaries by changing
Vs into F, xF, and the statement "f (x,y,z)=0 and p =(x,y,z)e F"
into "p =(x(s,t), y(s ), (s 1)) € F" in the above Theorems. Similarly in
the case of G being a parametric surface patch. Note the simultaneous
solution of systems of polynomial equations can be solved either numeri-
cally or symbolically by using polynomial resultants, see also Buchberger,

. Collins, and Loos (1982).

Using the above Theorems we can approximate a strictly convex
object § by convex polyhedra as follows. Our approximation scheme is
hierarchical and curvature dependent. At the coarsest level we inscribe a
regular polyhedron (say, icosahedron) inside a unit sphere and project it
onto the surface of the sphere, see Figure 4 (a)-(b). This projection defines
a regular subdivision or tesselation on 2. We can further triangulate each
polyhedral face if it is not triangular. Let S%; be this triangular subdivision
of 52, and S%; be the subdivision given by the Gaussian Model of S.
Further let $%;, be the overlay of S% and S%. The overlay S%, can be
computed by using Theorems 5.1-5.2. To computc an approximating
polyhedron of § corresponding. to the triangulation Sy one computes the
boundary points of S at which Bdr (S) have gradients corresponding to ver-
tices of Sy. For each vertex e of §r, by looking at the vertex e in §2;, one
can tell which face, edge or vertex of Bdr(S) has e as one of its outward
normal direction(s). Suppose a face F with a surface equation f = 0 with
gradients Vf has ¢ as one of its outward normal directions at p, then the
point p can be computed by using Theorem 6.1. When an edge E whose
adjacent faces are given by f = 0 and ¢ = O with gradients Vf and Vg, has
e as one of its outward normal directions at p , then the point p can be com-
puted by using Theorem 6.2. If e is in the Gaussian Image of a vertex p,
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the point p is directly obtained by the coordinates of p. When any of the
faces are parametric surfaces, one can use a modified version of Theorem
6.1 or 6.2 as discussed before.

Further we ¢an approximate S by two related polyhedra V and W (an
inner and an outer) determined by the points p corresponding to the vertices
e of 52;. Let P be the set of all these points p. Since § is convex, V =
Convex—Hull (P) c §. Let L, be the supporting planc of S at p and H, =
the half-space defined by L, swch that § < Hy, then S c W =~ H,.
For a strictly convex object § each face of V is a triangle Fy;, determined
by three boundary points p;, p; and p; such that the corresponding Gaus-
sian Images ¢;, ¢; and e; makes a triangular face Ny on the tessellation of
the Gaussian Sphere. F, is a planar approximation of the boundary surface
paich S;; on which § has normal directions corresponding to angular range
Ny;. Each vertex of W is a common intersection point Hy of three sup-
porting planes L, L, and L. The distance between the vertex Hy, and
the face Fy;, gives an estimation of how closely V and W approximates §
over S;. If the difference is bigger than a predefined bound (say, € > 0),
we can further triangulate N, into a finer resolution and modify V and W
locally by repeating the above procedure. We can continue this refinement
over all coarsely approximated faces and recursively to all the sub faces
thus obtained, see Figure 4 (c).

When a convex object § is not strictly convex, Bdr(S) can have
some ruled surface pathes and planar patches which have degenerate curves
and points as Gaussian Images. The degenerate point for the Gaussian
Image of a planar patch can be on the interior of a single triangular patch,
on the common edge of two triangular patches, or at a common vertex of
several triangular patches. Polygonal approximation can be obtained by
connecting the vertices of the planar patch and the vertices of the triangular
patches where the degenerate point lies. The degenerate curve for the
Gaussian Image of a ruled surface patch passes through a sequence of tri-
angular patches of the Gaussian Sphere. By subdividing this curve into
finite subsegments we can approximate the ruled surface into a finite
sequence of planar patches. Each comer of this planar patches can be con-
nected to the vertices of the triangular patches where the segments of the
degenerate curve lie.

Approximating Shortest Path

By continuing the above finer refinements upto an arbitrarily small e
> 0, we can construct a sequence {V, ] of inscribed convex polyhedra con-
verging to §. It can be shown that the areas of Bdr (V,) converges to those
of Bdr(S). Hence, this fact justifies our strategy of using the shortest paths
of Bdr (V,) as approximate shortest paths of Bdr (§) for sufficiently large n.

Convex Polyhedral Approximation of C —space Obstacle

One may compuie a convex polyhedral approximation of CO (A,B)
by applying the above procedure to the boundary representation and the
Gaussian Model of CO (A ,B). But, since the degrees of C—space obstacle
boundary surfaces are extremely high, it is more efficient to deal with the
boundary surfaces of ~A and B to approximate CO (4,8). One can start
with a triangular subdivision $% as before, But, at this time, instcad of
computing the point p € Bdr(CO(A,B)) which has an outward normal
direction ¢ on the C—space obstacle boundary, one can compute py €
Bdr(B) and p_, € Bdr(—A) which correspond to e on the object and obs-
tacle boundary surface, and compute pz +p.4. One can continuc the
refincment steps as above.

In this way we do not need to even construct the entire Gaussian
Model of CO(A,B) cither. Computation of pp and p_, requires comput-
ing the overlays of $% with $% and §2_,. Only a partial boundary of
5?0,y needs to be constructed 1o obtain the topology of the correspond-
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ing partial boundary of Bdr(CO(A,B)) where the approximate shortest
path lies.

Shortest Path on Convex Polyhedron and Projection onto Curved
C-space Obstacle

Once we have a convex polyhedron V approximating CO (A ,B) we
can compute a shortest path Y on Bdr (V') by using say the O (n 2logn) algo-
rithm, Mount (1985). By projecting Y from an interior point onto
Bdr(CO(A,B)) one can get an approximate shortest path on the C ~space
obstacle boundary. One can choose the center of mass ¢ of V as the projec-
tion point and consider the intersections of the plane (containing each line
segment of the shortest path on V and ¢) with the corresponding surface
patch of Bdr(CO(A,B)). This surface patch corresponds to the triangular
facet of V which contains the line segment which we are projecting. For
certain applications with complicated C—space obsiacles, a single projec-
tion point may not give mice properties for the projected curve. We may
have this difficulty for instance when the C—space obstacle has many
degenerate boundary surfaces. In this case, we can choose a variety of pro-
jection points or use other projection methods, whichever is appropriate for
the application,

7. Conclusion

We have described algorithmic methods for computing C—space
obstacles and determining paths on their boundary, using boundary
representation and Gaussian image geometric models. Many further algo-
rithmic developments need to be made before which one can use computer
models of the workspace and the objects being manipulated and simulate
and reason with them. Such reasoning for instance could allow a robot sys-
tem with off-line programming: to figure out a grip, to determine the stabil-
ity of an assembly, to figure out a part assembly sequence and so forth.
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Figure 2-(c) Gaussian Model for CO(A,B)

Figure 1-(c) Convex object with ruled surface patch and
planar surface patch on the boundary

Figure 3 Compliant path on C—~space obstacle boundary
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Figure 1-(d) Gaussian Model for the object (¢)

Figure 4--(b) Icosahedron projected onto the unit sphere
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Figure 2—(a) Gaussian Model for -A

Figure 2-(b) Gaussian Model for B Figure 4-(a) Icosahedron inscribed in the unit sphere
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