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We present an efficient and robust algorithm to compute the intersection curve of
two ringed surfaces, each being the sweep ∪uCu generated by a moving circle. Given
two ringed surfaces ∪uCu

1 and ∪vCv
2 , we formulate the condition Cu

1 ∩ Cv
2 �= ∅ (i.e.,

that the intersection of the two circles Cu
1 and Cv

2 is nonempty) as a bivariate equation
λ(u, v) = 0 of relatively low degree. Except for redundant solutions and degenerate
cases, there is a rational map from each solution of λ(u, v) = 0 to the intersection point
Cu

1 ∩ Cv
2 . Thus it is trivial to construct the intersection curve once we have computed

the zero-set of λ(u, v) = 0. We also analyze exceptional cases and consider how
to construct the corresponding intersection curves. A similar approach produces an
efficient algorithm for the intersection of a ringed surface and a ruled surface, which
can play an important role in accelerating the ray-tracing of ringed surfaces. Surfaces
of linear extrusion and surfaces of revolution reduce their respective intersection
algorithms to simpler forms than those for ringed surfaces and ruled surfaces. In
particular, the bivariate equation λ(u, v) = 0 is reduced to a decomposable form,
f (u) = g(v) or ‖f(u) − g(v)‖ = |r (u)|, which can be solved more efficiently than the
general case. c© 2001 Elsevier Science (USA)
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1. INTRODUCTION

A ringed surface is a sweep surface generated by a circle moving under translation,
rotation, and scaling; thus it can be decomposed into a one-parameter family of circles [10].
Surfaces of revolution, Dupin cyclides, and canal surfaces all belong to the class of ringed
surfaces [15, 19]. Additionally, early investigations of generalized cylinders were focused on
the sweeping of circles along a trajectory space curve. In short, we find the ringed surface in
various branches of three-dimensional shape modeling and processing. Out of many related
results, we mention van Wijk’s ray-tracing algorithm for canal surfaces [22] and Nishita
and Johan’s scan-line algorithm for rendering ringed surfaces [17]; the examples in these
two papers include the representation of various interesting three-dimensional shapes by
canal and ringed surfaces.

The intersection of two freeform surfaces is another problem of general importance
in geometric and solid modeling. For example, Boolean operations on boundary models
rely on accurate computation of the intersection curves between the surfaces of the two
original solids. Many algorithms have been suggested for computing the intersection of two
surfaces. However, it remains a challenging task to develop an algorithm that can compute
the intersection curve of two arbitrary freeform surfaces accurately, robustly, efficiently,
and without user intervention [9]. Because of the difficulty of dealing with general freeform
surfaces, many previous approaches to the intersection problem have been focused on
surfaces of common special types such as the classic CSG primitives (planes, cylinders,
cones, and tori) [11, 16, 21].

In this paper, we consider the intersection of two ringed surfaces. The problem is more
difficult than the case of natural quadrics or the usual CSG primitives; in fact, cylinders,
cones, and tori may be considered the simplest types of ringed surface. On the other hand,
ringed surfaces are simpler than general freeform surfaces, and so it is reasonable to look
for a simpler solution to the intersection problem in this case.

Dupin cyclides have both implicit and parametric representations. Martin et al. [15] com-
puted the intersection of cyclides with planes, quadrics, and other cyclides by substituting
the parametric equation of one surface into the implicit equation of the other. Johnstone
[10] presented an algorithm for intersecting a ringed surface with a cyclide, using circle
decomposition and a transformation called the inversion map. Johnstone reformulated the
intersection of a ringed surface and a cyclide as the intersection of a ruled surface and a
one-parameter family of cyclides. The parametric equation for each line of the ruled surface
is then substituted into the implicit equation of the corresponding cyclide in the family, pro-
ducing an algebraic equation in two variables. However, Johnstone leaves open the problem
of intersecting two ringed surfaces. In this paper, we attack this problem using an approach
similar to the one taken in our previous work on the intersection of two ruled surfaces [8].

Given two ringed surfaces ∪uCu
1 and ∪vCv

2 , each represented as a one-parameter family
of circles, we formulate the condition Cu

1 ∩ Cv
2 �= ∅ using a bivariate equation λ(u, v) = 0

of relatively low degree. There is a rational map from the zero-set of λ(u, v) = 0 to the
intersection curve (∪uCu

1 ) ∩ (∪vCv
2 ), except for some redundant or degenerate cases.

We consider each circle to be the intersection of a sphere and a plane (i.e., Cu
1 = Ou

1 ∩ Pu
1

and Cv
2 = Ov

2 ∩ Pv
2 ). From the two spheres Ou

1 and Ov
2 , we can find a plane Puv

12 that con-
tains the intersection circle Cuv

12 = Ou
1 ∩ Ov

2 . Then the three planes Pu
1 , Pv

2 , and Puv
12 deter-

mine a common intersection point x(u, v). When we substitute the point equation x(u, v)
into the implicit equation of Ou

1 or Ov
2 , we get an equation λ(u, v) = 0 of relatively low



230 HEO ET AL.

degree. Thus the intersection problem is reformulated as the problem of finding the zero-set
of λ(u, v) = 0. (An efficient and robust algorithm for tracing all branches of the zero-set
can be found in a recent survey paper of Patrikalakis and Maekawa [18] and the references
cited in the paper.)

The problem-reduction scheme employed in this paper is not limited to the intersection
of two ringed surfaces. A similar technique has been used in the intersection of two ruled
surfaces [8]. In this paper, we also present an algorithm for the intersection of a ringed
surface and a ruled surface. More generally, Kim and Elber [13] reviewed the paradigm that
consists of converting various interesting geometric problems to a search for the zero-set of
constraint equations in the parameter space of input curves and surfaces. Some applications
include the computation of sweeps and Minkowski sums of freeform curves and surfaces.
Nonrational bisectors for freeform curves and surfaces have also been computed using the
same method of problem reduction [4, 5]. Elber and Kim [6] present an efficient algorithm
that solves multivariate rational equations, the bivariate case of which was used in the
implementation of algorithms presented in this paper.

Among all these applications, the intersection of two ringed surfaces is the most interest-
ing, because at first it looks to be a nonlinear problem, whereas other problems have rather
obvious linear structures in their constraint equations. The construction of three planes in
a general position is the key idea for reducing this intersection problem to one of finding a
zero-set in the parameter space of the two original ringed surfaces.

Computing the self-intersection of a freeform surface is usually more difficult than the
case of intersecting two different surfaces. Two identical surfaces are tangential everywhere;
thus, a subdivision-based approach would not work for this case. On the other hand, our
algorithm can deal with the self-intersection of a ringed surface quite easily, with a slight
modification to the original algorithm. Let ∪uCu and ∪vCv be two different parameteri-
zations of the same ringed surface. Clearly, u − v = 0 is a trivial solution of λ(u, v) = 0
since Cu and Cv represent the same circle when u = v. This paper shows that the zero-set
of λ̄(u, v) = λ(u, v)/(u − v)4 = 0 corresponds to the self-intersection of a ringed surface.

Maekawa et al. [14] suggested a method of designing a pipe surface (a special case of a
ringed surface) that has no local or global self-intersection. Though the algorithm does not
construct the intersection curve explicitly, the intersection test between two end circles (of
the same radius) also uses the principle of three planes, where the third plane Puv

12 is now
the bisector plane between the centers of the two circles.

Surfaces of linear extrusion and surfaces of revolution are among the most frequently
used surfaces in designing simple three-dimensional shapes. They belong to the class of
ruled and ringed surfaces. Using the result of this paper and also that of Heo et al. [8]
for intersecting two ruled surfaces, we can deal with the cases of intersecting surfaces of
linear extrusion and surfaces of revolution. In addition to that, there is a more efficient
way of computing the intersection of these surfaces since they provide some special struc-
tures that we can utilize for speeding up the computation of the zero-set λ(u, v) = 0. For
example, in the case of intersecting two surfaces of linear extrusion, the bivariate equa-
tion can be decomposed in the form of λ(u, v) = f (u) − g(v) = 0. Moreover, in the case
of intersecting two surfaces of revolution, the zero-set of λ(u, v) = 0 can be reduced to
‖f(u) − g(v)‖ = |r (u)|, where f(u) and g(v) are space curves and r (u) is a scalar func-
tion. In the case of intersecting a surface of revolution and a surface of linear extru-
sion, the space curve f(u) reduces to a line l(u), which can further simplify the zero-set
computation.
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The rest of this paper is organized as follows. In Section 2, the intersection of two
ringed surfaces is reduced to the problem of computing the zero-set of a bivariate function
λ(u, v) = 0. Redundant solutions from this zero-set approach are discussed in Section 3, and
degenerate cases are analyzed in Section 4. Section 5 introduces an algorithm to compute the
self-intersection of a ringed surface. Section 6 presents an algorithm for the intersection of
a ringed surface and a ruled surface, and Section 7 considers the intersection of two simple
sweep surfaces such as surfaces of revolution and surfaces of linear extrusion. Finally,
Section 8 concludes this paper.

2. PROBLEM REDUCTION

Let S1(u, s) and S2(v, t) be two ringed surfaces, each of which is defined as the union of
a one-parameter family of circles

S1(u, s) = ∪uCu
1 (s) and S2(v, t) = ∪vCv

2 (t),

where Cu
1 (s) and Cv

2 (t) are circles parameterized by s and t , respectively. Assume that the
circle Cu

1 has center p1(u) = (p1,x (u), p1,y(u), p1,z(u)) and radius r1(u) and, moreover, that
Cu

1 is contained in the plane Pu
1 with normal n1(u) = (n1,x (u), n1,y(u), n1,z(u)). Let Ou

1

denote a sphere with center p1(u) and radius r1(u). Then we have

Cu
1 = Pu

1 ∩ Ou
1 .

Similarly, the circle Cv
2 and sphere Ov

2 have their center p2(v) = (p2,x (v), p2,y(v), p2,z(v))
and radius r2(v); moreover, the circle Cv

2 is contained in the plane Pv
2 with normal n2(v) =

(n2,x (v), n2,y(v), n2,z(v)), and so we find that

Cv
2 = Pv

2 ∩ Ov
2 .

Thus the intersection S1 ∩ S2 of our ringed surfaces is shown to be the union of a two-
parameter family of circle–circle intersections

S1 ∩ S2 = ∪u∪vCu
1 ∩ Cv

2

= ∪u∪v

(
Pu

1 ∩ Ou
1

) ∩ (
Pv

2 ∩ Ov
2

)
= ∪u∪v

(
Pu

1 ∩ Pv
2

) ∩ (
Ou

1 ∩ Ov
2

)
= ∪u∪v

(
Pu

1 ∩ Pv
2

) ∩ Cuv
12

= ∪u∪v

(
Pu

1 ∩ Pv
2

) ∩ (
Puv

12 ∩ Ou
1

)
= ∪u∪v

(
Pu

1 ∩ Pv
2 ∩ Puv

12

) ∩ Ou
1

= ∪u∪v

(
Pu

1 ∩ Pv
2

) ∩ (
Puv

12 ∩ Ov
2

)
= ∪u∪v

(
Pu

1 ∩ Pv
2 ∩ Puv

12

) ∩ Ov
2 ,

where Cuv
12 is the circle formed by the intersection of the two spheres Ou

1 and Ov
2 , and Puv

12

is the plane containing the circle Cuv
12 .

A simple calculation shows that the plane Puv
12 contains the following point:

p1(u) + p2(v)

2
+ r2

1 (u) − r2
2 (v)

2‖p1(u) − p2(v)‖2
(p2(v) − p1(u)). (1)
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Moreover, the difference vector p1(u) − p2(v) is normal to the plane Puv
12 . Note that the

inner product of this normal vector and the position vector of Eq. (1) produce the scalar
quantity

‖p1(u)‖2 − ‖p2(v)‖2 + r2
2 (u) − r2

1 (v)

2
.

The intersection point (x̂(u, v), ŷ(u, v), ẑ(u, v)) of the three planes Pu
1 , Pv

2 , and Puv
12 satisfies

the following matrix equation:




n1(u)

n2(v)

p1(u) − p2(v)







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


 =




〈n1(u), p1(u)〉
〈n2(v), p2(v)〉

‖p1(u)‖2−‖p2(v)‖2 + r2
2 (v) − r2

1 (u)
2


 . (2)

When the three vectors n1(u), n2(v), and p1(u) − p2(v) are linearly independent, the above
equation has a unique solution (x̂(u, v), ŷ(u, v), ẑ(u, v)).

We now define bivariate functions w(u, v), x(u, v), y(u, v), z(u, v) as follows:

w(u, v) =

∣∣∣∣∣∣∣
n1(u)

n2(v)
p1(u) − p2(v)

∣∣∣∣∣∣∣
,

x(u, v) =

∣∣∣∣∣∣∣
〈n1(u), p1(u)〉 n1,y(u) n1,z(u)

〈n2(v), p2(v)〉 n2,y(v) n2,z(v)

µ(u, v) p12,y(u, v) p12,z(u, v)

∣∣∣∣∣∣∣
,

y(u, v) =

∣∣∣∣∣∣∣
n1,x (u) 〈n1(u), p1(u)〉 n1,z(u)

n2,x (v) 〈n2(v), p2(v)〉 n2,z(v)

p12,x (u, v) µ(u, v) p12,z(u, v)

∣∣∣∣∣∣∣
,

z(u, v) =

∣∣∣∣∣∣∣
n1,x (u) n1,y(u) 〈n1(u), p1(u)〉
n2,x (v) n2,y(v) 〈n2(v), p2(v)〉

p12,x (u, v) p12,y(u, v) µ(u, v)

∣∣∣∣∣∣∣
,

where

µ(u, v) = ‖p1(u)‖2 − ‖p2(v)‖2 + r2
2 (v) − r2

1 (u)

2

and

p12,x (u, v) = p1,x (u) − p2,x (v),

p12,y(u, v) = p1,y(u) − p2,y(v),

p12,z(u, v) = p1,z(u) − p2,z(v).

By Cramer’s rule, the intersection point (x̂(u, v), ŷ(u, v), ẑ(u, v)) can then be computed
from

x̂(u, v) = x(u, v)

w(u, v)
, ŷ(u, v) = y(u, v)

w(u, v)
, ẑ(u, v) = z(u, v)

w(u, v)
.
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(a)

FIG. 1. The intersection of two cylinders: (a) two cylinders and (b) λ–function.

The bivariate functions w(u, v), x(u, v), y(u, v), and z(u, v) are polynomial if the posi-
tion curves p1(u) and p2(v), the radius functions r1(u) and r2(v), and the normal vectors
n1(u) and n2(v) are all polynomial; if the position curves, radius functions, and normal
vectors are rational, the bivariate functions are rational. The condition for the intersec-
tion point ( x(u,v)

w(u,v) ,
y(u,v)
w(u,v) ,

z(u,v)
w(u,v) ) to be located on the sphere Ou

1 can be formulated as
follows:

λ(u, v) = ‖(x(u, v), y(u, v), z(u, v)) − w(u, v)p1(u)‖2 − w2(u, v)r2
1 (u) = 0.

When the vectors n1(u), n2(v), and p1(u) − p2(v) are linearly independent, the equation
λ(u, v) = 0 is a necessary and sufficient condition for two circles Cu

1 and Cv
2 to have

a nonempty intersection point. For each point (u, v) in the zero-set of λ(u, v) = 0, the
corresponding intersection point can be computed by the rational map ( x(u,v)

w(u,v) ,
y(u,v)
w(u,v) ,

z(u,v)
w(u,v) ),

which is the solution of Eq. (2). Figures 1 and 2 show some examples of intersecting two
ringed surfaces.

(a) (b)

FIG. 2. Intersecting two ringed surfaces.
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EXAMPLE 1. Let two ringed surfaces S1(u, s) = ∪uCu
1 and S2(v, t) = ∪vCv

2 be defined
by the following functions:

p1(u) = (0, 4u − 2, 0), r1(u) = 1, n1(u) = (0, 1, 0),

p2(v) = (4v − 2, 0, 1), r2(v) = 1, n2(v) = (1, 0, 0).

Note that S1(u, s) and S2(v, t) are two cylinders intersecting orthogonally (see Fig. 1a).
From these definitions we can formulate the matrix equation


 0 1 0

1 0 0
2 − 4v 4u − 2 −1







x(u,v)
w(u,v)

y(u,v)
w(u,v)

z(u,v)
w(u,v)


 =




4u − 2
4v − 2

8u2 − 8u − 8v2 + 8v − 1
2


,

where the bivariate functions w(u, v), x(u, v), y(u, v), and z(u, v) are defined as follows

w(u, v) = 1,

x(u, v) = 4v − 2,

y(u, v) = 4u − 2,

z(u, v) = 8u2 − 8u − 8v2 + 8v + 1

2
.

Finally, the bivariate function λ(u, v) may be computed by means of the equation:

λ(u, v) = (4v − 2)2 +
(

8u2 − 8u − 8v2 + 8v + 1

2

)2

− 1 = 0.

From the zero-set of λ(u, v) = 0, we can now construct the intersection curve ( x(u,v)
w(u,v) ,

y(u,v)
w(u,v) ,

z(u,v)
w(u,v) ) (see Fig. 1).

3. REDUNDANT SOLUTIONS

When the three vectors n1(u), n2(v), and p1(u) − p2(v) are linearly dependent, we have

w(u, v) = 〈n1(u) × n2(v), p1(u) − p2(v)〉 = 0.

Thus the condition λ(u, v) = 0 reduces to

λ(u, v) = ‖(x(u, v), y(u, v), z(u, v)) − w(u, v)p1(u)‖2 − w2(u, v)r2
1 (u)

= ‖(x(u, v), y(u, v), z(u, v))‖2

= 0,

which is equivalent to

x(u, v) = y(u, v) = z(u, v) = 0.
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As we discuss below, when w(u, v) = 0, there are some redundant cases where λ(u, v) = 0
holds but the two circles Cu

1 and Cv
2 have no intersection. Consequently, when the three

vectors n1(u), n2(v), and p1(u) − p2(v) are linearly dependent, λ(u, v) = 0 is only a nec-
essary, but not a sufficient, condition for the two circles Cu

1 and Cv
2 to have intersection at

a real affine point.
The condition w(u, v) = x(u, v) = y(u, v) = z(u, v) = 0 means that the three planes

Pu
1 , Pv

2 , and Puv
12 meet either at infinitely many real affine points or at points at infinity; thus

the following two cases are the only ones that we need to consider for intersection at real
affine points:

1. The two planes Pu
1 and Pv

2 are coplanar.
2. The three planes Pu

1 , Pv
2 , and Puv

12 intersect in a line.

The first case can be classified by the following two equations:

	(u, v) = ‖n1(u) × n2(v)‖2 = 0,

δ(u, v) = 〈n1(u), p1(u) − p2(v)〉 = 0.

The circle–circle intersection problem is then essentially reduced to the planar case.
When the two planes Pu

1 and Pv
2 are identical and when, additionally, p1(u) = p2(v), the

two circles Cu
1 and Cv

2 intersect if and only if r2
1 (u) = r2

2 (v); in this case, the two circles are
identical.

When the two planes Pu
1 and Pv

2 overlap and p1(u) �= p2(v), the third plane Puv
12 is

orthogonal to both Pu
1 and Pv

2 . The circle–circle intersection points are then located on the
intersection line Pu

1 ∩ Puv
12 of two planes. This line is parallel to n1(u) × (p1(u) − p2(v)),

and it contains the point

m(u, v) = p1(u) + p2(v)

2
+ r2

1 (u) − r2
2 (v)

2‖p1(u) − p2(v)‖2
(p2(v) − p1(u)),

which is also the foot point of the perpendicular from p1(u) to the intersection line. The
two intersection points Cu

1 ∩ Cv
2 are computed as follows

m(u, v) ±
√

r2
1 (u) − ‖m(u, v) − p1(u)‖2 · n1(u) × (p1(u) − p2(v))

‖n1(u) × (p1(u) − p2(v))‖ .

Now, when the three planes Pu
1 , Pv

2 , and Puv
12 intersect in a real affine line, but Pu

1 and
Pv

2 are not parallel, we have

λ(u, v) = 0, w(u, v) = 0, and 	(u, v) > 0.

The common intersection line (parameterized by t) can be written

Luv(t) = m(u, v) + t n1(u) × n2(v),

where m(u, v) is the foot point of the perpendicular from p1(u) to the line. Note that the
foot point m(u, v) satisfies the following equations:

〈n1(u), m(u, v) − p1(u)〉 = 0,

〈n2(v), m(u, v) − p2(v)〉 = 0,

〈n1(u) × n2(v), m(u, v) − p1(u)〉 = 0.
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Since the three vectors n1(u), n2(v), and n1(u) × n2(v) are linearly independent, the foot
point m(u, v) has a rational representation in u and v.

The two circles Cu
1 and Cv

2 intersect in two real affine points if and only if

r2
1 (u) − ‖m(u, v) − p1(u)‖2 = r2

2 (v) − ‖m(u, v) − p2(v)‖2.

And the two intersection points Cu
1 ∩ Cv

2 are then computed as

m(u, v) ±
√

r2
1 (u) − ‖m(u, v) − p1(u)‖2 · n1(u) × n2(v)

‖n1(u) × n2(v)‖ .

4. DEGENERATE CASES

In general, the solution-set of λ(u, v) = 0 corresponds to a planar algebraic curve in
the uv-plane. However, in some degenerate cases, the solution-set may contain the whole
uv-plane (i.e., λ(u, v) ≡ 0). When each circle Cu

1 of the first ringed surface S1 intersects all
the circles Cv

2 of the second ringed surface S2, we have λ(u, v) ≡ 0.
For example, the torus may be represented as a union of cross-sectional circles; at the

same time, it can also be represented as a union of profile circles [11]. (There are two more
ways of representing the torus as a union of circles, i.e., as a union of Yvone-Villarceau
circles.) When we intersect the two representations of a single torus with each other, each
cross-sectional circle on one torus intersects all profile circles on the other, and vice versa.
Consequently, the resulting λ-function vanishes identically: λ(u, v) ≡ 0. Similarly, there
are four different ways of decomposing a Dupin cyclide into a union of circles: we can take
either of the original surfaces as the intersection of the two ringed surfaces.

Consider a ringed surface with a singular point where all the circles intersect. (A spindle
torus, for example, has two such singular points.) When we place two ringed surfaces of
this type so that their respective singular points share the same position, each circle from
one ringed surface will intersect all the circles on the other ringed surface, and vice versa.
Consequently, λ(u, v) ≡ 0.

Two ringed surfaces may intersect at some points in addition to the singular point. The
zero-set of λ(u, v) ≡ 0 is of no use for the construction of these intersection points, other
than the singular point. When two circles Cu

1 and Cv
2 intersect at a point other than the

singular point, the three planes Pu
1 , Pv

2 , and Puv
12 intersect in a straight line through the

intersection point and the singular point. Thus we can apply the techniques introduced in
the previous section to such degenerate cases.

There are some other degenerate cases where the three normal vectors n1(u), n2(v), and
p1(u) − p2(v) are linearly dependent for all (u, v): that is, cases where λ(u, v) ≡ 0 and
w(u, v) ≡ 0, and consequently x(u, v) ≡ y(u, v) ≡ z(u, v) ≡ 0. As we have discussed in
the previous section, there are essentially two cases to consider:

1. The two planes Pu
1 and Pv

2 overlap, for all u and v.
2. The three planes Pu

1 , Pv
2 , and Puv

12 intersect in a line, for all u and v.

It is easy to detect the first case, where the two ringed surfaces degenerate to planar regions
contained in the same plane. The second case is more interesting. An example includes the
case of intersecting two tori with the same axis of rotation and the same major circle, but
with different minor radii.
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The detection of degenerate cases involves checking whether certain bivariate functions
vanish identically:

F(u, v) ≡ 0.

Assume that F(u, v) is a polynomial function of degree (m, n) and that a uniform sam-
pling is made on the (u, v)-parameter domain: (ui , v j ), for i = 0, . . . , m and j = 0, . . . , n.
When we have F(ui , v j ) = 0 at these (m + 1)(n + 1) parameter values, we can guaran-
tee that F(u, v) ≡ 0. Elber and Kim [3] used similar tests for the shape recognition of
freeform curves and surfaces of special types such as surfaces of revolution, surfaces of
linear extrusion, ruled surfaces, and developable surfaces.

5. SELF-INTERSECTION OF A RINGED SURFACE

Assume that a ringed surface S(u, t) = ∪uCu(t) is defined by the center p(u) and radius
r (u) of the circle Cu and by the normal n(u) of the plane Pu that contains the circle Cu .
Then S(u, t) has a self-intersection if and only if Cu ∩ Cv �= ∅, for u �= v. Assuming further
that the two circles Cu and Cv intersect at a real affine point (x̂(u, v), ŷ(u, v), ẑ(u, v)), we
obtain the matrix equation




n(u)

n(v)

p(u) − p(v)







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


=




〈n(u), p(u)〉
〈n(v), p(v)〉

‖p(u)‖2 − ‖p(v)‖2 + r2(v) − r2(u)
2


,

which is equivalent to




n(u)

n(u) − n(v)

p(u) − p(v)







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


 =




〈n(u), p(u)〉
〈n(u), p(u)〉 − 〈n(v), p(v)〉

‖p(u)‖2−‖p(v)‖2 + r2(v) − r2(u)
2


.

When the functions p(u), n(u), and r (u) are polynomial or rational, each of the terms
n(u) − n(v), p(u) − p(v), 〈n(u), p(u)〉 − 〈n(v), p(v)〉, and ‖p(u)‖2 − ‖p(v)‖2 + r2(v) −
r2(u) has a factor (u − v), and we can deduce that

(u − v)2




n(u)
n(u)−n(v)

u−v

p(u)−p(v)
u−v







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


= (u − v)2




〈n(u), p(u)〉
〈n(u),p(u)〉−〈n(v),p(v)〉

u−v

‖p(u)‖2−‖p(v)‖2 + r2(v) − r2(u)
2(u−v)


.

From the above equation, it is clear that the terms w(u, v), x(u, v), y(u, v), and z(u, v) have
a factor of (u − v)2. Thus the following bivariate function has a factor of (u − v)4:

λ(u, v) = ‖(x(u, v), y(u, v), z(u, v)) − w(u, v)p(u)‖2 − w2(u, v)r2(u).

Now let us define a simplified function

λ̄(u, v) = λ(u, v)

(u − v)4
.
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(a)

FIG. 3. A self-intersecting ringed surface: (a) a ringed surface and (b) λ̄ (u, v).

The zero-set of λ̄(u, v) = 0 is the same as that of λ(u, v) = 0 except the solutions on the
diagonal line u = v. Moreover, since λ̄(u, v) is symmetric with respect to u and v, the
zero-set of λ̄(u, v) = 0 is also symmetric with respect to the diagonal line u = v. Thus we
need to compute the zero-set of λ̄(u, v) = 0 only when u > v.

EXAMPLE 3. Let a ringed surface S(u, t) = ∪uCu(t) be defined by the following func-
tions

p(u) =
3∑

i=0

(
3
i

)
ui (1 − u)3−i pi ,

r (u) =
(

u − 1

2

)2

+ 1

4
,

n(u) = 1

6
p′(u),

where p0 = (− 1
2 , 0, 0), p1 = (2, 2, 1

4 ), p2 = (−2, 2, 1
4 ), and p3 = ( 1

2 , 0, 1
2 ) are the control

points of the cubic Bézier curve p(u). Figure 3 shows a self-intersecting ringed surface and
a λ̄-function of the ringed surface. Note that the λ̄-function is symmetric with respect to u
and v, and there is a connected component of the zero-set in the region u > v.

6. THE INTERSECTION OF A RINGED SURFACE AND A RULED SURFACE

Let S1(u, s) be a ringed surface defined by

S1(u, s) = ∪uCu(s),

where the circle Cu has center p(u) = (px (u), py(u), pz(u)) and radius r (u) and, moreover,
that Cu is contained in the plane Pu with normal n(u) = (nx (u), ny(u), nz(u)). Let Ou
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denote a sphere with center p(u) and radius r (u). Then we have

Cu = Pu ∩ Ou .

Now, let S2(v, t) be a ruled surface defined by

S2(v, t) = q(v) + t d(v),

where q(v) is a generating curve and d(v) �= 0 is a direction vector of the ruled
surface.

When the two surfaces S1(u, s) and S2(v, t) intersect, the ruling line q(v) + td(v), para-
meterized by t , intersects the plane Pu ;

〈n(u), q(v) + t d(v) − p(u)〉 = 0,

which produces the parameter value of t at the intersection point:

t(u, v) = 〈n(u), p(u) − q(v)〉
〈n(u), d(v)〉 .

The intersection point itself is given as

〈n(u), d(v)〉q(v) + 〈n(u), p(u) − q(v)〉d(v)

〈n(u), d(v)〉 .

When this point is located on the sphere Ou , we have

λ(u, v)

= ‖〈n(u), d(v)〉q(v) − 〈n(u), q(v)〉d(v) + 〈n(u), p(u)〉d(v) − 〈n(u), d(v)〉p(u)‖2

− 〈n(u), d(v)〉2r2(u)

= 0. (3)

There are some redundant solutions of λ(u, v) = 0 which do not correspond to real affine
intersection points. For example, when the line q(v) + t d(v) is totally contained in the
plane Pu but does not intersect the circle Cu , there is no real affine intersection point even
though the condition λ(u, v) = 0 is satisfied.

Cylinders and cones have dual representation as ruled surfaces as well as ringed surfaces.
When we intersect the two different representations of the same surface, a degenerate
case occurs, where λ(u, v) ≡ 0. There are also some other degenerate cases, a complete
classification of which will be discussed in Seong et al. [20].

An efficient algorithm for intersecting a ringed surface and a ruled surface can be used
for the ray-tracing of ringed surfaces [2]. Figure 4 shows an example of intersecting a Utah
teapot (approximated by four ringed surfaces) and a ruled surface (representing a set of
reflected rays). Rendering applications involve many tangential intersections, as a result
of rays passing through the silhouette of ringed surfaces. It is a challenge to develop an
efficient algorithm that can deal with a large number of tangential intersections; we will
investigate this direction of research in Seong et al. [20].
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FIG. 4. The intersection of a Utah teapot and a ruled surface of reflected rays.

7. THE INTERSECTION OF TWO SIMPLE SWEEP SURFACES

Surfaces of linear extrusion and surfaces of revolution belong to the class of ruled and
ringed surfaces. There is a more efficient way of computing the intersection of these simple
sweep surfaces since they provide some special structures that we can utilize for speeding up
the computation of the zero-set λ(u, v) = 0. This section summarizes the analysis reported
in Kim [12]:

1. In the case of intersecting two surfaces of linear extrusion, the bivariate equation
can be decomposed in the form of λ(u, v) = f (u) − g(v) = 0.

2. In the case of intersecting two surfaces of revolution, the zero-set of λ(u, v) = 0
can be reduced to ‖f(u) − g(v)‖ = |r (u)|, where f(u) and g(v) are space curves and r (u) is
a scalar function.

3. In the case of intersecting a surface of revolution and a surface of linear extrusion, the
space curve f(u) reduces to a line l(u), which can further simplify the zero-set computation.

Using the result of Heo et al. [8], we may reformulate the intersection of two ruled
surfaces as a zero-set finding problem for a bivariate equation

λ(u, v) = 〈d1(u) × d2(v), p1(u) − p2(v)〉 = 0, (4)

where p1(u) and p2(v) are generating curves and d1(u) and d2(v) are direction vectors of
the two ruled surfaces. Surfaces of linear extrusion have fixed direction vectors d1 and d2;
thus the bivariate equation can be represented in a decomposable form

λ(u, v) = f (u) − g(v) = 0, (5)

where

f (u) = 〈d1 × d2, p1(u)〉 and g(v) = 〈d1 × d2, p2(v)〉. (6)

Figure 5 shows an example of intersecting two surfaces of linear extrusion.
Now we consider the intersection of two surfaces of revolution, which is a special case

of intersecting two ringed surfaces. Let S1(u, s) = ∪uCu
1 (s) and S2(v, t) = ∪vCv

2 (t) be two
surfaces of revolution; then we may assume that the circle Cu

1 has center p1(u) = p1 + un1
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FIG. 5. The intersection of two surfaces of linear extrusion.

and is contained in the plane Pu
1 with a fixed unit normal n1. Similarly, the circle Cv

2 has
center p2(v) = p2 + vn2 and is contained in the plane Pv

2 with a fixed unit normal n2.
Equation (2) is then reduced to the matrix equation


 n1

n2

p1 − p2 + un1 − vn2







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


=




〈n1, p1〉 + u

〈n2, p2〉 + v

µ(u, v)


 , (7)

where

µ(u, v) = ‖p1‖2 + 2u〈n1, p1〉 + u2 − ‖p2‖2 − 2v〈n2, p2〉 − v2 + r2
2 (v) − r2

1 (u)

2
.

By multiplying the first row by u and the second row by −v and subtracting them from the
third row of the above matrix equation, we get the following equation:


 n1

n2

p1 − p2







x̂(u, v)

ŷ(u, v)

ẑ(u, v)


 =




〈n1, p1〉 + u

〈n2, p2〉 + v

‖p1‖2 − ‖p2‖2 − r2
1 (u) − u2 + r2

2 (v) + v2

2


. (8)

Let a constant w be defined as

w =
∣∣∣∣∣∣

n1

n2

p1 − p2

∣∣∣∣∣∣ = 〈n1 × n2, p1 − p2〉 �= 0.

By Cramer’s rule, the coordinate function x̂(u, v) is then computed as

x̂(u, v) = w−1 ·

∣∣∣∣∣∣∣∣

〈n1, p1〉 + u n1,y n1,z

〈n2, p2〉 + v n2,y n2,z

‖p1‖2 − ‖p2‖2 − r2
1 (u) − u2 + r2

2 (v) + v2

2 p1,y − p2,y p1,z − p2,z

∣∣∣∣∣∣∣∣
, (9)
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FIG. 6. The intersection of two surfaces of revolution.

where ni = (ni,x , ni,y, ni,z) and pi = (pi,x , pi,y, pi,z), for i = 1, 2. Note that x̂(u, v) can be
represented in the form f (u) − g(v). Similarly, ŷ(u, v) and ẑ(u, v) can also be represented
in this form.

The condition for the intersection point (x̂(u, v), ŷ(u, v), ẑ(u, v)) to be located on the
sphere Ou

1 can be formulated as follows

λ(u, v) = ‖(x(u, v), y(u, v), z(u, v)) − p1 − u n1‖2 − |r1(u)|2 = 0. (10)

Thus the zero-set of λ(u, v) = 0 can be reduced to ‖f(u) − g(v)‖ = |r (u)|, where f(u) and
g(v) are space curves and r (u) is a scalar function. Figure 6 shows an example of intersecting
two surfaces of revolution.

In the case of intersecting a surface of revolution and a surface of linear extrusion, the
space curve f(u) reduces to a line l(u). This can be shown by applying the result of Section 6
to our case. We may assume that n(u) ≡ n, p(u) = p + u n, and d(v) ≡ d, for some fixed
direction vectors n and d. Then Eq. (3) of Section 6 is reduced to

λ(u, v) = ‖〈n, d〉q(v) − 〈n, q(v)〉d + 〈n, p + un〉d − 〈n, d〉(p + un)‖2

− 〈n, d〉2r2(u) = 0,

where the term 〈n, p + un〉d − 〈n, d〉(p + un) represents a line l(u).

8. CONCLUSIONS

We have presented an efficient and robust algorithm for the intersection of two ringed
surfaces and an algorithm for the intersection of a ringed surface and a ruled surface.
The intersection problem has been reformulated as the search for the zero-set of a bivariate
function. The overall computation procedure is based on the B-spline subdivision technique
and is numerically stable [4].

An important advantage of this approach is that the self-intersection of a ringed surface
can be similarly reformulated as the zero-set of a bivariate function. Though this paper has
not presented the details, the same approach can be applied to the self-intersection of a ruled
surface [7].

In the special cases of intersecting surfaces of linear extrusion and surfaces of revolution,
the bivariate equations are simplified to certain decomposable forms, f (u) − g(v) = 0 or
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‖f(u) − g(v)‖ = r (u), which are considerably easier to compute than the general bivariate
equations. We believe that this approach has much potential in accelerating the collision
detection among simple sweep surfaces, more details of which will be investigated in future
work.
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