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Abstract

This article presents an efficient and robust algorithm that computes the intersection curve of two ruled surfaces. The surface intersection
problem is reformulated as a zero-set finding problem for a bivariate function, which is also equivalent to the construction of an implicit curve
in the plane. Each connected component of the surface intersection curve corresponds to a connected component in the zero-set, and vice
versa, except for some singular points, redundant solutions, and degenerate cases. We also present algorithms that detect all these singular
points, redundant solutions, and degenerate cases.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The surface/surface intersection problem has attracted
considerable research attention in geometric and solid
modeling. Many algorithms have been suggested for inter-
secting two free-form surfaces. However, there has been no
known algorithm that can compute the intersection curve of
two arbitrary rational surfaces accurately, robustly, and effi-
ciently, while requiring no user intervention [7].

The situation is much better when we restrict the domain
of input surfaces to that of simple surfaces such as planes,
natural quadrics (spheres, cylinders, cones), and tori.

These surfaces, the so-called CSG primitives, are impor-
tant in conventional solid modeling systems since they can
represent a large number of simple mechanical parts. There
are some geometric algorithms that can intersect two natural
quadrics efficiently and robustly [10,15]. In particular,
Miller and Goldman [10] reduce the problem of detecting
all degenerate conic sections to that of checking a few
simple algebraic expressions formulated with the geometric
parameters of input surfaces. Kim et al. [8] present a torus/
sphere intersection algorithm that is based on a configura-
tion space transformation. The basic approach can be

extended to the intersection of a torus with a cylinder, a
cone, or another torus. Kim and Kim [9] present an algo-
rithm that can detect and construct all degenerate conic
sections (circles) in the intersection of a torus and a natural
quadric. This algorithm also follows the principle of Miller
and Goldman [10] in that all degenerate conic sections
(circles) can be detected exactly by evaluating a few simple
algebraic expressions.

This article considers the intersection of two ruled
surfaces. The problem is more difficult than the case of
natural quadrics as general ruled surfaces may have consid-
erably more complex shapes than planes, cylinders, and
cones (which represent the simplest ruled surfaces). In
contrast, ruled surfaces are simpler than general free-form
surfaces. Hence, there may be a compromise – we raise a
question: Would it be possible to develop an intersection
algorithm (for ruled surfaces) that performs much better
than those for general free-form surfaces? This article spells
out an affirmative answer to this question.

Among ruled surfaces, developable surfaces form an
important subclass since they are useful in sheet metal
design and processing [11]. Every developable surface can
be obtained as the envelope surface of a moving plane
(under a one-parameter motion). Thus the Gauss map of a
developable surface generates a spherical curve on the unit
sphere. The intersection of two developable surfaces can be
essentially reduced to that of two spherical curves (or even
to that of two planar curves after stereographic projection)
[1]. After the developable surfaces are subdivided at the
ruling lines corresponding to the intersection points of
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their Gauss maps, there is no internal loop in the intersection
of two surface subpatches thus subdivided. (Two surfaces
may intersect in an internal loop only if their Gauss maps
overlap [13].)

The Gauss map of a non-developable ruled surface is a
spherical region on the unit sphere (rather than being a
spherical curve). When two non-developable ruled surfaces
intersect (almost) tangentially, their Gauss maps overlap
even after many steps of sub-division. Thus it is not easy
to take advantage of the simple structure of ruled surfaces
when we apply conventional subdivision techniques to the
intersection of non-developable ruled surfaces. One may
consider a conventional algebraic method instead: Convert
one surfaceS1 � �u1; v1� into an implicit formF�x; y; z� � 0,
and substitute the parametric equationS2�u2; v2� �
�x�u2; v2�; y�u2; v2�; z�u2; v2�� of the other surface into the
implicit form; the result produces an algebraic equation in
two variables:F�u2; v2� � F�x�u2; v2�; y�u2; v2�; z�u2; v2�� �
0: (Note that the two parametersu2 and v2 come from the
same surfaceS2�u2; v2�.) Unfortunately, even for ruled
surfaces, the implicitization is a non-trivial task to imple-
ment [14]. Therefore, we need to consider a different
method.

Given two ruled surfacesS1�u; s� � C�u�1 sa�u� and
S2�v; t� � D�v�1 tb�v�, our approach is based on a simple
observation that the linear parameterss andt can be elimi-
nated simultaneously in a straightforward manner. The
result is an implicit equation in two variables:l�u; v� � 0.
(Note that the parametersu andv come from two different
ruled surfacesS1�u; s� andS2�v; t�; respectively.) When two
ruling lines intersect, they determine a unique plane. Our
physical interpretation is based on the linear dependence of
three vectors:a(u), b(v), and C(u)2 D(v), which are all
parallel to the plane determined by the two intersecting
ruling lines. This geometric observation enables us to exer-
cise more intuitive analysis of various redundant solutions
and degenerate cases. The resulting constraint equation
l�u; v� � 0 is also identical to the Plu¨cker condition of
line geometry for the intersection of two lines in the space
[12]. Consequently, our algorithm can be extended to the
intersection of rational ruled surfaces as well.

Our algorithm may be classified as an algebraic method in
the sense that, after some algebraic manipulations for vari-
able elimination, the surface intersection problem is reduced
to a simpler problem of computing an implicit curve�u; v� in
the uv-plane (i.e., the zero-set of a bivariate function). In
conventional algebraic methods, it is very difficult to keep
track of numerical errors that propagate in the sequence of
algebraic manipulations since algebraic terms and opera-
tions have no clear geometric meaning. In our method,
there is a birational correspondence between the two sets
of parameters: (u,v) and (u,v,s,t). Thus we can reliably
measure the propagation of error and extract the regions
that should be treated more carefully (i.e., the regions
vulnerable to numerical inaccuracy and/or topological
inconsistency). Numerical/topological ill-conditions are

formulated in terms of other bivariate functions:
D�u; v�; d1�u; v�; andd2�u; v�; which are based on geometric
measures such as parallelity and line distance.

The rest of this article is organized as follows. In Section
2, we reduce the problem of intersecting two ruled surfaces
into that of computing the zero-set of a bivariate function:
l�u; v� � 0: Moreover, we classify all redundant solutions
of the zero-set. Section 3 considers the degenerate cases:
�u; v� � 0 in which the zero-set degenerates into the whole
plane. Section 4 demonstrates some experimental results.
Finally, in Section 5, we conclude this article.

2. Problem reduction

Let S1�u; s� andS2�v; t� be two ruled surfaces defined by

S1�u; s� � C�u�1 sa�u�; �1�

S2�v; t� � D�v�1 tb�v�; �2�
for some directrix curves C(u) and D(v), and indicatrix
curvesa(u) ± 0 andb(v) ± 0. In this article, we assume
that a(u), b(v), C(u), and D(v) are all rational curves. Let
Lu

1�s� denote the ruling line ofS1�u; s� as given in Eq. (1) at a
fixed parameteru. Similarly, letLv

2�t� denote the ruling line
of S2�v; t� at a fixedv. When the two surfacesS1�u; s� and
S2�v; t� intersect, we have

S1�u; s� � S2�v; t�;
and equivalently,

C�u�2D�v� � 2sa�u�1 tb�v�: �3�
That is, the vectorC(u)2D(v) is given as a linear combi-

nation of a(u) and b(v). Consequently, the three vectors
a(u), b(v), and C(u)2D(v) are linearly dependent and the
following determinant must vanish:

l�u; v� � det�a�u�; b�v�;C�u�2D�v�� � 0:

2.1. Redundant solutions

The condition ofl�u; v� � 0 is a necessary, but not suffi-
cient, condition for two ruling linesLu

1�s� andLv
2�t� to inter-

sect. The solution set ofl�u; v� � 0 may contain some
redundant points that do not correspond to real, affine inter-
section points of the two ruled surfaces. We classify all
possible redundant solutions in the following.

Each solution ofl�u; v� � 0 implies the linear depen-
dency of three vectorsa(u), b(v), and C(u)2D(v):

c1a�u�1 c2b�v�1 c3�C�u�2D�v�� � 0; �4�
for some real values ofc1, c2, c3, not all of which are identi-
cally zero. Ifc3 ± 0, this implies the condition of Eq. (3).
Under this condition, the two ruling lines intersect and there
is no redundant solution ofl�u; v� � 0:

Next, we consider the case ofc3 � 0. Eq. (4) is then
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equivalent to

a�u� � 2
c1

c2
b�v�;

for somec1 ± 0 andc2 ± 0. Then, two ruling directionsa(u)
and b(v) are parallel or opposite. Note that the pair (u,v)
satisfies the conditionl�u; v� � 0 regardless of whether
the corresponding ruling linesLu

1�s� and Lv
2�t� intersect.

Therefore, the solution (u,v) is redundant if the vectors
a(u) and b(v) are parallel/opposite, but the corresponding
ruling lines do not overlap. The condition ofa(u) andb(v)
being parallel/opposite can be represented as the zero-set of
another bivariate function:

D�u; v� � ia�u� × b�v�i2 � ia�u�i2ib�v�i2
2ka�u�; b�v�l2 � 0:

Note that the zero-set ofD�u; v� � 0 is totally contained in
the zero-set ofl�u; v� � 0:

Two parallel ruling linesLu
1�s� and Lv

2�t� overlap each
other if and only if they are parallel (i.e.,D�u; v� � 0) and
the difference vectorC(u)2D(v) is parallel/opposite toa(u)
andb(v):

d1�u; v� � ia�u� × �C�u�2D�v��i2

� ia�u�i2iC�u�2D�v�i2
2ka�u�;C�u�2D�v�l2 � 0;

d2�u; v� � ib�v� × �C�u�2D�v��i2

� ib�v�i2iC�u�2D�v�i2
2kb�v�;C�u�2D�v�l2 � 0:

Note thatd�u; v� � d1�u; v�=ia�u�i2 is the squared distance
between the pointD(v) and the ruling lineLu

1�s�: Similarly,
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Fig. 1. Bivariate functions of Example 1. (a) two surfaces, (b)l� �u; �v�; (c) D� �u; �v�; (d) d1� �u; �v�; (e) d2� �u; �v�; (f) D� �u; �v�1 d1� �u; �v�1 d2� �u; �v�:



d�u; v� � d2�u; v�=ib�v�i2 is the squared distance between the
pointC(u) and the ruling lineLv

2�t�: Thus, the two linesLu
1�s�

and Lv
2�t� overlap each other if and only ifD�u; v� �

d1�u; v� � d2�u; v� � 0 (equivalently, D�u; v�1 d1�u; v�1
d2�u; v� � 0 sinceD�u; v�; d1�u; v�; d2�u; v� $ 0�: Figs.1, 3,
and 5 show some illustrative examples of intersecting two
circular cones; also shown are their corresponding bivariate
functions:D�u; v�; d1�u; v�; d2�u; v�; andD�u; v�1 d1�u; v�1
d2�u; v�; under some reparameterizations ofu andv.

In summary, a solution ofl�u; v� � 0 is redundant (i.e.,
the ruling linesLu

1�s� andLv
2�t� do not intersect) if and only if

D�u; v� � 0 and D�u; v�1 d1�u; v�1 d2�u; v� ± 0 (equiv-
alently,d1�u; v� ± 0 andd2�u; v� ± 0:

2.2. Birational correspondence

When two ruling linesLu
1�s� andLv

2�t� intersect in a real,
affine point, the two parameterssandt can be represented as
rational bivariate functions ofu andv (assuming thata(u),
b(v), C(u), and D(v) are all rational curves). By taking inner
products of Eq. (3) with the vectors2a(u) and b(v), we

obtain the following linear system of equations fors and t:

ia�u�i2
2ka�u�; b�v�l

2ka�u�; b�v�l ib�v�i2

24 35 s

t

" #
�

ka�u�;D�v�2C�u�l
kb�v�;C�u�2D�v�l

" #
:

When we have the conditionD�u; v� ± 0 (i.e., the two
vectors a(u) and b(v) are neither parallel nor opposite),
this matrix equation is non-singular and there are unique
rational solutions ofs�u; v� and t�u; v�:
s�u; v�

� ib�v�i2ka�u�;D�v�2C�u�l 1 ka�u�; b�v�lkb�v�;C�u�2D�v�l
ia�u�i2ib�v�i2

2ka�u�;b�v�l2
;

�5�

t�u; v�

� ia�u�i2kb�v�;C�u�2D�v�l 1 ka�u�; b�v�lka�u�;D�v�2C�u�l
ia�u�i2ib�v�i2

2ka�u�;b�v�l2
:

�6�

H.-S. Heo et al. / Computer-Aided Design 31 (1999) 33–5036

Fig. 2. Zero-sets of Example 1. (a) two surfaces, (b)l�u; v� � 0; (c) D�u; v� � 0; (d) Non-redundant solutions.



Note that the computation ofs�u; v� and t�u; v� becomes
quite unstable numerically whenD�u; v� � i a�u� ×
b�v�i2 < 0 (i.e., when the two ruling linesLu

1�s� and Lv
2�t�

are almost parallel). In this case, we measure the squared
distanced�u; v� between two almost parallel ruling lines and
discard the lines if their squared distance is larger than a
certain tolerance:d�u; v� $ 12

:

The real difficulty arises when there are pairs of (almost)
parallel ruling lines that (almost) overlap each other: i.e.,
D�u; v�1 d1�u; v�1 d2�u; v� < 0: In this case, we may
include either Lu

1�s� or Lv
2�t� in the intersection curve.

When there are infinitely many solutions (thus forming a
solution curve) ofD�u; v�1 d1�u; v�1 d2�u; v� � 0; the two
ruled surfacesS�u; s� andS2�v; t� overlap each other. A small
perturbation in geometric data would change the intersec-
tion curve into a totally different one. The case of tangential

intersection is extremely difficult to deal with in a topolo-
gically reliable manner (in particular, as a result of numer-
ical error). A reliable solution for this case remains a
challenging open problem for future research.

Let Ĉ be a segment of the intersection curve ofS1�u; s�
andS2�v; t�, andC be its projection onto theuv-plane. (We
assume that the two ruled surfaces do not overlap.) IfĈ is a
connected curve segment,C is a connected segment of the
implicit curve:l�u; v� � 0: But, the converse is not true in
general. When a connected curve segmentC of the implicit
curvel�u; v� � 0 contains a point (u,v) of D�u; v� � 0, there
is no unique solution for�s�u; v�; t�u; v��: Moreover, in some
degenerate cases (to be discussed later), the intersection
curve may be empty or just a single point, whereas the
zero-set ofl�u; v� ; 0 is the whole plane. In these special
cases, there is no correspondence between an intersection
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Fig. 3. Bivariate functions of Example 2. (a) two surfaces, (b)l� �u; �v�; (c) D� �u; �v�; (d) d1� �u; �v�; (e) d2� �u; �v�; (f) D� �u; �v�1 d1� �u; �v�1 d2� �u; �v�:



curveĈ and a segmentC of the implicit curvel�u; v� � 0:
In general, with the exception of: (i) parallel ruling lines
(i.e., D�u; v� � 0), (ii) degenerate cases (i.e.,l�u; v� ; 0),
and (iii) apexes and self-intersections (more details of
which to be discussed below), we have birational correspon-
dence between the intersection curveĈ and its projectionC
on the implicit curvel�u; v� � 0:

Assume that the surfaceS1�u; s� has an apexP such that
S1�u; s� � P, for u0 # u # u1, and the apexP is located on
the other surface:P� S2�v0; t0�: Then the zero-set of
l�u; v� � 0 contains a line segment: {�u; v0�uu0 # u # u1} :
The whole line segment (in theuv-domain) corresponds to a
single point P in the intersection of two ruled surfaces
S1�u; s� and S2�v; t�: Next, consider the case in which a
self-intersection pointQ of S1�u; s� is contained in the
other surfaceS2�v; t�; that is, Q is in the intersection
curve: Q� S1�u1; s1� � S1�u2; s2� � S2�v1; t1�: Two differ-
ent solutions (u1,v1) and (u2,v1) (of l�u; v� � 0) correspond
to the same intersection pointQ. Thus there is no birational
correspondence betweenC andĈ; in these cases, either.

All singular points of a ruled surfaceS1�u; s� � C�u�1

sa�u� must be located along itsstriction curve [2]:

�C�u� � C�u�2 kC 0�u�; �a0�u�l
k �a0�u�; �a0�u�l �a�u�;

where �a�u� � a�u�=ia�u�i and �a0�u� � ka�u�;a�u�l a0�u�ÿ
2ka0�u�;a�u�la�u��=ia�u�i3

: Note that �C�u� is a rational
curve when the given curvesC(u) anda(u) are rational. If
the curve�C�u� degenerates into a point, this point will be the
apex of a conical surfaceS1�u; s�: Assuming that the ruled
surface S1�u; s� is noncylindrical, all singular points of
S1�u; s� can be detected along the striction curve�C�u� by
testing the following condition [2]:

k �C 0�u� × �a�u�; �a0�u�l � 0;

or equivalently

kC 0�u� × a�u�;a0�u�l � 0:

Self-intersection points ofS1�u; s� can be detected by
intersectingS1�u; s� with S1�v; t� (i.e., the same surface as
S1�u; s�; but under different parameter naming). The
diagonal line:u2v� 0 is contained in the zero-sets of all
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Fig. 4. Zero-sets of Example 2.(a) two surfaces, (b)l�u; v� � 0; (c) D�u; v� � 0; (d) Non-redundant solutions.



bivariate functions considered before. By deleting the diag-
onal line from these zero-sets, we can characterize the
self-intersection of a ruled surfaceS1�u; s�:

2.3. Illustrative examples

In this subsection, we consider three simple examples that
illustrate typical types of redundant solutions. General ruled
surfaces produce bivariate functionsl�u; v�;D�u; v�; d1�u; v�;
d2�u; v� of high degree; thus, for the sake of simplicity, we
employ circular cones and elliptic cylinders only. In each
example, the unit circle has the following simple rational
parameterization:

C�u� � 12u2

1 1 u2 ;
2u

1 1 u2

 !
; for 2 ∞ , u , ∞: �7�

Note that (21,0) is missing from this parameterization.
To remedy this, we may cover only half of the circle using
this parameterization and cover the other half by reflecting
the parameterization about they-axis. For the convenience
of presentation, we assume the parameterization of Eq. (7),
while special treatments are made for the missing point
(21,0) only when necessary.

In Eq. (7), the parameteru is defined on an infinite
domain. For the display of global function shape, we use
another parameterization�u (restricted to a bounded
domain):

u� 2�u21
2�u�12 �u� ; for 0 , �u , 1:

Note thatu is a strictly increasing rational function of�u:
One may use�cosu; sinu� to parameterize the unit circle on
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Fig. 5. Bivariate functions of Example 3. (a) two surfaces, (b)l� �u; �v�; (c) D� �u; �v�; (d) d1� �u; �v�; (e) d2� �u; �v�; (f) D� �u; �v�1 d1� �u; �v�1 d2� �u; �v�:



the domain [0,2p ]; however, the non-algebraic functions,
sine and cosine, make some expressions too complex to be
processed symbolically (even though they sometimes
greatly simplify certain expressions).

Example 1. Let two ruled surfaces S1�u; s� �
C�u�1 sa�u� and S2�v; t� � D�v�1 tb�v� be defined by
four rational curvesa(u), b(v), C(u), and D(v):

a�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ;1

 !
;

b�v� � 12v2

1 1 v2 ;
2v

1 1 v2 ;1

 !
;

C�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ;1

 !
;

D�v� � 2
1 1 v2 ;

2v

1 1 v2 ;1
� �

:

Note thatS1�u; s� is a circular cone with its apex at (0,0,0)
andS2�v; t� is a simple translation ofS1�u; s� by (1,0,0) (see
Fig. 1(a)). From the aforementioned information, we get the
following bivariate functions:

l�u; v� � 2�u2v��uv21�
�1 1 u2��1 1 v2� ;

D�u; v� � i
2�u2v��12uv;u 1 v;212uv�

�1 1 u2��1 1 v2� i2
;

d1�u; v� � i�0;21;0�

1
2�2�12uv��u2v�;2�u2v��u 1 v�;u�1 1 uv�1 �u2v��

�1 1 u2��1 1 v2� i2
;

d2�u; v� � i�0;21;0�

1
2�2�12uv��u2v�;2�u2v��u 1 v�; v�u2v�1 �1 1 uv��

�1 1 u2��1 1 v2� i2
:

The real, affine solutions ofl�u; v� � 0 generate a planar
curve:�u2v��uv21� � 0 whereas the solutions ofD�u; v� �
0 generate a straight line:u2v � 0. Thus the zero-set of
D�u; v� � 0 is totally contained in that ofl�u; v� � 0: It is
easy to check thatD�u; v�1 d1�u; v�1 d2�u; v� . 0; for all
(u,v). Therefore, all solutions ofD�u; v� � 0 are redundant
solutions ofl�u; v� � 0:

Fig. 1(b)–(f) shows the bivariate functions:
l� �u; �v�;D� �u; �v�; d1� �u; �v�; d2� �u; �v�; and D� �u; �v�1 d1� �u; �v�1
d2� �u; �v� � 0; under the reparameterizations:u�
�2�u21�=�2�u�12 �u�� and v� �2�v21�=�2�v�12 �v��; for 0 ,
�u; �v , 1: Fig. 1(f) shows that D� �u; �v�1 d1� �u; �v�1
d2� �u; �v� . 0; for all 0 , �u; �v , 1: Fig. 2(b) and (c) show
the zero-sets ofl�u; v� � 0 andD�u; v� � 0: Non-redundant
solutions ofl�u; v� � 0 are shown in Fig. 2(d).

The non-redundant solution setC � { �u; v�ul�u; v� �
0;D�u; v� ± 0} is composed of four connected components
in the uv-plane: C1 � { �u; v�uuv� 1;u , 21} ;C2 �
{ �u; v�uuv� 1;21 , u , 0} ;C3 � { �u; v�uuv� 1; 0 , u ,
1} ; andC4 � { �u; v�uuv� 1;u . 1} At a first glance, one
may think that there are only two connected components in
the intersection curve of the two circular cones: one above
thexy-plane and the other below thexy-plane (see Fig. 1(a)).
In our rational parameterizations ofS1�u; s� andS2�v; t�, one
line of each cone is missing. (Note that the rational para-
meterization ��12u2�=�1 1 u2�; �2u�=�1 1 u2�� does not
cover the point (21,0).) Thus the intersection curve consists
of four connected components, each of which is in birational
correspondence withCi, for some i � 1,2,3,4. (We may
avoid this problem of a missing point by using a different
parameterization of the unit circle; however, this will make
our presentation lengthy. In the implementation of our algo-
rithm, we approximate the unit circle with four cubic Be´zier
curve segments; see Fig. 10.)

Note that two points (1,1) and (21,21) are limit points of
C, but they are not in the solution setC. In a small neighbor-
hood of these limit points (i.e.,D(u,v) < 0), the parameter
values ofs(u,v) and t(u,v) diverge to^ ∞ (see Eqs. (5) and
(6)). In practice, we use finite surface patches of circular
cones. Thus the parameter values ofsandt will be bounded.
The solutions of (u,v) (near to (̂ 1, ^1)) can be ignored
when their corresponding values of (s,t) are out of the
bounded range.

Example 2. Let two ruled surfacesS1(u,s) � C(u) 1 sa(u)
and S2(v,t) � D(v) 1 tb(v) be defined by:

a�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ; 1

 !
;

b�v� � 12v2

1 1 v2 ;
2v

1 1 v2 ;1

 !
;

C�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ;1

 !
;

D�v� � 12v2

1 1 v2 ;
�1 1 v�2
1 1 v2 ;0

 !
:

Note thatS2�v; t� is a simple translation ofS1�u; s� by
(0,1,2 1) (see Fig. 3(a)). From the aforementioned informa-
tion, we get the following bivariate functions:

l�u; v� � 2�1 1 u��1 1 v��v2u�
�1 1 u2��1 1 v2� ;

D�u; v� � i
2�u2v��12uv;u 1 v;212uv�

�1 1 u2��1 1 v2� i2
;

H.-S. Heo et al. / Computer-Aided Design 31 (1999) 33–5040



d1�u; v� � i

 
�1 1 v�2
1 1 v2 ;

�v21��1 1 v�
1 1 v2 ;

�1 1 v��vu222uv2v 1 u221 1 2u

�1 1 u2��1 1 v2�

!
i2
;

d2�u; v� � i�1; 1;0�1

 
4v

1 1 v2 2
2u

1 1 u2 ;
2

1 1 u2 2
4

1 1 v2 ;

�u21��2uv1 uv22u2v2 1 1 1 2v�
�1 1 u2��1 1 v2�

!
i2
:

The solutions ofl (u,v) � 0 generate a planar curve:
(u2v)(u 1 1)(v 1 1) � 0, whereas the solutions of
D(u,v) � 0 generate a straight line:u2v � 0; see Fig. 4(b).
Moreover, it is easy to check that (21,21) is the only
common solution ofD(u,v) � d1(u,v) � d2(u,v) � 0; thus
the solution (21,2 1) is not a redundant solution ofl(u,v)�0.

The non-redundant solution setC � { �u; v�u�u 1 1��v 1

1� � 0} is composed of two lines (vertically intersecting)
in the uv-plane (see Fig. 4(d)). LetC1 � { �u; v�uu , 21;
v� 21} ; C2 � { �u; v�uu . 21; v� 21} C3 � { �u; v�uu�
21; v , 21} ; andC4 � { �u; v�uu� 21; v . 21} : All solu-
tions (u,v) in the setC1 < C2 correspond to the same inter-
section point (0,0,0); that is, all ruling linesLu

1�s� of S1�u; s�
intersect with the lineL21

2 �t� at the common intersection
point (0,0,0), which is also the apex ofS1�u; s�: Similarly,
all solutions (u,v) in the setC3 < C4 correspond to the same
intersection point (0,1,21), which is the apex ofS2�v; t�: The
point (21,21) corresponds to the pair of ruling linesL21

1 �s�
andL21

2 �t� that overlap in the same line: {�0; t;2t�u2∞ ,
t , ∞} : In summary, the two circular conesS1�u; s� and
S2�v; t� intersect tangentially along a line. There are no
other intersection points.

In this example, there is no birational correspondence
between each solution setCi (i � 1,2,3,4) and a connected
component of the intersection curve; instead they corre-
spond to the apexes (0,0,0) and (0,1,21) of the input
surfacesS1�u; s� andS2�v; t�; respectively.
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Fig. 6. Zero-sets of Example 3. (a) two surfaces, (b)l�u; v� � 0; (c) D�u; v� � 0; (d) Non-redundant solutions.



Example 3. Let two ruled surfaces S1�u; s� �
C�u�1 sa�u� andS2�v; t� � D�v�1 tb�v� be defined by:

a�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ;1

 !
; b�v� � �0; 1;1�;

C�u� � 12u2

1 1 u2 ;
2u

1 1 u2 ;1

 !
;

D�v� � 12v2

1 1 v2 ;
2v

1 1 v2 ;1

 !
:

Note thatS1�u; s� and S2�v; t� share the same directrix
circle (see Fig. 5(a)). Moreover, the two surfaces are tangen-
tial along a line: �0; t; t�u2∞ , t , ∞� 	

: As the circular
cone S1�u; s� and the elliptic cylinderS2�v; t� are both
quadric surfaces, their intersection curve has degree four
at most. One circle and one tangent line (considered as
two lines overlapping in the same line) form a curve of
degree four. Consequently, it is clear that there are no
other intersection points. From the aforementioned informa-
tion, we get the following bivariate functions:

l�u; v� � 2�12u��12v��v2u�
�1 1 u2��1 1 v2� ;

D�u; v� � i
�12u��u21;2�1 1 u�;1 1 u

1 1 u2 i2
;

d1�u; v� � i�12v�
 

v21
1 1 v2 ;

2�1 1 v�
1 1 v2 ;

2uv1 u2v2v 1 u2 1 1 1 2u

�1 1 u2��1 1 v2�

!
i2
;

d2�u; v� � i
2�u2v��uv21;2�u 1 v�;u 1 v�

�1 1 u2��1 1 v2� i2
:

The solutions ofl�u; v� � 0generate a planar curve:
(u2v)(u21)(v21) � 0, whereas the solutions ofD�u; v� �
0 generate a straight line:u21� 0; see Fig. 6. Moreover, it
is easy to check that (1,1) is the only common solution of
D�u; v� � d1�u; v� � d2�u; v� � 0: The non-redundant solu-
tion set C � f�u; v�u�u2v��v21� � 0g is composed of
two lines (intersecting at 458 angle) in theuv-plane. Let
C1 � f�u; v�uu� v; v , 1g; C2 � f�u; v�uu� v; v . 1} ; C3 �
{ �u; v�uu , 1; v� 1g; andC4 � f�u; v�uu , 1; v� 1g:

Each solution (u,v) in the setC1 < C2 corresponds to an
intersection point on the unit circleC(u), or equivalently on
the same circleD(v). Note thatC1 andC2 are in birational
correspondences with circular arcsf�cosu; sinu;1�u2p ,
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Fig. 7. (a)–(d) Degenerate intersections.



u , p=2g and f�cosu; sinu;1�up=2 , u , pg, respectively.
Nevertheless, there is no birational correspondence between
Ci (i � 3,4) and a connected component of the intersection
curve; they correspond to the apex (0,0,0) ofS1�u; s�: The
point (1,1) corresponds to the pair of ruling linesL1

1�s� and
L1

2�t� that overlap in the same line:f�0; t; t�u2∞ # t # ∞g:
In summary, the circular coneS1�u; s� and the elliptic cylin-
derS2�v; t� intersect in a circle and a tangent line. There are
no other intersection points.

3. Degenerate cases

Whena(u), b(v), C(u), and D(v) are given as polynomial/
rational curves, the solution set ofl�u; v� � 0 is a planar
algebraic curve, in general. However, in some degenerate
cases, the solution set may degenerate into the whole plane,
i.e.,l�u; v� ; 0: For example, consider two parallel cylind-
rical surfaces for whicha(u) andb(v) are constant and paral-
lel (see Fig. 7(a)). Then we haveD(u, v) ; 0, which implies
l�u; v� ; 0 as well. Moreover, consider two conical
surfaces that share a single apex located at pointP (see
Fig. 7(b)). Each ruling lineLu

1�s� of S1�u; s� intersects with
all other ruling linesLv

2�t� of S2�v; t� at the common apexP.
Thus we havel�u; v� ; 0: These two cases essentially cover
all possible degenerate cases ofl�u; v� ; 0: The only excep-
tions are the cases in which two ruled surfaces overlap.
Below we show that the two overlapping ruled surfaces
must be planes or rational bilinear surfaces (quadrics).
Consequently, the detection of all degenerate cases can be
essentially reduced to the problem of classifying the special
types of input surfaces: whether the surface is a plane, cylin-
der, cone, quadric, or something else. (See Elber and Kim
[5] for some related algorithms that detect special types of
free-form surfaces.)

When a(u) and b(v) are parallel/opposite for all pairs
of (u,v) (i.e., D�u; v� ; 0), the surfacesS1�u; s� and
S2�v; t� are cylindrical surfaces which are parallel to
each other. Otherwise,a(u) and b(v) are parallel/
opposite only for the pairs of (u,v) satisfying the condition
of D�u; v� � 0: In general,D�u; v� � 0 is an algebraic curve
in theuv-plane, which cannot be a space-filling curve. Thus
there is a region�ua;ub� × �va; vb� in whichD�u; v� ± 0; for
all �u; v� [ �ua; ub� × �va; vb�: As we assumel�u; v� ; 0;
C�u�2D�v� must be given as a linear combination ofa(u)
and b(v), for all ua # u # ub and va # v # vb: Thus, we
have

C�u�2D�v� � s�u; v�a�u�1 t�u; v�b�v�;
and equivalently,

C�u�1 s�u; v�a�u� � D�v�1 t�u; v�b�v�;
for some real functionss�u; v� and t�u; v�: This means that
each ruling lineLu

1�s� of S1�u; s� intersects with all other
ruling lines Lv

2�t� of S2�v; t�; and vice versa. There are

three different cases to consider (we assumeua # u0 ,
u1 # ub andva # v0 , v1 # vb�:
• Case 1: There exists a pair of linesLu0

1 �s� andLul
1 �s� that

intersect at a pointP.

Each ruling lineLv
2�t� of S2�v; t� intersects with both

Lu0
1 �s� andLu1

1 �s�: There are two subcases to consider:

If there are infinitely manyLv
2�t� passing through the

point P, the surfaceS2�v; t�must be a conical surface
with its apex atP.
Otherwise, infinitely many linesLv

2�t� must be
contained in the plane determined byLu0

1 �s� and
Lu1

1 �s�: Then the whole surfaceS2�v; t� degenerates
into a plane.

The surface type ofS1�u; s� is also determined in a
similar way.

If S2�v; t� is a non-planar conical surface (with its
apex atP), all ruling lines Lu

1�s� of S1�u; s� pass
through the apexP. Consequently,S1�u; s� also
becomes a conical surface. (See Fig. 7(b).)
Otherwise,S2�v; t� is a plane. All ruling linesLu

1�s� of
S1�u; s� are contained in the plane ofS2(v, t). Hence,
S1(u, s) andS2(v, t) degenerate into the same plane.
(See Fig. 7(c).)

• Case 2: There exists a pair of parallel linesLu0
1 �s� and

Lu1
1 �s�:
There is a unique plane determined by these two paral-
lel lines. All ruling linesLv

2�t� of S2�v; t� are contained in
the plane. Thus the whole surfaceS2�v; t� degenerates
into the plane. Similarly, the other surfaceS1�u; s� is
also contained in the same plane.

• Case 3: Any two different linesLu0
1 �s� and Lu1

1 �s� are
skew.

We may assume that any two different linesLv0
2 �t� and

Lv1
2 �t� are also skew. (Otherwise, we will end up with

Case 1 or Case 2 considered before.) LetPuv be the
intersection point of two linesLu

1�s� and Lv
2�t�: Let

S�u; v� � Puv; for all �u; v� [ �ua;ub� × �va; vb�: Then
S1�u; s� and S2�v; t� are coincident with the surface
S�u; v�; thus S1�u; s� and S2�v; t� are the same surface.
In fact, S�u; v� generates a rational bilinear surface
under certain reparameterizations ofu andv. Moreover,
this surface must be a quadric surface. (See Appendices
A and B for detailed proofs of these arguments).

4. Experimental results

The computation of bivariate functionsl�u; v�;D�u; v�;
d1�u; v�; and d2�u; v� is quite simple and efficient. Using
symbolic tools to compute the summation, difference, and
product of (piecewise) polynomial/rational forms [3], we
can derive (piecewise) polynomial functions representing
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the numerators ofl�u; v�;D�u; v�; d1�u; v�; and d2�u; v�:
Fig. 8(a) shows a simple example of intersecting two
ruled surfaces that meet transversally. The corresponding
bivariate functionl�u; v� is shown in Fig. 8(b). (In this
example, the zero-set ofD�u; v� � 0 is empty; thus the zero-
set ofl�u; v� � 0 contains non-redundant solutions only.)

An intersection curve is computed in three major steps:

1. formulate bivariate polynomial functionsl�u; v�;
D�u; v�; d1�u; v�; andd2�u; v�;

2. compute the zero-set ofl�u; v� � 0; while excluding
the solutions ofD�u; v� � 0;

3. detect the pairs of overlapping ruling lines that corre-
spond to the common solutions ofD�u; v� �
d1�u; v� � d2�u; v� � 0:

According to our experimental results, all three steps
were found to be reasonably efficient. The symbolic compu-
tation of l�u; v�;D�u; v�; d1�u; v�; and d2�u; v� took only a

fraction of a second in all the examples demonstrated in
this article. The zero-set finding ofl�u; v� � 0 (under the
constraintD�u; v� ± 0� took a couple of seconds. In practice,
we rarely have a solution ofD�u; v�1 d1�u; v�1 d2�u; v� �
0: Except the case of two identical ruled surfaces overlap-
ping each other, there would be only a few discrete solu-
tions, if any, of this equation; the root finding procedure then
converges very quickly to the discrete solutions.

The zero-set finding is essentially a computational proce-
dure that requires finding all the points along the intersec-
tion curve between the graph surfaceG�u; v� � �u; v; l�u; v��
and theuv-plane. Thus the problem of intersecting two ruled
surfaces has been reduced to a simpler yet another surface
intersection (SSI) problem. Among numerous methods
available for the SSI problem, subdivision-based methods
produce the most reliable solutions, in general. They are
usually slower than other sophisticated methods based
on curve tracing. Quite often, other methods also take
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Fig. 8. Transversal intersection of two ruled surfaces in (a). In (b), thel (u,v) function is shown.

Fig. 9. Intersection of two cylinders. In (a)–(d), two almost coaxial cylinders are intersected, with the angle between the two cylinders being 108,18,0.18,0.018.
In (e) and (f), thel(u,v) functions for cases (a) and (d) are shown.



advantage of a preprocessing step that is based on subdivi-
sion. In this article, because of robustness consideration, we
adopt a subdivision-based scheme for finding the zero-set of
l�u; v� � 0: (A similar technique is applied to the computa-
tion of the zero-sets of other bivariate functions.) As we
have observed before, using this method, only a few seconds
were required to construct each of the examples demon-
strated in this article. Therefore, the gain in robustness justi-
fies our approach.

This robust adaptive subdivision approach depends on an
ability to represent the bivariate functionsl�u; v�;D�u; v�;
d1�u; v�; and d2�u; v� symbolically. By searching for the
extreme control points of each surface subregion during
the subdivision, and exploiting the convex hull property of
the Bézier and B-spline representations, we can efficiently
extract the surface subregions that intersect with theuv-
plane. When the remaining surface patches become suf-
ficiently flat, we triangulate these surface patches. The
intersection of the triangulated surface with theuv-plane
provides a polygonal approximation of the zero-set
l�u; v� � 0: We applied a numerical improvement proce-
dure (based on local Newton–Raphson steps) to a piecewise
linear approximation of the zero-set. Final results have very
high precision, with typical tolerances of six orders of
magnitude.

Fig. 9(a)–(d) show a sequence of examples that intersect
two almost coaxial cylinders with angles of 108, 18, 0.18,
0.018 between the two cylinders, in that order. Fig. 9(e) and
(f) are thel-functions of the examples shown in Fig. 9(a)
and (d), respectively. It is very difficult to distinguish two
intersecting cylinders that appear almost overlapping in Fig.
9(c) and (d). Moreover, thel-function of Fig. 9(f) is almost
flat. Nevertheless, the computation results are numerically
stable and they produce reasonable solutions, which demon-
strates the robustness of our intersection algorithm for two
ruled surfaces. The indicatrix curvesa(u) and b(v) are
constant for cylinders; thus the bivariate functionD�u; v�
also has a constant value for each of the examples shown
in Fig. 9(a)–(d). In fact, we haveD�u; v� � sin2u < 0:3 ×
1021

;0:3 × 1023
;0:3 × 1025

; and 0:3 × 1027
; for the four

examples. The values ofd1�u; v� and d2�u; v� are also in
similar ranges for the pairs (u,v) on the diagonal:u2v �
0. Thus we may regard the two cylinders of Fig. 9(c) and (d)
as almost overlapping.

Figs. 11–13 show the experimental results of our algo-
rithm applied to Examples 1–3 (see also Figs. 1–6); the
intersection curve of each example has been projected
from the uvst-space to different domains so as to clarify
its topological structures. The unit circle is approximated
by four cubic Bézier curve segments as shown in Fig. 10.
(Each circular cone is thus approximated by four Be´zier
surface patches of degree (3,1).) Owing to numerical
error, it is very difficult to detect the exact lines and circles
appearing in the intersection curves of Figs. 12 and 13.
Nevertheless, the computational results are very close to
the exact intersection curves, which demonstrates the
robustness of our intersection algorithm.

Fig. 11(b) can be obtained by projecting the solution
curves of Fig. 11(e) or Fig. 11(f) into theuv-plane. The
curve segments have been trimmed off because of the
limited ranges ofs and t. Note that the (u, v) pairs near to
the lines:u� 0,v� 0, andu� v, correspond to the positive/
negative infinity ofsandt values. In Fig. 12, the intersection
curve consists of three connected components; each
segment is bounded by (0,0,0) and/or (0,1,21), the apexes
of two circular cones. Note that two adjacent line segments
are topologically connected at a common apex. The result
of Fig. 13 looks more interesting. Segment 1 consists of a
half-line {�0; t; t�ut . 1} and a three-quarter circle
{ �cosu; sinu;1�up=2 # u # 2p} ; whereas segment 2 consists
of the rest quarter circle�cosu; sinu; 1�u0 # u # p=2

� 	
; and a

line segment �0; t; t�u0 # t # 1
� 	

: In fact, segments 1 and 2
are topologically connected at (0,1,1) on the unit circle
�cosu; sinu;1�u0 # u # 2p
� 	

: Segment 3 is simply a half-
line �0; t; t�ut , 0

� 	
; it is topologically connected to segment

2 at (0,0,0), the apex of the cone.
All the algorithms and examples presented in this article

were implemented and created using tools available in the
IRIT [4] solid modeling system, developed at the Technion,
Israel. The experiments were carried out on a 195 MHz
R10000 SGI machine.

5. Conclusion

In this article, we presented an efficient and robust inter-
section algorithm for two ruled surfaces. The problem of
intersective two rules surfaces was reformulated as a zero-
set finding problem for a bivariate function. The overall
computation procedure is numerically stable based on the
B-spline subdivision technique.
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Fig. 10. Circle approximation with four cubic Be´zier curve segments.



Appendix A. Rational bilinear surface

Assume that any two ruling linesLu0
1 �s� andLu1

1 �s� of the
ruled surfaceS1(u,s) are skew, and any two ruling lines
Lv0

2 �t� and Lv1
2 �t� of the other ruled surfaceS2(v,t) are also

skew. Moreover, assume that, for each pair (u,v), the two
ruling lines Lu

1�s� and Lv
2�t� intersect at a pointPuv. Let

S�u; v� � Puv; for all �u; v� [ �ua;ub� × �va; vb�: Below we
show that this surfaceS�u; v� can be represented as a rational
bilinear surface. Fig. 14 shows the surfaceS�u; v� bounded
by four lines:Lua

1 �s�;Lvb
2 �t�; Lub

1 �s�; Lva
2 �t�; and four corners:

Pua;va
;Puavb

;Pubvb
;Pubva

: We consider how to assign weights

to these four corner points so that the resulting rational
bilinear surface represents the surfaceS�u; v� exactly.

Consider the following three vectors:

~a� Puava
Pubva

������!
;

~b� Puava
Puavb

;
�������!

~c� Puava
Pubvb

������!
:

Note that these vectors are linearly independent since the
lines Lua

1 �s� and Lub
1 �s� are skew. From the configuration
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Fig. 11. Projections to different domains (for Example 1). (a) two surfaces, (b)uv-domain (c)us-domain (d)ut-domain (e)uvs-domain (f)uvt-domain.



given in Fig. 14, we can derive the following relations:

Puva
2Puava

� ta~a;

Puvb
2Puava

� �12tb�~b 1 tb~c;

Puav2Puava
� sa

~b;

Pubv2Puava
� �12sb�~a 1 sb~c:

The vectorPuv2Puava
can be represented in two different

ways:

Puv2Puava
� �12g��Puva

2Puava
�1 g�Puvb

2Puava
�

� �12g�ta~a 1 g��12tb�~b 1 tb~c�

� �12g�ta~a 1 g�12tb�~b 1 gtb~c

Puv2Puava
� �12h� Puav2Puava

� �
1 h Pubv2Puava

� �
� �12h�sa

~b 1 h��12sb�~a 1 sb~c�
� h�12sb�~a 1 �12h�sa

~b 1 hsb~c:
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Fig. 12. Projections to different domains (for Example 2). (a) two surfaces, (b)uv-domain (c)us-domain (d)ut-domain (e)uvs-domain (f)uvt-domain.



As the vectors~a; ~b; ~c are linearly independent, we have

�12g�ta � h�12sb�

g�12tb� � �12h�sa

gtb � hsb

By eliminatingg and h, we get

�sata 1 sa�sb21��tb � �sata 1 ta�tb21��sb;

which can be reformulated as follows:

tb � ��12sa�=sa�=��12sb�=sb�
� �

ta
�12ta�1 ��12sa�=sa�=��12sb�=sb�

� �
ta
� wta
�12ta�1 wta

;

wherew� ��12sa�=sa�=��12sb�sb�. It is easy to derive the
following equalities:

w� �12sa�=sa

�12sb�=sb
� �12ta�=ta
�12tb�=tb ; sb � wsa

�12sa�1 wsa
:
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Fig. 13. Projections to different domains (for Example 3). (a) two surfaces, (b)uv-domain (c)us-domain (d)vt-domain (e)uvs-domain (f)uvt-domain.



Let us define a rational bilinear surface

B�s; t�

� �12s��12t�Puava
1 s�12t�Puavb

1 �12s�tPubva
1 stwPubvb

�12s��12t�1 s�12t�1 �12s�t 1 stw

Straightforward computations show that

B�0;0� � Puava
;B�1;0� � Puavb

;B�0;1� � Pubva
;B�1;1�

� Pubvb
:

Thus the bilinear surfaceB�s; t� interpolates four corners
of S�u; v�: Moreover,B(s, t) interpolates four boundary lines
of S�u; v� :
B�s;0� � �12s�Puava

1 sPuavb
� Puava

1 s Puavb
2Puava

� �
B�0; t� � �12t�Puava

1 tPubva
� Puava

1 t Pubva
2Puava

� �

B�s;1� � �12s�Pubva
1 swPubvb

�12s�1 sw

� Pubva
1

sw
�12s�1 sw

Pubvb
2Pubva

� �

B�1; t� � �12t�Puavb
1 twPubvb

�12t�1 tw

� Puavb
1

tw
�12t�1 tw

Pubvb
2Puavb

� �
:

Note thatB�s; t� interpolates the boundary ofS�u; v� in the
same ratios as shown in Fig. 14:

B�sa;0� � Puav; B�0; ta� � Puva
; B�sa; 1� � Pubv;

B�1; ta� � Puvb
:

ThusB�s; t� andS�u; v� generate the same ruled surface.
The surfaceS�u; v� must be a rational bilinear surface.

Appendix B. Implicitization as a quadric surface

Given a rational bilinear surface

B�s; t�

� �12s��12t�Puava
1 s�12t�Puavb

1 �12s�tPubva
1 stwPubvb

�12s��12t�1 s�12t�1 �12s�t 1 stw
;

let (W,X,Y,Z) be a point (in homogeneous coordinate) on the
surfaceB(s, t). Then we have the following relation:

W

X

Y

Z

26666664

37777775 �
1 1 1 w

Puava
Puavb

Pubva
wPubvb

" # �12s��12t�
s�12t�
�12s�t

st

26666664

37777775;
�8�

where each pointP must be interpreted as a 3× 1 submatrix.
Note that

det
1 1 1 w

Puava
Puavb

Pubva
wPubvb

" #

� det
1 0 0 0

Puava
Puavb

2Puava
Pubva

2Puava
w Pubvb

2Puava

� �24 35
� det

1 0 0 0

Puava
~b ~a w~c

" #
± 0:

Thus the 4× 4 matrix of Eq. (8) is invertible. We have the
following relation for some 4× 4 matrix A � (aij):

�12s��12t�
s�12t�
�12s�t

st

26666664

37777775 � A

W

X

Y

Z

26666664

37777775:

When we multiply the first and fourth rows, we get
(12s)(12t)st, which is the same as the multiplication of
the second and third rows:s(12t)(12s)t. As a result, we have

�a11W 1 a12X 1 a13Y 1 a14Z��a41W 1 a42X 1 a43Y 1 a44Z�

� �a21W 1 a22X 1 a23Y 1 a24Z��a31W 1 a32X 1 a33Y

1 a34Z�;

which produces a quadric representation of the rational
bilinear surfaceB(s,t).
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