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Abstract

This article presents an efficient and robust algorithm that computes the intersection curve of two ruled surfaces. The surface intersection
problem is reformulated as a zero-set finding problem for a bivariate function, which is also equivalent to the construction of an implicit curve
in the plane. Each connected component of the surface intersection curve corresponds to a connected component in the zero-set, and vice
versa, except for some singular points, redundant solutions, and degenerate cases. We also present algorithms that detect all these singulz
points, redundant solutions, and degenerate c&s&999 Elsevier Science Ltd. All rights reserved.
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1. Introduction extended to the intersection of a torus with a cylinder, a
cone, or another torus. Kim and Kim [9] present an algo-
The surface/surface intersection problem has attractedrithm that can detect and construct all degenerate conic
considerable research attention in geometric and solid sections (circles) in the intersection of a torus and a natural
modeling. Many algorithms have been suggested for inter- quadric. This algorithm also follows the principle of Miller
secting two free-form surfaces. However, there has been noand Goldman [10] in that all degenerate conic sections
known algorithm that can compute the intersection curve of (circles) can be detected exactly by evaluating a few simple
two arbitrary rational surfaces accurately, robustly, and effi- algebraic expressions.
ciently, while requiring no user intervention [7]. This article considers the intersection of two ruled
The situation is much better when we restrict the domain surfaces. The problem is more difficult than the case of
of input surfaces to that of simple surfaces such as planes,natural quadrics as general ruled surfaces may have consid-
natural quadrics (spheres, cylinders, cones), and tori. erably more complex shapes than planes, cylinders, and
These surfaces, the so-called CSG primitives, are impor-cones (which represent the simplest ruled surfaces). In
tant in conventional solid modeling systems since they can contrast, ruled surfaces are simpler than general free-form
represent a large number of simple mechanical parts. Theresurfaces. Hence, there may be a compromise — we raise a
are some geometric algorithms that can intersect two naturalquestion: Would it be possible to develop an intersection
qguadrics efficiently and robustly [10,15]. In particular, algorithm (for ruled surfaces) that performs much better
Miller and Goldman [10] reduce the problem of detecting than those for general free-form surfaces? This article spells
all degenerate conic sections to that of checking a few out an affirmative answer to this question.
simple algebraic expressions formulated with the geometric Among ruled surfaces, developable surfaces form an
parameters of input surfaces. Kim et al. [8] present a torus/ important subclass since they are useful in sheet metal
sphere intersection algorithm that is based on a configura-design and processing [11]. Every developable surface can
tion space transformation. The basic approach can bebe obtained as the envelope surface of a moving plane
(under a one-parameter motion). Thus the Gauss map of a
* The research was supported in part by the Korean Ministry of Science developable surface generates a spherical curve on the unit
and Technology under Grants 97-NS-01-05-A-02-A of STEP 2000, and by sphere. The intersection of two developable surfaces can be
KOSEF (Korea Scie_nc_e and En_gineerin‘g Fo_undation) und_er Grant 96- essentially reduced to that of two spherical curves (or even
T e et vy ha 10 thal of o planar curves after stereographic projecton)
2299, [1]. After the developable surfaces are subdivided at the
E-mail addressmskim@postech.ac.kr (M.-S. Kim) ruling lines corresponding to the intersection points of
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their Gauss maps, there is no internal loop in the intersectionformulated in terms of other bivariate functions:

of two surface subpatches thus subdivided. (Two surfacesA(u,v), 8;(u,Vv), and 8,(u,v), which are based on geometric

may intersect in an internal loop only if their Gauss maps measures such as parallelity and line distance.

overlap [13].) The rest of this article is organized as follows. In Section
The Gauss map of a non-developable ruled surface is a2, we reduce the problem of intersecting two ruled surfaces

spherical region on the unit sphere (rather than being ainto that of computing the zero-set of a bivariate function:

spherical curve). When two non-developable ruled surfacesA(u, v) = 0. Moreover, we classify all redundant solutions

intersect (almost) tangentially, their Gauss maps overlap of the zero-set. Section 3 considers the degenerate cases:

even after many steps of sub-division. Thus it is not easy (u,v) = 0 in which the zero-set degenerates into the whole

to take advantage of the simple structure of ruled surfacesplane. Section 4 demonstrates some experimental results.

when we apply conventional subdivision techniques to the Finally, in Section 5, we conclude this article.

intersection of non-developable ruled surfaces. One may

consider a conventional algebraic method instead: Convert

one surfac&, = (uy, v;) into an implicit formF(x,y,2) = 0, 2. Problem reduction

and substitute the parametric equatio®(U,, V) = .

(X(Ug, V), Y(Ug, Vo), Z(Uy, Vp)) Of the other surface into the Let S;(u, s) andSy(v, t) be two ruled surfaces defined by
implicit form; the result produces an algebraic equation in s (u,s) = C(u) + sa(u), )
two variables:F(u,, Vo) = F(X(Uy, V5), Y(Uy, Vo), Z(Up, Vp)) =

0. (Note that the two parametets andv, come from the S,(v,t) = D(V) + th(v), )

same surfaceS;(u,,Vv,).) Unfortunately, even for ruled _ _ o
surfaces, the implicitization is a non-trivial task to imple- for somedirectrix curves C() and D), and indicatrix
ment [14]. Therefore, we need to consider a different curvesa(u) # 0 andb(v) # 0. In this article, we assume

method. that a(u), b(v), C(u), and D¢) are all rational curves. Let
Given two ruled surfacesS;(u,s) = C(u) + sa(u) and L5 (s) denote the ruling line o&;(u, S) as given in Eq. (1) ata

S(v,t) = D(v) + th(v), our approach is based on a simple fixed parameteu. Similarly, letL}(t) denote the ruling line

observation that the linear parametsm@ndt can be elimi- of S;(v,t) at a fixedv. When the two surfaceS;(u, s) and

nated simultaneously in a straightforward manner. The $(v,t) intersect, we have

result is an implicit equation in two variables(u, v) = 0. S, S) = SV, 1),

(Note that the parametetsandv come from two different

ruled surfaces,;(u, s) andS;(v, t), respectively.) When two  and equivalently,

ruling lines intersect, they determine a unique plane. Our

phys?cal interpretation is gased on the Iinea?deppendence ofc(u)_D(V) = —sa(U) + (V). &
three vectorsa(u), b(v), and C()— D(v), which are all That is, the vecto€(u)—D(v) is given as a linear combi-
parallel to the plane determined by the two intersecting nation of a(u) and b(v). Consequently, the three vectors
ruling lines. This geometric observation enables us to exer- a(u), b(v), and C()—D(v) are linearly dependent and the
cise more intuitive analysis of various redundant solutions following determinant must vanish:

and degenerate cases. The resulting constraint equation
AU,v) = 0 is also identical to the Ptker condition of AWV = detau), b(v), C(u)—D(v) = 0.

line geometry for the intersection of two lines in the space

[12]. Consequently, our algorithm can be extended to the 2 1. Redundant solutions

intersection of rational ruled surfaces as well.

Our algorithm may be classified as an algebraic method in  The condition ofA(u, v) = 0 is a necessary, but not suffi-
the sense that, after some algebraic manipulations for vari-cient, condition for two ruling lineg(s) andL(t) to inter-
able elimination, the surface intersection problem is reduced sect. The solution set ok(u,v) =0 may contain some
to a simpler problem of computing an implicit curgg v) in redundant points that do not correspond to real, affine inter-
the uv-plane (i.e., the zero-set of a bivariate function). In section points of the two ruled surfaces. We classify all
conventional algebraic methods, it is very difficult to keep possible redundant solutions in the following.
track of numerical errors that propagate in the sequence of Each solution ofA(u,v) = 0 implies the linear depen-
algebraic manipulations since algebraic terms and opera-dency of three vectora(u), b(v), and C()—D(v):
tions have no clear geometric meaning. In our method, _ _
there is a birational correspondence between the two setscla(u) &b + &(CU)=DW) =0, “
of parameters: yv) and (,v,st). Thus we can reliably  for some real values af;, c,, c;, not all of which are identi-
measure the propagation of error and extract the regionscally zero. Ifc; # 0, this implies the condition of Eq. (3).
that should be treated more carefully (i.e., the regions Under this condition, the two ruling lines intersect and there
vulnerable to numerical inaccuracy and/or topological is no redundant solution of(u,v) = 0.
inconsistency). Numerical/topological ill-conditions are Next, we consider the case of = 0. Eqg. (4) is then
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Fig. 1. Bivariate functions of Example 1. (a) two surfaces,X{@} v), (c) A(Q, V), (d) 61(0, V), (e) 6>(T, V), (f) A, V) + §,(0,V) + 8,(0, V).

equivalent to Note that the zero-set df(u,v) = 0 is totally contained in
the zero-set of\(u,v) = 0.

au) = —&b(v), Two parallel ruling linesL}(s) and L}(t) overlap each

G other if and only if they are parallel (i.eA(u,v) = 0) and

) o the difference vecto€(u)—D(v) is parallel/opposite ta(u)
for somec; # 0 andc, # 0. Then, two ruling directiona(u) andb(v):

and b(v) are parallel or opposite. Note that the pairvj 2
satisfies the conditiom(u,v) = 0 regardless of whether 81(u, V) = [la(y) X (C(W—DW))
the corresponding ruling lines’(s) and LY(t) intersect.
Therefore, the solutionu(v) is redundant if the vectors
a(u) andb(v) are parallel/opposite, but the corresponding )
ruling lines do not overlap. The condition afu) andb(v) 8,(u. v) = [[b(v) X (C(u)~DW))

being parallel/opposite can be represented as the zero-set of > > 5
another bivariate function: = [bwFICW=DW["~{bv), C(W—DW)” = 0.

= [law|[[cw —DW)|*—(aw), C(u)—Dw)? = 0,

, , , , Note thats(u, v) = &,(u, v)/|[a(u)| is the squared distance
A(u,v) = [la(w) X b)[* = [la)[[lbv)[["—(a), b(v))* = 0. between the poinD(v) and the ruling lineL(s). Similarly,
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(c) A(u,v) =0 (d) Non-Redundant Solutions

Fig. 2. Zero-sets of Example 1. (a) two surfaces, Xt} v) = 0, (c) A(u,v) = 0O, (d) Non-redundant solutions.

8(u, V) = 8»(u, v)/||b(v)||2 is the squared distance between the obtain the following linear system of equations fandt:
point C(u) and the ruling lineL(t). Thus, the two line4(s) 2
and L}(t) overlap each other if and only ifA\(u,v)= Jacw] —(a(u). b(v)) [S] - [(a(u), Dv)=C(w» ]
81(u,v) = 8,(u,v) = 0 (equivalently, A(u,v) + 8;(u,v) + —(a(u), b(v)) [bv)| |L t (b(v), C(u)—D(v))
8>(u,v) = 0 since A(u, V), 61(u, V), 5,(u,v) = 0). Figs.1, 3,
and 5 show some illustrative examples of intersecting two ~ When we have the conditioa(u,v) # 0 (i.e., the two
circular cones; also shown are their corresponding bivariate vectors a(u) and b(v) are neither parallel nor opposite),
functions:A(u, v), 8;(u, v), 8,(u, v), and A(u, v) + 8;(u, V) + this matrix equation is non-singular and there are unique
8,(u, V), under some reparameterizationsucdndv. rational solutions o8(u, v) andt(u, v):

In summary, a solution ok(u,v) = 0 is redundant (i.e., gy, v)
the ruling lined.}(s) andL}(t) do not intersect) if and only if
A(u,v) =0 and A(u,v) + 8;(U,V) + 8,(u,v) # 0 (equiv- Ioew)|[*(acu), Dv)—C(u)) + (au, b(v))}b(v), C(u)—D(v))

alently $,(u,v) # 0 andé,(u, v) # 0. \|a(u)|\2||b(v)||2—<a(u), b(v))2

©)
2.2. Birational correspondence

When two ruling lined j(s) andL(t) intersect in areal, (U, V)
affine point, the two parametesandt can be represented as 5
rational bivariate functions ai andv (assuming thaa(u), _ llawl*bv), Cw—Dv)) + (&), b(v)Xa(w), D(v)—C(u))
b(v), C(u), and Dg) are all rational curves). By taking inner law|lbv)|?—(au), b(v))? '
products of Eq. (3) with the vectorsa(u) and b(v), we (6)
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Fig. 3. Bivariate functions of Example 2. (a) two surfaces,X{g} v), (c) A(Q, V), (d) 61(T, V), (€) 6x(T, V), (f) A, V) + §,(0,V) + 8,(0, V).

Note that the computation &fu, v) andt(u,v) becomes intersection is extremely difficult to deal with in a topolo-
quite unstable numerically whenA(u,v) = || a(u) X gically reliable manner (in particular, as a result of numer-
b(v)|? = 0 (i.e., when the two ruling linek$(s) and L(t) ical error). A reliable solution for this case remains a
are almost parallel). In this case, we measure the squarecd:hallenging open problem for future research.
distanced(u, v) between two almost parallel ruling lines and Let € be a segment of the intersection curveSpfu, s)
discard the lines if their squared distance is larger than aandS,(v,t), andC be its projection onto thav-plane. (We
certain toleranced(u, v) = &°. assume that the two ruled surfaces do not overlaf)itf a

The real difficulty arises when there are pairs of (almost) connected curve segmefg,is a connected segment of the
parallel ruling lines that (almost) overlap each other: i.e., implicit curve: A(u,v) = 0. But, the converse is not true in
A(u,v) + 81(u,v) + 6,(u,v) = 0. In this case, we may general. When a connected curve segnieof the implicit
include eitherL(s) or LY(t) in the intersection curve. curveA(u,v) = 0 contains a point(v) of A(u,v) = 0, there
When there are infinitely many solutions (thus forming a is no unique solution fofs(u, v), t(u, v)). Moreover, in some
solution curve) ofA(u,v) + 8,(u, V) + 8,(u, V) = 0, the two degenerate cases (to be discussed later), the intersection
ruled surface§u, s) andS,(v, t) overlap each other. Asmall  curve may be empty or just a single point, whereas the
perturbation in geometric data would change the intersec- zero-set ofA(u, v) = 0 is the whole plane. In these special
tion curve into a totally different one. The case of tangential cases, there is no correspondence between an intersection
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Fig. 4. Zero-sets of Example 2.(a) two surfaces, X} v) = 0, (c) A(u,v) = 0O, (d) Non-redundant solutions.

curveC and a segmert of the implicit curve(u,v) = 0.
In general, with the exception of: (i) parallel ruling lines
(i.e., A(u,v) = 0), (ii) degenerate cases (i.e\u,v) = 0),

and (iii) apexes and self-intersections (more details of
which to be discussed below), we have birational correspon-where a(u) = a(u)/||a(u)g

dence between the intersection cufvand its projectiorC
on the implicit curvei(u, v) = 0.

Assume that the surfac®(u, s) has an ape® such that
Si(u,s) = P, for up = u = u,, and the ape® is located on
the other surfac® = S;(vp,tp). Then the zero-set of
A(u,v) = 0 contains a line segment(y, Vo)|uy = u =< uy}.
The whole line segment (in the~domain) corresponds to a
single pointP in the intersection of two ruled surfaces
Si(u,s) and Sy(v,t). Next, consider the case in which a
self-intersection pointQ of S;(u,s) is contained in the
other surfaceS,(v,t); that is, Q is in the intersection
curve: Q = S;(Uy,8) = Si(Uy, S) = Sy(vy, t1). Two differ-
ent solutions ;,v;) and {,,v;) (of A(u,v) = 0) correspond
to the same intersection poi@t Thus there is no birational
correspondence betwe€nandC, in these cases, either.

All singular points of a ruled surfacg;(u,s) = C(u) +

sa(u) must be located along iriction curve [2]:

(C'(w,a'(uy) A,

CW = CO~Fw. aw)

and a'(u) = ((a(u), au) a'(u)
—(a'(u), a(uya(uy)/|a(u)|°. Note that C(u) is a rational
curve when the given curve3(u) anda(u) are rational. If
the curveC(u) degenerates into a point, this point will be the
apex of a conical surfacg;(u,s). Assuming that the ruled
surface S;(u,s) is noncylindrical, all singular points of
Si(u,s) can be detected along the striction cu®@eu) by
testing the following condition [2]:

(C'(u) x &), a'(wy =0,
or equivalently
(C'(u) X a(u), a’(u)) = 0.

Self-intersection points of;(u,s) can be detected by
intersectingS;(u, s) with S;(v,t) (i.e., the same surface as
Si(u,9), but under different parameter naming). The
diagonal line:u—v = 0 is contained in the zero-sets of all
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Fig. 5. Bivariate functions of Example 3. (a) two surfaces,X{@} v), (c) A(Q, V), (d) 51(0, V), (e) 6x(T, V), (f) A, V) + §,(0,V) + 8,(0, V).

bivariate functions considered before. By deleting the diag- Note that (-1,0) is missing from this parameterization.
onal line from these zero-sets, we can characterize theTo remedy this, we may cover only half of the circle using
self-intersection of a ruled surfacg(u, s). this parameterization and cover the other half by reflecting
the parameterization about teaxis. For the convenience
of presentation, we assume the parameterization of Eq. (7),
while special treatments are made for the missing point
In this subsection, we consider three simple examples that(—1,0) only when necessary.
illustrate typical types of redundant solutions. General ruled In Eg. (7), the parameteu is defined on an infinite
surfaces produce bivariate function@l, v), A(u, v), 8,(u, v), domain. For the display of global function shape, we use
8,(u, v) of high degree; thus, for the sake of simplicity, we another parameterizatiora (restricted to a bounded
employ circular cones and elliptic cylinders only. In each domain):
example, the unit circle has the following simple rational 20—1
parameterization: u= 201-0)°

2
C(u) = 1_U2’ 2u 5 ). for—co<u<oo. (7) Note thatu is a str_ictly increasing rqtional fun_cti(_)n of
1+u 1+u One may usécos#, sin 6) to parameterize the unit circle on

2.3. lllustrative examples

foro<o<1
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The non-redundant solution se® = {(u,V)|A(u,v) =

sine and cosine, make some expressions too complex to b, A(u,v) # 0} is composed of four connected components

processed symbolically (even though they sometimesin

greatly simplify certain expressions).

Example 1. Let two ruled surfaces Si(u,s) =
C(u) + sa(u) and Sy(v,t) = D(v) + th(v) be defined by
four rational curves(u), b(v), C(u), and Dg):

2
a(u)=( 1-u 2u 1)’

1+ w1+ u?’
b(v) = ( 1),
1-0? 2u

cw=[—, -1
W <1+u2’1+u2’ )

1).

Note thatS;(u, 9) is a circular cone with its apex at (0,0,0)
andS,(v, t) is a simple translation d§;(u, s) by (1,0,0) (see
Fig. 1(a)). From the aforementioned information, we get the
following bivariate functions:

2(u—v)(uv—1)
@A+ udl+vd’

1-V2 v
1+v2 1+

2v

DV = (-0, -5
) (1+v2’1+v2’

AU, V) =

2(u—v)(1—uv,u + v, —1—uv)
L+ u)L+Vv?)

Au,v) = | 2

>

81(u,v) = [0, —1,0)

2

n 2(—(1—uv)(u—Vv), —(U—Vv)(u + v),u(1 + uv) + (u—v))
A+ v+ v

s

82(U, V) = ||(0’ - 1a O)

n 2(—(1—uv(u—Vv), —(U—=V)(u + v),v(u—v) + (1 + uv))

2
@A+ w1 +vd I

The real, affine solutions of(u, v) = 0 generate a planar
curve(u—v)(uv—1) = 0 whereas the solutions af(u,v) =
0 generate a straight linet—v = 0. Thus the zero-set of
A(u,v) = 0 is totally contained in that of(u,v) = 0. It is
easy to check thaA(u,v) + 6;(u,Vv) + 8,(u,v) > 0, for all
(u,v). Therefore, all solutions oA(u,v) = 0 are redundant
solutions ofA(u,v) = 0.

Fig. 1(b)—(f) shows the bivariate functions:
)\(U’ \7)’ A(U’ \7), 61(':1’ \7)’ 52(':" \7), and A(U’ \7) + 51(':" \7) +
5,(0,v) =0, wunder the reparameterizations:u=

(20—1)/(2u(1—0)) and v= (2v—1)/(2u(1—V)), for 0 <
a,v<1 Fig. 1(f) shows that A(G,V)+ §.(0,V) +
6>(0,v) > 0, for all 0 < 0,v < 1. Fig. 2(b) and (c) show
the zero-sets af(u,v) = 0 andA(u, v) = 0. Non-redundant
solutions ofA(u, v) = 0 are shown in Fig. 2(d).

the uwplane: C;={@Uu,v|uv=1Lu< —-1},C, =
{Wvuv=1-1<u<0},C={Uuvuv=1L0<u<
1}, andC, = {(u,v)luv=1,u > 1} At a first glance, one
may think that there are only two connected components in
the intersection curve of the two circular cones: one above
thexy-plane and the other below thg-plane (see Fig. 1(a)).
In our rational parameterizations 8f(u, s) andSy(v, t), one
line of each cone is missing. (Note that the rational para-
meterization ((1—u®/(1+ u?),(2u)/(1 + u?)) does not
cover the point {1,0).) Thus the intersection curve consists
of four connected components, each of which is in birational
correspondence witl;, for somei = 1,2,3,4. (We may
avoid this problem of a missing point by using a different
parameterization of the unit circle; however, this will make
our presentation lengthy. In the implementation of our algo-
rithm, we approximate the unit circle with four cubié¢ Ber
curve segments; see Fig. 10.)

Note that two points (1,1) and+1,—1) are limit points of
C, but they are not in the solution gt In a small neighbor-
hood of these limit points (i.eA(u,v) = 0), the parameter
values ofs(u,v) and t{i,v) diverge to = oo (see Egs. (5) and
(6)). In practice, we use finite surface patches of circular
cones. Thus the parameter values ahdt will be bounded.
The solutions of ,v) (near to (-1, =1)) can be ignored
when their corresponding values ddtj are out of the
bounded range.

Example 2. Let two ruled surfaceS;(u,s) = C(u) + sa(u)
and $(v,t) = D(v) + tb(v) be defined by:

D(v) = (

Note thatS,(v,t) is a simple translation 0§;(u,s) by
(0,1, 1) (see Fig. 3(a)). From the aforementioned informa-
tion, we get the following bivariate functions:

. 2
1-V2 (1+v) 0)_

1+ 1+v2°

21+ w@d + v)(v—u)
@A+ w1+ v?

AU, V) =

>

2(u—v)(1—uv,u + v, —1—uv)
A+ w1+ v?

2

A(u,v) = ||

>
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(d) Non-Redundant Solutions

Fig. 6. Zero-sets of Example 3. (a) two surfaces, Xt} v) = 0, (c) A(u,v) = 0, (d) Non-redundant solutions.

L+v? (v=1)1+vV)
1+v27 14+

k)

si1uv) = || (

2

>

(1 + V)(VIP—2uv—V + u?—1 + 2u
A+ w1+ v?)

4v _ 2u 2 _ 4
1+v2 1+ud’ 1+ 1+

S,(u,v) =|(1,1,0) + (

(U—1)(2uv+ UV —u—V? + 1 + 2v) P
1+ uV¥)A+v? '

The solutions ofA(u,v) = 0 generate a planar curve:

(u=v)(u + 1)(v + 1) = 0, whereas the solutions of
A(u,v) = 0 generate a straight line—v = 0; see Fig. 4(b).
Moreover, it is easy to check that-{,—1) is the only
common solution ofA(u,v) = 8,(u,v) = 85(u,v) = 0; thus
the solution ¢ 1,— 1) is not aredundant solution &{u,v) = 0.
The non-redundant solution s&= {(u,v)|(u + 1)(v +

1) = 0} is composed of two lines (vertically intersecting)
in the uw-plane (see Fig. 4(d)). Le€, = {(u,v)|u < —1,
v=-1}, G ={Uuvu> -1, v=-1} CGG={UuVvu=
—1,v< —1},andC, = {(u,v)lu= —1,v > —1}. All solu-
tions (,v) in the setC; U C, correspond to the same inter-
section point (0,0,0); that is, all ruling linds(s) of S;(u,s)
intersect with the IineLz_l(t) at the common intersection
point (0,0,0), which is also the apex 8f(u, s). Similarly,
all solutions @,v) in the setC; U C, correspond to the same
intersection point (0,1 1), which is the apex d&,(v, t). The
point (—1,—1) corresponds to the pair of ruling lineg(s)
and Lz_l(t) that overlap in the same line(q, t, —t)|—c0 <

t < co}. In summary, the two circular cone§(u,s) and
S(v,t) intersect tangentially along a line. There are no
other intersection points.

In this example, there is no birational correspondence
between each solution s€t (i = 1,2,3,4) and a connected
component of the intersection curve; instead they corre-
spond to the apexes (0,0,0) and (6,1) of the input
surfacesS;(u, s) and S(v, t), respectively.
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Fig. 7. (a)—(d) Degenerate intersections.

Example 3. Let two ruled surfaces Si(u,s) = 1-wu-1,-A+u,l1+u

C(u) + sa(u) andS,(v,t) = D(v) + tb(v) be defined by: 1+ U2

1-u*  2u
aw=[-—s,—>.,1), bw=(011), _ v—1 —(@1+V)
(W (1+u2 1+ 7 ) »=011 61<u,v>—||<1—v><1+vz, R

-2 2u 2uv+ Wv—v+ U+ 1+ 20,
Cw=|+—3 —71] NNy ;

1+u?’ 1+u A+ u)A+v)

1-vVv v 2(U—V)(UV—1, —(U + V), U + V) »

= —_— 8 N = .

) (1 +v27 1+ v2’1) ) = | 1+ )1+ V2 |

The solutions ofA(u,v) = Ogenerate a planar curve:
(u=Vv)(u—1)(v—1) = 0, whereas the solutions &f(u,v) =
0 generate a straight line==1 = 0; see Fig. 6. Moreover, it
is easy to check that (1,1) is the only common solution of
A(u, V) = 8;(u,Vv) = 8,(u,Vv) = 0. The non-redundant solu-
tion set C={(u,v)[(u—v)(v—1) =0} is composed of
two lines (intersecting at 45angle) in theuv-plane. Let
Ci={uwvu=v,v<1},C={uwvu=v,v>1},C; =
{uv|u<1,v=1} andC, ={(uvu< L v=1}

Each solution i§,v) in the setC, U C, corresponds to an
intersection point on the unit circlg(u), or equivalently on
21—w(1—-v)(v—u) the same circlé(v). Note thatC, andC, are in birational

1+ )L+ "’ correspondences with circular arf€os#, sin 6, 1)|— 7 <

Note thatS;(u,s) and S;(v,t) share the same directrix
circle (see Fig. 5(a)). Moreover, the two surfaces are tangen-
tial along a line:{(0,t,t)|]—o0 <t < oo}. As the circular
cone S;(u,s) and the elliptic cylinderSy(v,t) are both
quadric surfaces, their intersection curve has degree four
at most. One circle and one tangent line (considered as
two lines overlapping in the same line) form a curve of
degree four. Consequently, it is clear that there are no
other intersection points. From the aforementioned informa-
tion, we get the following bivariate functions:

AU, V) =
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6 < m/2} and{(cos#, sin 6, 1)|m/2 < 6 < =}, respectively.

three different cases to consider (we asswmges up <

Nevertheless, there is no birational correspondence betweeny; = up andv, = vp < vp = W,):

Ci (i = 3,4) and a connected component of the intersection
curve; they correspond to the apex (0,0,0)Spfu, s). The
point (1,1) corresponds to the pair of ruling lineks) and
Li(t) that overlap in the same liné0, t, t)|—o0 =t = oo}.

In summary, the circular corg (u, s) and the elliptic cylin-
derSy(v, t) intersect in a circle and a tangent line. There are
no other intersection points.

3. Degenerate cases

Whena(u), b(v), C(u), and D§) are given as polynomial/
rational curves, the solution set afu,v) =0 is a planar
algebraic curve, in general. However, in some degenerate
cases, the solution set may degenerate into the whole plane,
i.e., A(u,v) = 0. For example, consider two parallel cylind-
rical surfaces for whicla(u) andb(v) are constant and paral-
lel (see Fig. 7(a)). Then we havdu, v) = 0, which implies
Au,v) =0 as well. Moreover, consider two conical
surfaces that share a single apex located at p@ifsee
Fig. 7(b)). Each ruling lind.}(s) of S;(u, s) intersects with
all other ruling lined_}(t) of S,(v, t) at the common apeR.
Thus we have\(u,v) = 0. These two cases essentially cover
all possible degenerate casea@f, v) = 0. The only excep-
tions are the cases in which two ruled surfaces overlap.
Below we show that the two overlapping ruled surfaces
must be planes or rational bilinear surfaces (quadrics).
Consequently, the detection of all degenerate cases can be
essentially reduced to the problem of classifying the special
types of input surfaces: whether the surface is a plane, cylin-
der, cone, quadric, or something else. (See Elber and Kim

e Case 1There exists a pair of linels°(s) andL}'(s) that
intersect at a poin®.

Each ruling lineL%(t) of S,(v,t) intersects with both
L°(s) andL{*(s). There are two subcases to consider:

If there are infinitely many.}(t) passing through the
point P, the surfaces,(v, t) must be a conical surface
with its apex atP.

Otherwise, infinitely many linesLy(t) must be
contained in the plane determined Hlﬂ"(s) and
L‘l’l(s). Then the whole surfac&,(v,t) degenerates
into a plane.

The surface type of5(u,s) is also determined in a

similar way.
If S(v,t) is a non-planar conical surface (with its
apex atP), all ruling lines Lj(s) of S;(u,s) pass
through the apexP. Consequently,S;(u,s) also
becomes a conical surface. (See Fig. 7(b).)
Otherwise S;(v, t) is a plane. All ruling lined 5 (s) of
Si(u, s) are contained in the plane 8f(v, t). Hence,
Si(u, s) and Sx(v, t) degenerate into the same plane.
(See Fig. 7(c).)

e Case 2 There exists a pair of parallel linds°(s) and
L3(S).

There is a unique plane determined by these two paral-
lel lines. All ruling linesLY(t) of S,(v, t) are contained in
the plane. Thus the whole surfaBgv,t) degenerates
into the plane. Similarly, the other surfa&(u,s) is
also contained in the same plane.

[5] for some related algorithms that detect special types of ¢ Case 3 Any two different linesL;°(s) and Ly*(s) are

free-form surfaces.)

When a(u) and b(v) are parallel/opposite for all pairs
of (uv) (i.e., A(u,v) =0), the surfacesS;(u,s) and
S(v,t) are cylindrical surfaces which are parallel to
each other. Otherwisea(u) and b(v) are parallel/
opposite only for the pairs oliv) satisfying the condition
of A(u,v) = 0. In general A(u,v) = 0 is an algebraic curve
in theuw-plane, which cannot be a space-filling curve. Thus
there is a regiofiu,, Uy] X [Va, Vp] in which A(u, v) # 0, for
all (u,v) € [Uy, Up] X [Va, Vp]. AS we assumer(u,v) = 0,
C(u)—D(v) must be given as a linear combination agfi)
and b(v), for all u; =u=u, andv, =v =v,. Thus, we
have

C(u)—D(v) = s(u, v)a(u) + t(u, v)b(v),
and equivalently,
C(u) + s(u, v)a(u) = D(v) + t(u, v)b(v),

for some real functions(u, v) andt(u, V). This means that
each ruling lineLi(s) of S;(u,s) intersects with all other
ruling lines Ly(t) of Sy(v,t), and vice versa. There are

skew.

We may assume that any two different ling$(t) and

L3 (t) are also skew. (Otherwise, we will end up with
Case 1 or Case 2 considered before.) Bgtbe the
intersection point of two linedj(s) and LY(t). Let
Su,v) = P, for all (u,v) € [U,, Uy] X [Va Vp]. Then
Si(u,9) and Sy(v,t) are coincident with the surface
Su, Vv); thus S;(u,s) and S;(v,t) are the same surface.
In fact, Su,v) generates a rational bilinear surface
under certain reparameterizationsiatndv. Moreover,
this surface must be a quadric surface. (See Appendices
A and B for detailed proofs of these arguments).

4. Experimental results

The computation of bivariate function&u,v), A(u, V),
61(u,Vv), and 6,(u,v) is quite simple and efficient. Using
symbolic tools to compute the summation, difference, and
product of (piecewise) polynomial/rational forms [3], we
can derive (piecewise) polynomial functions representing
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(b)

Fig. 8. Transversal intersection of two ruled surfaces in (a). In (b)A{gy) function is shown.

the numerators ofA(u,v), A(u,v), §:(u,v), and 8,(u, V). fraction of a second in all the examples demonstrated in
Fig. 8(a) shows a simple example of intersecting two this article. The zero-set finding af(u,v) = 0 (under the
ruled surfaces that meet transversally. The correspondingconstraintA(u, v) # 0) took a couple of seconds. In practice,
bivariate functionA(u,v) is shown in Fig. 8(b). (In this  we rarely have a solution af(u,v) + 8:(u,v) + 8,(u,v) =
example, the zero-set éf(u, v) = 0 is empty; thus the zero- 0. Except the case of two identical ruled surfaces overlap-
set of A(u, v) = 0 contains non-redundant solutions only.) ping each other, there would be only a few discrete solu-

An intersection curve is computed in three major steps: tions, if any, of this equation; the root finding procedure then
converges very quickly to the discrete solutions.

The zero-set finding is essentially a computational proce-
dure that requires finding all the points along the intersec-
tion curve between the graph surfaéeu, v) = (u, v, A(U, Vv))
and theuv-plane. Thus the problem of intersecting two ruled
surfaces has been reduced to a simpler yet another surface
intersection (SSI) problem. Among numerous methods
available for the SSI problem, subdivision-based methods

According to our experimental results, all three steps produce the most reliable solutions, in general. They are
were found to be reasonably efficient. The symbolic compu- usually slower than other sophisticated methods based
tation of A(u,v), A(u,V), 8,(u,Vv), and 8,(u,Vv) took only a on curve tracing. Quite often, other methods also take

1. formulate bivariate polynomial functiona(u,Vv),
A(u, V), 61(u, V), and é,(u, v);

2. compute the zero-set afu, v) = 0, while excluding
the solutions ofA(u,v) = 0;

3. detect the pairs of overlapping ruling lines that corre-
spond to the common solutions ofA(u,v) =
01(U, V) = 6,(u,v) = 0.

Fig. 9. Intersection of two cylinders. In (a)—(d), two almost coaxial cylinders are intersected, with the angle between the two cylinders e, 0®T.
In (e) and (f), ther(u,v) functions for cases (a) and (d) are shown.
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(-0.55228475005426, 1) 1) 5228475005426, 1) Figs. 11-13 show the experimental results of our algo-
rithm applied to Examples 1-3 (see also Figs. 1-6); the
(-1, 0.55228475005426) (1, 0.55228475005426) intersection curve of each example has been projected
from the uvstspace to different domains so as to clarify
1.0 1,0 its topological structures. The unit circle is approximated
by four cubic Beier curve segments as shown in Fig. 10.
1, -o.sszzsmoome) (1, -0.55228475005426) (Each circular cone is thus approximated by folrzige
surface patches of degree (3,1).) Owing to numerical
(-0.55228475005426, -1) (0, -1) (0.55228475005426, -1)

error, it is very difficult to detect the exact lines and circles
appearing in the intersection curves of Figs. 12 and 13.
Nevertheless, the computational results are very close to
the exact intersection curves, which demonstrates the
advantage of a preprocessing step that is based on subdivirobustness of our intersection algorithm.

sion. In this article, because of robustness consideration, we Fig. 11(b) can be obtained by projecting the solution
adopt a subdivision-based scheme for finding the zero-set ofcurves of Fig. 11(e) or Fig. 11(f) into thew-plane. The
A(u,v) = 0. (A similar technique is applied to the computa- curve segments have been trimmed off because of the
tion of the zero-sets of other bivariate functions.) As we limited ranges of andt. Note that the \{, v) pairs near to
have observed before, using this method, only a few secondghe lines:u= 0,v= 0, andu = v, correspond to the positive/
were required to construct each of the examples demon-negative infinity ofsandt values. In Fig. 12, the intersection
strated in this article. Therefore, the gain in robustness justi- curve consists of three connected components; each

Fig. 10. Circle approximation with four cubic’Bier curve segments.

fies our approach. segment is bounded by (0,0,0) and/or (6,1), the apexes
This robust adaptive subdivision approach depends on anof two circular cones. Note that two adjacent line segments
ability to represent the bivariate functionsu, v), A(u, V), are topologically connected at a common apex. The result

81(u,Vv), and 6,(u,v) symbolically. By searching for the of Fig. 13 looks more interesting. Segment 1 consists of a
extreme control points of each surface subregion during half-line {(0,t,t)[t > 1} and a three-quarter circle
the subdivision, and exploiting the convex hull property of {(cosd,sin6, 1)|m/2 = 6 < 2x}, whereas segment 2 consists
the Beier and B-spline representations, we can efficiently of the rest quarter circlfcos, sin, 1)|0 = 6 = 7/2}, and a
extract the surface subregions that intersect with uize line segmen{(0,t,1)[0 = t = 1}. In fact, segments 1 and 2
plane. When the remaining surface patches become suf-are topologically connected at (0,1,1) on the unit circle
ficiently flat, we triangulate these surface patches. The {(cos,sing, 1)|0 = 6 = 2x}. Segment 3 is simply a half-
intersection of the triangulated surface with theplane line {(0,t, t)[t < O}; it is topologically connected to segment
provides a polygonal approximation of the zero-set 2 at (0,0,0), the apex of the cone.
A(u,v) = 0. We applied a numerical improvement proce- All the algorithms and examples presented in this article
dure (based on local Newton—Raphson steps) to a piecewisavere implemented and created using tools available in the
linear approximation of the zero-set. Final results have very IRIT [4] solid modeling system, developed at the Technion,
high precision, with typical tolerances of six orders of Israel. The experiments were carried out on a 195 MHz
magnitude. R10000 SGI machine.

Fig. 9(a)—(d) show a sequence of examples that intersect
two almost coaxial cylinders with angles of°1@°, 0.1°,
0.0 between the two cylinders, in that order. Fig. 9(e) and 5. Conclusion
(f) are theA-functions of the examples shown in Fig. 9(a)
and (d), respectively. It is very difficult to distinguish two In this article, we presented an efficient and robust inter-
intersecting cylinders that appear almost overlapping in Fig. section algorithm for two ruled surfaces. The problem of
9(c) and (d). Moreover, the-function of Fig. 9(f) is almost intersective two rules surfaces was reformulated as a zero-
flat. Nevertheless, the computation results are numerically set finding problem for a bivariate function. The overall
stable and they produce reasonable solutions, which demoncomputation procedure is numerically stable based on the
strates the robustness of our intersection algorithm for two B-spline subdivision technique.
ruled surfaces. The indicatrix curveXu) and b(v) are
constant for cylinders; thus the bivariate functidiu, v)
also has a constant value for each of the examples shown
in Fig. 9(a)—(d). In fact, we havA(u,v) = sinff ~ 0.3 x Acknowledgement
101,03x10%0.3x10°°, and 03x 10/, for the four
examples. The values af;(u,v) and 8,(u,v) are also in The authors would like to thank the anonymous referees
similar ranges for the pairsi{) on the diagonalu—v = for their invaluable comments which were very useful in
0. Thus we may regard the two cylinders of Fig. 9(c) and (d) improving the presentation of this article from its prelimin-
as almost overlapping. ary version [6].
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(a) (b) wv-domain
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A S A

(¢) us-domain (d) vt-domain
s t
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2 3 2 3
/, - - / —f
u u
(e) uvs-domain (f) uvt-domain

Fig. 11. Projections to different domains (for Example 1). (a) two surfacesigtpmain (c)usdomain (d)ut-domain (e)uvsdomain (fyuvtdomain.

Appendix A. Rational bilinear surface to these four corner points so that the resulting rational
bilinear surface represents the surf&e, v) exactly.
Assume that any two ruling Iind§l’°(s) and Lil(s) of the Consider the following three vectors:
ruled surfaceS;(u,s) are skew, and any two ruling lines SN

L°(t) and L3} (t) of the other ruled surfac&(v,t) are also a= Py, Py,
skew. Moreover, assume that, for each pain) the two
ruling lines LY(s) and L%(t) intersect at a poinP,,. Let

b= Puava Puavb,
Su,v) = Py, for all (u,v) € [uy, Up] X [Va, Vp]. Below we

show that this surfac&u, v) can be represented as a rational x _ PP
bilinear surface. Fig. 14 shows the surfé&e, v) bounded tala™ thb*
by four lines:L{*(s), L*(t), L1°(s), Ly2(t), and four corners: Note that these vectors are linearly independent since the

Pu. v Puvy> Puve Puyv,- We consider how to assign weights  lines Ly*(s) and Ly°(s) are skew. From the configuration
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(e) uvs-domain
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(b) uv-domain

(d) vt-domain

(f) uvt-domain
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Fig. 12. Projections to different domains (for Example 2). (a) two surfacesifdpmain (c)usdomain (d)ut-domain (e)uvsdomain (f)uvtdomain.

given in Fig. 14, we can derive the following relations:

l:)uva - l:)uava = taa»

Puy, —Puy, = (1—tp)b + 1,8,

F>uav_|:)uava = s;b,

F)ubv_Puava =(l-spa+ st

The vectorP,,—P, . can be represented in two different = h(1-s)a + (1— h)saB + hgt.

ways:

Pu—Pyy, = (1=0)(Puy, —Py,,) + 9Py, —Pyy,)
= (1-Q)tad + gl(1—tp)b + ;]
= (1-Q)tad + g(1—ty)b + gtC
PPy, = (1=0)(Puy—Puy,) + h(Puy—Puy, )

= (1-h)s,b + h[(1—5,)a + &l
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(c) us-domain

(e) uvs-domain

(b) uv-domain

(d) vt-domain

(f) uvt-domain

Fig. 13. Projections to different domains (for Example 3). (a) two surfacesifbpmain (c)usdomain (d)vt-domain (e)uvsdomain (f)uvt-domain.

As the vectors, b, ¢ are linearly independent, we have

(1-9ta = h(1—-sy)
0ld-ty) = (1—-h)s,

ot = hs,
By eliminatingg and h, we get

(Sata + Sa(S— D)ty = (Sala + taltp—1))S,

which can be reformulated as follows:

_ la-wsa-syslt
(1t + [(-s)s/(-s/s)lta At + W’

b

wherew = ((1-s,)/s)/((1—%,)%,)- It is easy to derive the
following equalities:

_ (-s)fs _ (-t _w
I-sis Aty (I-s) +ws'
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l—sb

. Puyuy
\ :

1 A .
1

1

L3+ (t),

Fig. 14. Rotational bilinear surface.

Let us define a rational bilinear surface
B(s 1)

_ (1-9(1-t)P,,,, + s1-)P,,, + (1-9tP,,, + stwR,,,
(1-s(1-t) + s(1—t) + (1—9s)t + stw

Straightforward computations show that

B(0,0) = P,,.,B(1,0) = P,.,B(0,1) = P, ,B(1,1)

= Py,

Thus the bilinear surfacB(s, t) interpolates four corners
of Su, v). Moreover,B(s,t) interpolates four boundary lines
of Su,v) :

B(s0) = (:L_S)Puava + SPuavb = Puava + S(Puavb_l:)uava)
B(0,t) = (1—t)P,,, + tPy, =Py, + t(PubVa—Puava)

(1-9)Py,y, + SWR,,

B(s 1) =
S (1—9s) +sw
SwW
= PubVa + 1-9) + SW(PUbe_PUbVa)
8Lt = EDPuy T WPy,

1-t) +tw

tw
=Pus * o e (Puw =P

Note thatB(s, t) interpolates the boundary &fu, v) in the
same ratios as shown in Fig. 14:

B(s,,0) = Puav, B(O,t) = I:)uva’

B(1,ty) = Pyy,-

B(Sa’ 1) = PUbV9

ThusB(s, t) and Su, v) generate the same ruled surface.
The surfaceS(u, v) must be a rational bilinear surface.

49

Appendix B. Implicitization as a quadric surface

Given a rational bilinear surface
B(s 1)

_ 1-9(1-HPy,, + S(1-H)P,,, + (1-9tP,,, + stwR,,,
1-9(1-t) + s(1-t) + (1—9)t + stw

’

let (W, X,Y,4 be a point (in homogeneous coordinate) on the
surfaceB(s, t). Then we have the following relation:

w (1—9(1-t)
X 101 1w S(1-1)
v [ Pov. Puw Py, wPubvb] (1-9t
Z st

®)

where each poirf® must be interpreted as a3l submatrix.
Note that
o]
WPy, v,

1 1 1
de
Puava Puavb Pubva

1 0 0 0
= det
I:)uava I:)uavb - I:)uava I:)ubva - I:)uava W( Pubvb - F)uava)

1 00 O
= de - #0
P, b a wt
Thus the 4x 4 matrix of Eq. (8) is invertible. We have the
following relation for some 4 4 matrix A = (g):

(1-9)(1—t) W
s(1-t) X
(1-9t N Y

st 4

When we multiply the first and fourth rows, we get
(1—s)(1—-t)st, which is the same as the multiplication of
the second and third rows(1—t)(1—9)t. As a result, we have

(@ W + X + a13Y + a142)(@nW + agoX + as3Y + ausd)
= (8p1W + apoX + ap3Y + aysZ) (a3 W + azoX + aggY
+ a42),
which produces a quadric representation of the rational
bilinear surfaceB(st).
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