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We review a family of related techniques for geometric computa-
tions in the parameter space of freeform curves and surfaces. Ge-
ometric constraint equations for freeform curves and surfaces have
low degrees (often linear or quadratic) in x;y;z and considerably
higher degrees in the curve or surface parameters. We eliminate x;y,
and z, so that the constraints are expressed in terms of the curve or
surface parameters, while making the variables x;y;z the functions
of these parameters under those same constraints. It is relatively
straightforward to compute the differential geometric properties of
many constructs using this representation. We have successfully
addressed the following classes of computation for freeform curves
and surfaces: Minkowski sums, bisectors and α-sectors, surface-
surface intersections, collision detection, offset trimming, swept
volume computation, constructing Voronoi diagrams, convex hulls
and kernels, silhouette, and visibility computations. We provide a
few simple examples to demonstrate how to apply this technique to
a variety of problems in geometric computation.
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system of polynomial equations, parameter space1 Introdu
tion
Conventional research in computer aided geometric design has fo-
cused on the design and representation of freeform curves and sur-
faces [Cohen et al. 2001; Farin 1997; Hoschek and Lasser. 1993;
Piegl and Tiller 1995]. Geometric operations permit these geomet-
ric shapes to be employed in various applications, such as solid
modeling and NC machining. Unary operations include curve and
surface offsets, convex hulls, and silhouette computations. Binary
operations take two geometric objects as input and produce a differ-
ent curve or surface as a result. Examples include surface-surface
intersection, bisector computation, and determining the convex hull
of two curves or surfaces. More generally, we may think of n-ary
geometric operations that take n different objects as input and pro-
duce some results which are useful for the application under con-
sideration.

Compared with freeform shape design, geometric operations are
usually more difficult to support in a reliable way. For example, off-
sets and surface-surface intersections are in general extremely dif-
ficult to compute in a robust way without user intervention. There
are always some intricate degenerate cases where these operations
produce incorrect results, in particular in the determination of the
topology of the resulting curves or surfaces. This fundamental
problem is not limited to these two operations. We experience sim-
ilar deficiency in many geometric operations which deal with con-
straints specified in xyz-space, i.e. the workspace. One reason for
this deficiency is that in most cases the results of geometric opera-
tions are produced as algebraic curves and surfaces, and these are
unfortunately non-rational in general. In this paper, we present a
reasonable way of handling algebraic constraints.�e-mail:mskim@cse.snu.ac.kr
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Rational curves and surfaces are represented in parametric form,
whereas curves and surfaces are located in the xyz-workspace. This
discrepancy between the workspace and the parameter space often
causes problems, not only in terms of computational efficiency but
also with topological consistency. To resolve these problems, we
show how to reduce constraints into the parameter space and trans-
form the results back to the workspace.

Given two freeform rational surfaces S1(u;v) and S2(s;t) in xyz-
space, geometric constraints are usually represented as nonlinear
equations in the seven variables u;v;s;t;x;y;z. The terms in x;y;z
are often linear or quadratic since the constraints include conditions
such as orthogonality, predetermined fixed angles, equal distances,
etc. On the other hand, the terms in u;v;s;t usually have consider-
ably higher degrees. It is easier to eliminate x;y;z and convert the
constraints into others that use only the parameters u;v;s;t. If we
try to remain in the xyz-space, it is far more difficult to eliminate the
high-degree terms in u;v;s;t. In many cases, elimination takes an
inordinate amount of computing time. Even if it works, the result-
ing equations in x;y;z have very high degrees. Thus it is reasonable
to eliminate x;y;z instead of u;v;s;t and, more importantly, it is very
efficient.

There is another important advantage in eliminating the low-
degree terms in x;y;z instead of the high-degree terms in u;v;s;t, un-
der the same constraints. It is relatively straightforward to compute
the differential geometric properties of many constructs using this
representation. In recent years, we have successfully addressed the
following classes of computation for freeform curves and surfaces:
Minkowski sums [Lee et al. 1998], bisectors and α-sectors [Elber
and Kim 1998; Elber and Kim 2000; Elber et al. 2001], surface-
surface intersections [Heo et al. 1999; Heo et al. 2001; Seong
et al. 2005a], collision detection [Wang et al. 2001], offset trim-
ming [Seong et al. 2005b], swept volume computation [Elber and
Kim 2000], constructing Voronoi diagrams [Hanniel et al. 2005],
convex hulls and kernels [Elber et al. 2001; Seong et al. 2001],
silhouette computations [Seong et al. 2005b], and visibility compu-
tation [Elber et al. 2005]. A recent book [Patrikalakis and Maekawa
2002] also discusses many important problems of shape interroga-
tion that can be reduced to solving equations in parameter space.

Computational geometry has dealt with some of these problems
in the discrete domain of points, lines, polygons, and polyhedra.
The parameterization of curves and surfaces provides essential in-
formation on their spatial coherence. Therefore we need a differ-
ent approach to developing algorithms for geometric operations on
curves and surfaces. In this paper, we review a set of related tech-
niques, which may suggest a different way of looking at geomet-
ric computations for freeform curves and surfaces. Our approach
suggests that the rational parameterization of freeform curves and
surfaces provides the most natural way of dealing with their geom-
etry in the type of geometric operations common in computational
geometry and also in computer graphics. Entire computations boil
down to solving a set of polynomial equations. This paper is an up-
dated abbreviated version of recent articles [Elber and Kim 2001;
Kim and Elber 2000].

The rest of this paper is organized as follows. Sections 2–4
show how to convert problems of geometric constraint into sys-
tems of polynomial equations. The problems discussed include the
Minkowski sum, bisector, and silhouette computation for freeform
shapes. Section 5 concludes this paper.



2 Envelope Curve and Envelope Surfa
e
We present the basic principle of geometric computation in param-
eter space using the simple examples of envelope curves and sur-
faces.2.1 Envelope Curve
Assume that a curve C1(u) = (x1(u);y1(u)) is given in the xy-plane
and another curve C2(v) = (x2(v);y2(v)) moves (with a fixed ori-
entation) along the trajectory curve C1(u). The sweep of C2 gener-
ates a planar region. This region is bounded by the envelope curve(x(u;v);y(u;v)), which is defined by

x(u;v) = x1(u)+ x2(v); (1)

y(u;v) = y1(u)+ y2(v); (2)

under the parallelism constraint C0
1(u) kC0

2(v), which is in turn rep-
resented as an algebraic equation in u and v:

F(u;v) = x01(u)y02(v)� y01(u)x02(v) = 0: (3)

In some applications, it is useful to consider the paral-
lelism constraint in the same direction, i.e., C0

1(u) k C0
2(v) and


C0
1(u);C0

2(v)� > 0. Figure 1 shows two examples of outer enve-
lope curves generated by considering only the pairs of curve points(C1(u);C2(v)) for which the two curves have the same tangent di-
rection. In Figure 1(a), the moving curve is a circle and the outer
envelope curve is thus the untrimmed offset of the trajectory curve.
Figure 2(a) shows a non-convex curve moving along a non-convex
trajectory curve. The resulting outer envelope curve is considerably
more complicated than the two original curves.

C1 C2

C2C1
x

y

x
y (a)

(b)
Figure 1: Outer envelope of a curve moving along another curve.

The differential properties of the envelope curve can be com-
puted by evaluating the derivatives of its coordinate functions. As-
suming the implicit curve F(u;v) = 0 is locally parameterized by u,
the parameter v may be interpreted as a function v(u) of u. The first
and second derivatives of v(u) can then be computed by differenti-
ating F(u;v) = 0 using the chain rule:

Fu(u;v)+Fv(u;v) dv

du
= 0;

Fuu(u;v)+2Fuv(u;v) dv

du
+Fvv(u;v)� dv

du

�2 +Fv(u;v) d2v

du2
= 0;

and more explicitly the derivatives dv
du

and d2v
du2 are given as follows:

dv

du
= �Fu

Fv
;

d2v

du2
= �Fuu +2Fuv

dv
du

+Fvv

�
dv
du

�2

Fv= �FuuF2
v +2FuvFuFv�FvvF2

u

F3
v

:
Using Equations (1) and (2), the envelope curve is represented

as C(u) = (x(u;v(u));y(u;v(u))). The first and second derivatives
of the coordinate functions can be computed as

dx

du
= xu(u;v)+ xv(u;v) dv

du
;

dy

du
= yu(u;v)+ yv(u;v) dv

du
;

d2x

du2
= xuu(u;v)+2xuv(u;v) dv

du
+ xvv(u;v)� dv

du

�2 + xv(u;v) d2v

du2
;

d2y

du2
= yuu(u;v)+2yuv(u;v) dv

du
+ yvv(u;v)� dv

du

�2 + yv(u;v) d2v

du2
:

The signed curvature of the envelope curve is then computed by
evaluating the following formula [do Carmo 1976]:

κ(u) = dx
du

d2y

du2 � d2x
du2

dy
du��

dx
du

�2 +�
dy
du

�2
�3=2

:
Note that the curvature is a non-rational function of u because of
the square root function in the denominator.2.2 Envelope Surfa
e
Given a surface S1(u;v) = (x1(u;v);y1(u;v);z1(u;v)) in xyz-space,
another surface S2(s;t) = (x2(s;t);y2(s;t);z2(s;t)) moves (with
a fixed orientation) along the surface S1(u;v) and generates a
swept volume. The volume is bounded by envelope surfaces(x(u;v;s;t);y(u;v;s;t);z(u;v;s;t)), which are defined by

x(u;v;s;t) = x1(u;v)+ x2(s;t); (4)

y(u;v;s;t) = y1(u;v)+ y2(s;t); (5)

z(u;v;s;t) = z1(u;v)+ z2(s;t); (6)

under a parallelism constraint N1(u;v) k N2(s;t), where N1(u;v) =
∂ S1

∂ u
(u;v) � ∂ S1

∂ v
(u;v) denotes the normal vector of the surface

S1(u;v), and similarly N2(s;t) denotes the normal vector of S2(s;t).
The parallelism constraint N1(u;v) k N2(s;t) is formulated as a

system of two algebraic equations:

F(u;v;s;t) = �
N1(u;v); ∂S2

∂ s
(s;t)�= 0; (7)

G(u;v;s;t) = �
N1(u;v); ∂S2

∂ t
(s;t)�= 0: (8)

Assuming the implicit 2-manifold F(u;v;s;t) = G(u;v;s;t) = 0
in uvst-space is locally parameterized by u and v, the parameters s
and t may be interpreted as functions s(u;v) and t(u;v) of u and v.

The first partial derivatives ∂ s
∂ u

and ∂ t
∂ u

can be computed by differ-

entiating F(u;v;s;t) = 0 and G(u;v;s;t) = 0 with respect to u using



the chain rule:

Fu(u;v;s;t)+Fs(u;v;s;t) ∂ s

∂u
+Ft(u;v;s;t) ∂ t

∂u
= 0; (9)

Gu(u;v;s;t)+Gs(u;v;s;t) ∂ s

∂u
+Gt(u;v;s;t) ∂ t

∂u
= 0; (10)

which produces

∂ s

∂u
=� ���� Fu Ft

Gu Gt

�������� Fs Ft

Gs Gt

���� ; ∂ t

∂u
=� ���� Fs Fu

Gs Gu

�������� Fs Ft

Gs Gt

���� : (11)

Similarly, the first partial derivatives ∂ s
∂ v

and ∂ t
∂ v

can be computed

by differentiating F(u;v;s;t) = 0 and G(u;v;s;t) = 0 with respect
to v, using the chain rule:

Fv(u;v;s;t)+Fs(u;v;s;t) ds

dv
+Ft(u;v;s;t) dt

dv
= 0; (12)

Gv(u;v;s;t)+Gs(u;v;s;t) ds

dv
+Gt (u;v;s;t) dt

dv
= 0; (13)

which produces

ds

dv
=� ���� Fv Ft

Gv Gt

�������� Fs Ft

Gs Gt

���� ; dt

du
=� ���� Fs Fv

Gs Gv

�������� Fs Ft

Gs Gt

���� : (14)

The second partial derivatives ∂ 2s
∂ u2 and ∂ 2t

∂ u2 can be computed by
differentiating Equations (9) and (10) with respect to u, again using
the chain rule:

Fs(u;v;s;t) ∂ 2s

∂u2
+Ft(u;v;s;t) ∂ 2t

∂u2
= A(u;v;s;t);

Gs(u;v;s;t) ∂ 2s

∂u2
+Gt(u;v;s;t) ∂ 2t

∂u2
= B(u;v;s;t);

where A(u;v;s;t) and B(u;v;s;t) are rational expressions in u;v;s;t,
∂ s
∂ u

, and ∂ t
∂ u

. This produces

∂ 2s

∂u2
= ���� A Ft

B Gt

�������� Fs Ft

Gs Gt

���� ; ∂ 2t

∂u2
= ���� Fs A

Gs B

�������� Fs Ft

Gs Gt

���� : (15)

Similarly, the second partial derivatives ∂ 2s
∂ u∂ v

and ∂ 2t
∂ u∂ v

can be com-
puted by differentiating Equations (9) and (10) with respect to v:

Fs(u;v;s;t) ∂ 2s

∂u∂v
+Ft(u;v;s;t) ∂ 2t

∂u∂v
= D(u;v;s;t);

Gs(u;v;s;t) ∂ 2s

∂u∂v
+Gt(u;v;s;t) ∂ 2t

∂u∂v
= E(u;v;s;t);

where D(u;v;s;t) and E(u;v;s;t) are rational expressions in u;v;s;t,
∂ s
∂ u

, ∂ s
∂ v

, ∂ t
∂ u

, and ∂ t
∂ v

. This produces

∂ 2s

∂u∂v
= ���� D Ft

E Gt

�������� Fs Ft

Gs Gt

���� ; ∂ 2t

∂u∂v
= ���� Fs D

Gs E

�������� Fs Ft

Gs Gt

���� : (16)

Finally, using the chain rule one more time, the second partial

derivatives ∂ 2s
∂ v2 and ∂ 2t

∂ v2 can be computed by differentiating Equa-
tions (12) and (13) with respect to u:

Fs(u;v;s;t) ∂ 2s

∂v2
+Ft(u;v;s;t) ∂ 2t

∂v2
= I(u;v;s;t);

Gs(u;v;s;t) ∂ 2s

∂v2
+Gt(u;v;s;t) ∂ 2t

∂v2
= J(u;v;s;t);

where I(u;v;s;t) and J(u;v;s;t) are rational expressions in u;v;s;t,
∂ s
∂ v

, and ∂ t
∂ v

. This produces

∂ 2s

∂v2
= ���� I Ft

J Gt

�������� Fs Ft

Gs Gt

���� ; ∂ 2t

∂v2
= ���� Fs I

Gs J

�������� Fs Ft

Gs Gt

���� : (17)

Using the partial differentials of the bivariate functions
s(u;v) and t(u;v), we can compute the first and second par-
tial derivatives of x(u;v;s(u;v);t(u;v)), y(u;v;s(u;v);t(u;v)), and
z(u;v;s(u;v);t(u;v)). The first and second fundamental forms and
the curvatures can be computed in a straightforward manner for the
envelope surface [do Carmo 1976].3 Bise
tor Curve and α-Se
tor Curve
We now apply our problem reduction scheme to the bisector curve
of two rational curves in the plane. After that, we will consider the
α-sector curve whose minimum distance between the two curves is
in the ratio of α : 1�α .3.1 Bise
tor Curve
Given two rational curves C1(u) and C2(v) in the plane, each point(x;y) on the bisector curve is at an equal minimum distance from
C1(u) and C2(v); thus each point satisfies
(x;y)�C1(u);C0

1(u)�= 0; (18)
(x;y)�C2(v);C0
2(v)�= 0; (19)�(x;y)� C1(u)+C2(v)

2
;C1(u)�C2(v)�= 0: (20)

Figure 2(a) shows an example of a bisector curve between two ra-
tional curves in the plane, and Figure 2(b) shows an example of a
self-bisector of a rational curve.

(a) (b)

Figure 2: (a) Bisector curve and (b) self-bisector curve.

Conventional approaches would eliminate the parameters u and
v to generate an implicit equation b(x;y) = 0 for the bisector curve



in the xy-plane [Hoffmann and Vermeer 1991], or trace the curve
b(x;y) = 0 numerically [Farouki and Johnstone. 1994; Farouki
and Ramamurthy 2001]. Unfortunately, the algebraic degree of
b(x;y) = 0 is very high. (For two cubic curves, the degree of
b(x;y) = 0 is 46.) Note that Equations (18)–(20) are linear in x
and y. Thus it is considerably easier to eliminate the variables x
and y than the other curve parameters, u and v. Moreover, the de-
gree of the resulting implicit equation F(u;v) = 0 is significantly
lower than that of b(x;y) = 0; in this case the degree of F(u;v) is
10 when both C1(u) and C2(v) are cubic polynomial curves. (For
more details, see [Elber and Kim 1998].)

In this context, Equations (18) and (19) mean that the bisector
is located at the intersection point of the lines normal to the two
curves, which can be computed using Cramer’s rule as follows:

x(u;v) = ���� x1(u)x01(u)+ y1(u)y01(u) y01(u)
x2(v)x02(v)+ y2(v)y02(v) y02(v) �������� x01(u) y01(u)

x02(v) y02(v) ���� ; (21)

y(u;v) = ���� x01(u) x1(u)x01(u)+ y1(u)y01(u)
x02(v) x2(v)x02(v)+ y2(v)y02(v) �������� x01(u) y01(u)

x02(v) y02(v) ���� : (22)

Since this intersection point (x(u;v);y(u;v)) is located on the bi-
sector curve, it satisfies Equation (20). Thus we have the following
constraint equation for u and v, which represents an implicit curve
in the uv-parameter plane:

F(u;v) = �(x(u;v);y(u;v))� C1(u)+C2(v)
2

;C1(u)�C2(v)�= 0:
The differential properties of the bisector curve can be computed
using the technique introduced in Section 2.1.3.2 α-Se
tor Curve
Given two rational curves C1(u) and C2(v) in the plane, each point(x;y) on the α-bisector curve is at a relative distance α : 1�α from
C1(u) and C2(v); thus each point satisfies
(x;y)�C1(u);C0

1(u)�= 0; (23)
(x;y)�C2(v);C0
2(v)�= 0; (24)(1�α)2k(x;y)�C1(u)k2 �α

2k(x;y)�C2(v)k2 = 0: (25)

The first two equations produce the same solutions as in Equations
(21) and (22). However, the third equation produces an implicit
curve of higher degree:

F(u;v) = (1�α)2k(x(u;v);y(u;v))�C1(u)k2�α
2k(x(u;v);y(u;v))�C2(v)k2 = 0:4 Bise
tor Surfa
e

A similar approach can be applied to computing the bisector surface
of two rational freeform surfaces [Elber and Kim 2000]. Figure 3
shows an example of a surface-plane bisector.

Let S1(u;v) and S2(s;t) be two rational surfaces. We consider
the bisector surface of S1(u;v) and S2(s;t), which consists of points(x;y;z) satisfying the following five constraint equations:�(x;y;z)�S1(u;v); ∂S1(u;v)

∂u

� = 0; (26)

Figure 3: Bisector surface between a freeform surface and a plane.�(x;y;z)�S1(u;v); ∂S1(u;v)
∂v

� = 0; (27)�(x;y;z)�S2(s;t); ∂S2(s;t)
∂ s

� = 0; (28)�(x;y;z)�S2(s;t); ∂S2(s;t)
∂ t

� = 0; (29)h(x;y;z);2(S2(s;t)�S1(u;t))i+kS1(u;t)k2�kS2(s;t)k2 = 0: (30)

Equations (26) and (27) mean that the bisector point (x;y;z) is lo-
cated on the normal to S1(u1;v1), and Equations (28) and (29)
imply that the point (x;y;z) is on the normal to S2(u2;v2). Addi-
tionally, Equation (30) constrains the point (x;y;z) to the symmetry
plane of S1(u1;v1) and S2(u2;v2). Equations (26)–(30) are all linear
in (x;y;z).

By applying Cramer’s rule to the linear system formed
by Equations (26), (27), and (30), we can represent
x(u;v;s;t);y(u;v;s;t);z(u;v;s;t) as rational functions of u;v;s;t.
Substituting these rational expressions to Equations (28) and (29),
we obtain the following two rational constraint equations:

F1(u;v;s;t) = �
B(u;v;s;t)�S2(s;t); ∂S2(s;t)

∂ s

�= 0; (31)

F2(u;v;s;t) =�
B(u;v;s;t)�S2(s;t); ∂S2(s;t)

∂ t

�= 0; (32)

where B(u;v;s;t) = (x(u;v;s;t);y(u;v;s;t);z(u;v;s;t)).
The common zero-set of Equations (31) and (32) satisfies all

five constraints of Equations (26)–(30). Hence, we have reduced
the surface-surface bisector problem to a common zero-set find-
ing problem for the two four-variate functions of Equations (31)
and (32). For each point (u;v;s;t) in the resulting zero-set, the
corresponding bisector point can be computed by the rational map(x(u;v;s;t);y(u;v;s;t);z(u;v;s;t)). The differential properties of the
bisector surface can be computed using the technique introduced in
Section 2.2.5 Perspe
tive Silhouette of Swept Volume
Let O denote a three-dimensional object bounded by a rational
freeform surface S(u;v), and let A(t) denote an affine transforma-
tion represented by a 4�4 matrix,264 a11(t) a12(t) a13(t) tx(t)

a21(t) a22(t) a23(t) ty(t)
a31(t) a32(t) a33(t) tz(t)

0 0 0 1

375 ;



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Snapshots of time-varying silhouettes.

where (ai j(t))3�3 represents a linear transformation (e.g. rotation
or shearing) and (tx(t);ty(t);tz(t)) denotes a translation of the coor-
dinate system.

The swept volume of the object O under the affine transforma-
tion A(t) is given by [tA(t)[O℄. Assuming a � t � b, the boundary
surface of the swept volume consists of some patches of the surface
A(a)[S(u;v)℄ and some of A(b)[S(u;v)℄, together with the boundary
envelope surface. The set of points on the envelope surface is char-
acterized by the following equation [Martin and Stephenson 1990]:

F(u;v;t) = ����A0(t)[S(u;v)℄ A(t)�∂S

∂u
(u;v)� A(t)�∂S

∂v
(u;v)�����= 0:

The silhouette points on the boundary of the swept volume[A(t)[S(u;v)℄, seen from a viewpoint p, satisfy the following im-
plicit equation:

G(u;v;t) = hA(t)[S(u;v)℄�p;A(t)[N(u;v)℄i= 0; (33)

where N(u;v) is the normal to S(u;v). Since N(u;v) = ∂ S
du
� ∂ S

dv
is

rational, the function G(u;v;t) is also rational. The common zero-
set of F(u;v;t) = G(u;v;t) = 0 produces 1-manifold curves in uvt-
space, which correspond to the silhouette curves of the boundary of
the swept volume. Figure 4 shows snapshots from an animation of
silhouettes in which their topological arrangements change as the
eye position moves along a predefined path.

Assuming the implicit 1-manifold curve F(u;v;t) = G(u;v;t) =
0 in uvt-space is locally parameterized by t, the parameters u
and v may be interpreted as functions u(t) and v(t) of t. The
differential properties of the silhouette curve (x(t);y(t);z(t)) =
A(t)[S(u(t);v(t))℄ can be computed by combining the techniques
introduced in Sections 2.1 and 2.2 as follows.

The first partial derivatives ∂ u
∂ t

and ∂ v
∂ t

can be computed by dif-

ferentiating F(u;v;t) = 0 and G(u;v;t) = 0 with respect to t using
the chain rule:

Fu(u;v;t)∂u

∂ t
+Fv(u;v;t)∂v

∂ t
+Ft(u;v;t) = 0; (34)

Gu(u;v;t)∂u

∂ t
+Gv(u;v;t)∂v

∂ t
+Gt(u;v;t) = 0; (35)

which produces

∂u

∂ t
=� ���� Ft Fv

Gt Gv

�������� Fu Fv

Gu Gv

���� ; ∂v

∂ t
=� ���� Fu Ft

Gu Gt

�������� Fu Fv

Gu Gv

���� : (36)

Similarly, the second partial derivatives ∂ 2u
∂ t2 and ∂ 2v

∂ t2 can be com-
puted by differentiating Equations (34) and (35) with respect to t,
again using the chain rule:

Fu(u;v;t)∂ 2u

∂ t2
+Fv(u;v;t)∂ 2v

∂ t2
= A(u;v;t);

Gu(u;v;t)∂ 2u

∂ t2
+Gv(u;v;t)∂ 2v

∂ t2
= B(u;v;t);

where A(u;v;t) and B(u;v;t) are rational expressions in u;v;t, ∂ u
∂ t

,

and ∂ v
∂ t

. This produces

∂ 2u

∂ t2
= ���� A Fv

B Gv

�������� Fu Fv

Gu Gv

���� ; ∂ 2v

∂ t2
= ���� Fu A

Gu B

�������� Fu Fv

Gu Gv

���� : (37)

Using the partial derivatives of the functions u(t) and v(t), we
can compute the first and second partial derivatives of the silhou-
ette curve (x(t);y(t);z(t)). The curvature of the space curve is then
computed as follows [do Carmo 1976]:

κ(t) = k(x00(t);y00(t);z00(t))� (x0(t);y0(t);z0(t))kk(x0(t);y0(t);z0(t))k3
:

Note that the curvature is a non-rational function of t because of the
square root function in the denominator.



6 Con
lusions
In this paper we presented a problem reduction scheme that con-
verts geometric constraints in work space to a system of equations
in parameter space. The effectiveness of this approach has been
demonstrated through a few simple geometric operations. In re-
cent years, we have successfully applied the same approach to a
wider variety of geometric computations which are considerably
more involved than those discussed in this paper. New techniques
have been introduced to deal with these problems. Future work will
introduce even more advanced techniques to attack more complex
geometric problems.A
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