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the exact viewing of a 3D scene in mind. The situation is
even worse for computer animation, in which a continuousThe through-the-lens camera control technique originally

proposed by M. Gleicher and A. Witkin [Comput. Graphics camera motion is often required to generate a smooth
26(2), 1992, 331–340], provides a powerful user interface for scene change. With a poor camera model, the computer
the control of the virtual camera in 3D computer graphics and animator has to spend considerable time in fully describing
animation. Their techique is based on locally inverting the natural scene changes in the animation movie. The virtual
nonlinear perspective viewing transformation. However, given camera model thus plays an important role in 3D computer
m image control points, the Jacobian matrix is derived as a

graphics and animation.quite complex 2m 3 8 matrix; furthermore, the Jacobian matrix
The camera status is usually described by seven parame-always has at least one redundant column since its rank can

ters: one for focus, three for position, and three for orienta-be 7 at most. For the overconstrained case of m $ 4, the
tion. In some specialized systems such as RenderMan [27],Lagrange equation is always singular since its 2m 3 2m square
other parameters are also used to control the optical prop-matrix has rank 7 at most. All these complications result from

removing the constraint q2
w 1 q2

x 1 q2
y 1 q2

z 5 1 for unit quaterni- erties of the camera (e.g., the depth of field, shutter speed,
ons (qw , qx , qy , qz) [ S3 which represent the camera rotations. atmospheric effects) and the image properties (e.g., the
In this paper, we interpret the problem as a target tracking pixel aspect ratio). In this paper, we assume a simple cam-
problem and formulate it as a constrianed nonlinear inversion era model which allows the user to control the virtual
problem. The problem is then solved by integrating a tangent camera with seven degrees of freedom. However, even
vector field defined on the configuration space of the virtual with such a simple camera model, it is not easy to control all
camera. The vector field is given by the least-squares solutions of

seven camera parameters simultaneously. This is becausethe Jacobian matrix equations. The row and column weighting
most user interfaces (e.g., mouse) do not support the con-scheme for the Jacobian matrix provides a convenient way to
trol of all the required seven parameters at the same time.control the desired least-squares solutions and the associated
For some camera effects (requiring certain coordinatedvector field. The Lie group structure of the unit quaternion
control of all camera parameters), it is not easy to generatespace S3 enables us to derive a simple 2m 3 7 Jacobian matrix,

which improves both the computational efficiency and numeri- smooth camera motion that produces scene changes which
cal stability of the overall algorithm. For the overconstrained appear natural to the human eye. For example, when the
case of m $ 4, the Jacobian matrix equation is solved (in the relative speeds of the translation and rotation of a camera
least-squares sense) by using an efficient projection method are not synchronized, the animated scene shakes.
with O(m) time complexity.  1996 Academic Press, Inc. Virtual cameras are usually described by specialized

viewing transformations [10]. Using the geometric relation-
ship between the world space and the view space, Blinn [3]

1. INTRODUCTION
developed a camera control technique that automatically
computes the camera focus, position, and orientation fromIn computer graphics, virtual camera models are used
a specification of two object placements in the viewingto specify how a 3D scene is to be viewed on the display
plane. By taking one object as the spacecraft in the fore-screen. For example, the 3D viewing parameters look-
ground and the other object as a planet or moon in theat/look-form/view-up represent one of the most popular
background, this technique was effectively used in makingvirtual camera models [10]. When the camera model is
space movies [3]. However, this technique, based on vectorpoor, the user may experience much difficulty in describing
algebra, allows only a few restricted input specifications
(for example, the calculation of the camera direction from1 This research was partially supported by the Korean Ministry of
the inputs of a view-up vector and an object position onScience and Technology under Contract 94-S-05-A-03-A of STEP 2000.
the screen); its usage as a general virtual camera controlA preliminary version of this paper appeared in Proc. of Graphics Inter-

face ’95, pp. 171–178. scheme is therefore quite limited.
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viewing transformation for the m points, VP: R4 3 S3 R
R2m, is defined by

VP(x) 5 h, (1)

where P 5 (p1 , . . . , pm) [ R3m and h 5 (x1 , y1 , . . . , xm ,
ym) [ R2m with each (xi , yi) being the perspective viewing
transformation of pi onto the 2D display screen. The per-
spective projection of VP produces a nonlinear relationship
between the camera parameters and the projected 2D im-
age points because the equation of the perspective projec-
tion is a rational expression (see Section 3.4). The through-FIG. 1. Through-the-lens camera control.
the-lens control problem concerns how to compute the
camera parameter vector x in Eq. (1) for the given P and
h. To compute x, a nonlinear inverse map, V21

P , should beGleicher and Witkin [12] suggested the through-the-lens
constructed. However, due to the dimensional mismatchcamera control scheme to provide a general solution to
between R4 3 S3 and R2m (which are 7 and 2m, respec-the virtual camera control problem in computer animation.
tively), the nonlinear map VP is not invertible even in anyInstead of controlling the camera parameters directly, the
local neighborhood.2D points on the display screen are controlled by the user.

A simple way to compute the solution x is to approxi-The required changes of camera parameters are automati-
mate the nonlinear inversion problem by a sequence ofcally generated so that the picked screen points are moved
linear inversion problems. That is, instead of solvingon the screen as the user has specified. That is, when the
VP(x) 5 h directly, we can solve a sequence of linearuser picks some 2D points and moves them into new posi-
differential equations: J(x)ẋ 5 ḣ, where J(x) is the Jacobiantions, all the camera parameters are automatically changed
matrix of VP at x and ḣ 5 h 2 VP(x). Even though theso that the corresponding 3D data points are projected
Jacobian matrix J(x) is not invertible, the solutiononto the new 2D points. In Fig. 1, the virtual camera is in
ẋ [ Tx(R4 3 S3) can be approximated asthe position Eye1 and the given 3D point is projected onto

the 2D point A in the viewing plane. When the user moves
the projected point A into a new position at B, the camera ẋ 5 J(x)1ḣ [ Tx(R4 3 S3),
parameters are automatically changed so that the given
3D point is now projected onto the new position B with

where J(x)1 is the pseudo inverse of J(x) and Tx(R4 3 S3)the new virtual camera at the position Eye2. Through-the-
is the tangent space of R4 3 S3. Therefore, the solution ẋlens camera control is a useful tool, especially for computer
at each camera configuration x generates a tangent vectoranimators who have little knowledge about the mathemati-
field on the constraint space R4 3 S3. By integrating thecal model of the virtual camera. There is actually no need
vector field ẋ, we can construct an integral curve x(t) whichto know how each camera parameter changes the viewing
eventually converges to a local optimal solution x ofof a scene and which camera parameters are the right ones
VP(x) 5 h, such that iẋi , « at the solution, for some givento get the desired camera effect. Through-the-lens camera
tolerance « . 0.control thus provides a very powerful user interface to

The general construction scheme outlined above can bevirtual camera control in image composition and com-
applied to any constrained nonlinear mapping, F: M R N,puter animation.
where M and N are complete Riemannian manifolds inThrough-the-lens camera control can be formulated
which the geodesic between any two given points is definedas a constrained nonlinear inversion problem. Let x
[20, 25]. (Mainfold may be considered as a generalization ofdenote the camera parameter vector ( f, ux , uy , uz , qw ,
regular surface to higher dimensional regular hypersurfaceqx , qy , qz) [ R4 3 S3, where f [ R is the focal length,
embedded in Rn [25].) Given a target point q [ N, we can(ux , uy , uz) [ R3 is the camera position, and (qw , qx , qy ,
define a tangent vector field on the domain M as followsqz) [ S3 is the unit quaternion for the camera rotation
(see Fig. 2): For any point p [ M, consider the shortest[16, 23]. In representing the orientations, unit quaternions
distance geodesic c(s) [ N, 0 # s # 1, such that c(0) 5are quite useful since they are free of signularities such as
F(p) and c(1) 5 q. The velocity vector c9(0) [ TF(p)(N)gimbal lock (see [16, 23, 28] and Section 8.1). Thus, instead
defines a tangent vector vp [ Tp(M) asof three parameters, the unit quaternion (i.e., four parame-

ters with one constraint) is used to represent the camera
rotation. Given m points p1 , . . . , pm [ R3, the perspective vp 5 (dFp)1(c9(0)) [ Tp(M),
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a new point, expp(vp dt) [ M, which is precisely contained
in the constraint manifold M itself. This nice property of
the exponential map eliminates the constraint deviation
problem which is common in Euler’s method.

In a general Riemannian manifold, the geodesic curve
is given as a solution of a second order ordinary differential
equation [20, 25]. However, in the simple cases of Rn and
Sn, the construction of geodesic curves is quite straightfor-
ward; therefore, the construction of exponential maps is a
relatively simple task. Most notably, the spheres S1, S3,
S7 from Lie groups with their complex, quaternion, and
Clifford algebra products defined in their respective em-
bedding spaces R2, R4, R8, respectively. A Lie group is a
smooth manifold in which a group operation is defined;
furthermore, the group product and inverse operations are
smooth mappings. In a Lie group G, the derivative of a
curve p(t) [ G is always represented by p9(t) 5 v(t) ? p(t),
where v(t) [ T1(G) is a tangent vector at the identity
element 1 [ G and ? is the Lie group operation [7]. The Lie
group structures of S1, S3, S7 greatly simplify the differential
structures; that is, any tangent vector p9(t) [ Tp(t)(G) can
be identified with a tangent vector v(t) [ T1(G) (; R1,
R3, R7, respectively), and vice versa (see Section 3.1).
Therefore, any tangent vector p9(t) can be represented by
the canonical coordinate system given to the tangent space

FIG. 2. General nonlinear inversion.
T1(G). Since the configurations of multilink body systems
are usually described by the product spaces of Rn, S1, S3,
the Lie group structures of S1 and S3 have great potential in
the application of the above mentioned nonlinear inversionwhere (dFp)1 is the pseudo inverse of the linear differential,

dFp: Tp(M) R TF(p)(N), where Tp(M) and TF(p)(N) are the scheme to computer animation. The Lie group structure
also simplifies the construction of an exponential map. Fortangent spaces of M and N at p and F(p), respectively.

(Note that the Jacobian matrix is the matrix representation a Lie group G, thanks to the canonical identification of
T1(G) and Tp(G), we need to construct only one exponen-of a linear differential [8].) Given a tangent vector field

vp [ Tp(M) defined at each p [ M, an integral curve tial map exp: T1(G) R G. All the other exponential maps
expp: Tp(G) R G are defined by expp(vp) 5 exp(vp) ? p21) ?p(t) [ M, t [ R, is defined to be a differentiable curve

which satisfies the condition: p9(t) 5 vp(t) [ Tp(t)(M). When p [ M, for vp [ Tp(M), where ? is the Lie group operation.
The canonical exponential map, exp, is defined by thethe target point is a moving curve q(t) [ N, we have a

time-dependent vector field vp(t) [ Tp(M). The integral following Taylor series (see [7, 16]):
curve p(t) then satisfies p9(t) 5 vp(t)(t) [ Tp(t)(M). The
target tracking approach is popular in computer vision for

exp(v) 5 Oy
n50

1
n!

vn, for v [ T1(G).the control of a real camera [21]; recently, it has also be-
come a common motion control technique in computer
animation [17].

The construction of an exact integral curve requires the Here vn is the nth power of v in the Lie group operation.
Gleicher and Witkin [12] transformed the constraintsolution of a nonlinear differential equation. An integral

curve is usually approximated by tracing along the geodesic space S3 of unit quaternions into R4\h0j by using a nonzero
quaternion q to represent the rotation implied by the unitcurve on M (starting from p in the direction of vp [ Tp(M))

by an infinitesimal distance dt and repeating the same quaternion q/iqi. At the first glance, this technique may
look as if it is simplifying the nonlinear inversion problem.procedure at the new point. The exponential map, expp:

Tp(M) R M, is defined to transform each tangent vector Unfortunately, it does not work out so nicely. The radial
quaternions tq, t [ R, represent the same rotation impliedvp [ Tp(M) into a point p̂ [ M, where p̂ is the point at a

distance ivpi from p along the geodesic curve starting from by the unit quaternion q/iqi. This produces a redundant
column in the 2m 3 8 Jacobian matrix J of the viewingp in the direction of vp . Once we have the exponential

map, the discrete integration of the vector field generates transformation VP: R8 R R2m. The discrepancy between
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the rectangular coordinate system of R4 and the spherical which can be used effectively for computer animation
with drmatic scene changes.coordinate system of S3 results in a very complex formula

for the Jacobian matrix J. Furthermore, Gleicher and Wit- In a recent MIT Ph.D. thesis, Drucker [9] proposed a
camera control technique which has more general applica-kin [12] solved the linear inversion problem: J(x)ẋ 5 ḣ by

minimizing a quadratic objective function. The problem is tions than the through-the-lens control in computer anima-
tion environments. In this approach, a large variety ofconsequently converted to a Lagrange equation, formu-

lated as a 2m 3 2m square matrix equation. Since the objective functions and geometric constraints can be speci-
fied, and the virtual camera is controlled so that the objec-Jacobian matrix J has rank 7 at most, the 2m 3 2m square

matrix JJT also has rank 7 at most. For the overconstrained tive functions are minimized while satisfying given geomet-
ric constraints. The Sequential Quadratic Programmingcase of m $ 4, the square matrix is always singular as will

be seen in Section 2. A general 2m 3 2m square matrix (SQP) technique [5] is used to compute ẋ by solving an
(m 1 7) 3 (m 1 7) square matrix equation, where m isequation takes O(m3) time to be solved.

Utilizing the special structure of JJT, Gleicher [11] com- the number of constraints and 7 is the number of camera
parameters. The matrix has terms which are given by theputes ẋTJJTTẏ 5 (JTẋ)T(JTẏ) in O(m) time and use the

conjugate gradient method to solve the Lagrange matrix second order partial derivatives of the objective functions
and constraint equations with respect to the camera param-equation. The conjugate gradient method iterates a maxi-

mum of 2m times; in each iteration, the most expensive eters; therefore, the matrix equation is quite time-consum-
ing to set up. Moreover, the matrix dimension (m 1 7)computation is the evaluation of ẋTJJTẏ, which takes O(m)

time. Therefore, it may take O(m2) time to solve the matrix does not match with the dimension (7 2 m) of the con-
straint space; that is, the camera parameter space with mequation. To apply the conjugate gradient method, the

matrix JJT is required to be a positive definite matrix; independent constraints is a (7 2 m)-dimensional manifold
in general. To improve the computational efficiency, wehowever, there is no such guarantee since the square matrix

JJT is always singular for m $ 4. Nevertheless, in practice, can reformulate the given optimization problem into a
certain target tracking problem and apply our least-squaresthe conjugate gradient method usually works for positive

semidefinite matrices. (It is easy to show that the matrix solution method to the resulting Jacobian matrix equation
which can be represented by the first order partial deriva-JJT is positive semidefinite since ẋTJJTẋ 5 (JTẋ)T(JTẋ) $

0, for all ẋ.) Consequently, the time complexity O(m2) of tives only. We discuss more details of this approach in
Section 8.Gleicher [11] may be acceptable in practice.

In this paper, the Lie group structure of the unit The rest of this paper is organized as follows. In Section
2, we review the previous method of Gleicher and Witkinquaternion space S3 enables us to derive a simple Jacobian

matrix, which is computationally efficient and numerically [12] and discuss some of its shortcomings. Quaternion cal-
culus is introduced in Section 3 to derive a simple Jacobianstable. First of all, a 2m 3 7 Jacobian matrix is derived

using quaternion calculus [15, 16, 23] which provides an matrix for the perspective viewing transformation. In Sec-
tions 4 and 5, the linear differential matrix equations areappropriate tool for the analysis of 3D rotations. This

2m 3 7 Jacobian matrix is simpler in its algebraic derived for through-the-lens camera control and they are
solved by using the weighted least-squares method. Theexpression than the previous Jacobian matrix [12], and

thus the construction is speeded up. With one less column implementation details and some experimental results are
discussed in Section 6. In Section 7, we discuss the applica-than the 2m 3 8 Jacobian matrix, our Jacobian matrix

J is less redundant for the case of m $ 4. Furthermore, tion of through-the-lens camera control to the keyframing
control of the virtual camera. In Section 8, we describewe use a weighted least-squares method coupled with

the singular value decomposition (SVD) [13, 22, 26], how to extend the result of this paper to other camera
models and to other camera and motion control techniqueswhich makes the overall computation numerically stable.

For the overconstrained case of m $ 4, we can use an in general. Finally, Section 9 concludes the paper.
efficient projection method to compute the least squares
solution [26]. The time complexity grows only linearly, 2. PREVIOUS WORK
i.e., O(m) time for m control points, which is more
efficient than the time complexity O(m2) of Gleicher 2.1. Review of Previous Work
[11]. The row and column weighting scheme provides a

Gleicher and Witkin [12] solve the matrix equation:way for the user to specify the relative importance of
Jẋ 5 ḣ as a quadratic optimization problem which mini-each control point and each camera parameter; it is
mizes the quadratic energy functionmore intuitive to specify weights to the control points and

camera parameters than to assign quadratic optimization
functions. It is also easy to generalize the row and column E 5

1
2

iẋ 2 ẋ0i2 (2)
weighting scheme to the time varying weighting functions,
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subject to the linear constraint in Eq. (4) is nonempty. Therefore, in Eq. (5), the vector
ḣ0 2 Jẋ0 is represented by a linear combination of the
columns of JJT (with the components of the 2m vector lJẋ 5 ḣ0 , (3)
as their coefficients), and thus it is guaranteed to be in the
column space of JJT. (This is because the two solutionwhere ḣ0 [ R2m and ẋ0 [ R8 are the initial velocity vectors.

The value of ẋ minimizing the energy function E implies spaces of l in Eqs. (4) and (5) are exactly the same.)
the minimal variation of the camera motion with respect

2.2. Limitation in the Overdetermined Caseto the given initial solution x0 . The problem is converted
into a Lagrange equation There is, however, no guarantee that Eq. (3) has a solu-

tion in general. When there is no solution of ẋ [ R8 in Eq.
dE/dẋ 5 ẋ 2 ẋ0 5 JTl (4) (3), we have to project the vector ḣ0 into the column space

of J. This projection also results in a similar projection of
for some value of the 2m-vector l of Lagrange multipliers. ḣ0 2 Jẋ0 into the column space of JJT, and vice versa. (Note
The Lagrange equation is then converted into that each column of JJT is a linear combination of the

columns of J, and the two matrices J and JJT have the
JJTl 5 ḣ0 2 Jẋ0 , (5) same rank. Consequently, J and JJT have the same column

space embedded in R2m.) Then, we can proceed to solve
which is solved for l. Then the value of ẋ is obtained by for l in Eq. (5). To illustrate the computational issues

involved in the solution process, we give a detailed discus-
ẋ 5 ẋ0 1 JTl, sion on the geometric constructions associated with the

least squares solution of Eq. (5). (This discussion is mainly
and it is used to update the virtual camera parameters x for the purpose of comparison with other solution methods.
as follows: Our solution method does not try to solve the least-squares

solution of Eq. (5).)
x(t 1 Dt) 5 x(t) 1 Dtẋ(t). (6) To compute the least-squares solution, we need to pro-

ject the vector ḣ0 2 Jẋ0 into the column space of JJT. An
When Eq. (3) has at least one solution ẋ1 [ R8, the orthogonal projection minimizes the approximation error:

solution space of Eq. (3) is nonempty and generates a
hyperplane LJ , R8. Note that LJ contains ẋ1 [ R8 and is iJJTl 2 (ḣ0 2 Jẋ0)i.
orthogonal to each row vector of J (equivalently, to each
column vector of JT). The dimension of LJ is the same as The singular value decomposition (SVD) of JJT provides
8 2 r, where r is the rank of J and r # minh2m, 8j. There a coordinate transformation of R2m, in which the column
is a unique point ẋ [ LJ which is the closest to ẋ0 . For the space projection can be reduced to a trivial task of simply
unique optimal solution ẋ of Eqs. (2)–(3), the solution dropping the last (2m 2 r) coordinates. Under another
space of l in Eq. (4) generates a (2m 2 r)-dimensional coordinate transformation of R2m, the least-squares solu-
hyperplane LJT , R2m. Each point l of LJT is also realized tion is similarly obtained by dropping the last (2m 2 r)
as a solution of Eq. (5), and vice versa. (This is because coordinates of a solution vector. We give more details
the two matrices JT and JJT have the same rank.) There- below.
fore, any solution l [ R2m of Eq. (5) provides the unique Assume the following singular value decomposition of
optimal solution ẋ 5 ẋ0 1 JTl [ R8 which minimizes the JJT:
quadratic energy of Eq. (2).

When Eq. (3) has a solution, we show that Eq. (5) is JJT 5 UWVT.
always guaranteed to have a solution even if the 2m 3 2m
square matrix JJT is singular. In the underconstrained case Here U and V are two rotation matrices of R2m, and
of m # 3, the square matrix JJT is singular if and only if Wij 5 0, for all i, j such that i ? j or i 5 j . r, where r is
the columns of JT (equivalently, the rows of J) are linearly the rank of J. Eq. (5) now reduces to
dependent. In the overconstrained case of m $ 4, JJT is
always singular. For a singular matrix JJT, Eq. (5) has a UWVTl 5 ḣ0 2 Jẋ0 , and

(7)solution if and only if the 2m vector ḣ0 2 Jẋ0 is contained
W(VTl) 5 UT(ḣ0 2 Jẋ0).in the column space of JJT (i.e., the subspace of R2m which

is spanned by the columns of JJT). Since we assume that
there is at least one solution of Eq. (3), there is a unique Since the last (2m 2 r) rows of W are zero vectors, the

vector UT(ḣ0 2 Jẋ0) is in the column space of W if andoptimal solution ẋ of Eq. (2). This optimal solution ẋ satis-
fies Eq. (4) for some l, and the solution space of l [ R2m only if its last (2m 2 r) components are zeros. We can
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truncate the last (2m 2 r) components of UT(ḣ0 2 Jẋ0) by When there is nonempty solution space for this equation,
the least squares solution ẍ provides the optimal solutionmultiplying this vector by the 2m 3 2m matrix Ir such that

(Ir)ii 5 1, for 1 # i # r, and (Ir)i j 5 0, for all other i and ẋ 5 ẋ0 1 ẍ for Eqs. (2)–(3). If the solution space is empty,
the least squares solution ẍ minimizes the differencej. The rotation by U of the resulting vector produces an

orthogonal projection of ḣ0 2 Jẋ0 into the column space iJẍ 1 Jẋ0 2 ḣ0i at the same time. Section 5 discusses
more details on how to change the optimization criteriaof JJT; that is, the orthogonal projection is given by the

following vector: by scaling the columns and rows of J with different ratios.
Gleicher [11] deals with the overconstrained case of

UIrUT(ḣ0 2 Jẋ0). m $ 4, by using the following quadratic energy function
to attack the least-squares problem:

By truncating the last (2m 2 r) components of the right-
hand side of Eq. (7), we obtain the equation

E 5
1
2

iJTl 2 ẋi2 1 eili2. (9)
W(V Tl) 5 IrUT(ḣ0 2 Jẋ0), (8)

Here e is a constant weighting factor for the Lagrangein which the solution of V Tl may have arbitrary elements
multiplier l. Differentiating with respect to l, the corre-in the last (2m 2 r) components of the solution vector
sponding Lagrange equation is set up as(because the last (2m 2 r) columns of W are zero column

vectors). By filling these last (2m 2 r) components of V Tl
with zeros, we can get the least-squares solution of V Tl. By (JJT 1 eI)l 5 ḣ0 , (10)
concatenating all the intermediate steps in the construction
sequence, we obtain the following least-squares solution l: where I is the 2m 3 2m identity matrix. When Eq. (3)

has no solution, based on a similar reasoning as discussed
l 5 VW1IrUT(ḣ0 2 Jẋ0) 5 VW1UT(ḣ0 2 Jẋ0). above, the Lagrange Equation (10) is no longer a necessary

condition for the quadratic optimization problem of
Here the 2m 3 2m matrix W1 is defined by (W1)ii 5 (Wii)21, Eq. (9). Furthermore, since any solution l produces the
for 1 # i # r, and (W1)i j 5 0, for all other i and j. Since same optimal solution ẋ 5 JTl, the minimization of ili
the last (2m 2 r) rows of W1 are zero vectors, the vector is not an important criteria in the optimization. There-
W1UT(ḣ0 2 Jẋ0) has zeros in the last (2m 2 r) components. fore, ignoring the term eI in Eq. (10), we obtain the

We can apply the same procedure to compute the least equation
squares solution of Eq. (3). The orthogonal projection of
ḣ0 into the column space of J corresponds to that of ḣ0 2

JJTl 5 ḣ0 , (11)Jẋ0 into the column space of JJT, and vice versa. However,
the two projection procedures have a big difference in their

which is the same as Eq. (5) with the additional condition:computational complexities, especially for a large m $ 4.
ẋ0 5 0. That is, it is the same as the optimization problemFor a 2m 3 2m matrix JJT, the SVD takes O(m3) time,
of Eq. (2) with the energy function E 5 Asiẋi2. Consequently,whereas a 2m 3 8 matrix J takes only O(m) time. Further-
there is no essential difference from the original formula-more, since any solution l produces the same optimal solu-
tion of Gleicher and Witkin [12]. The addition of eI totion ẋ, there is no need to compute the least-squares solu-
the singular square matrix JJT has an effect of perturbingtion l. However, the SVD approach produces the least
the matrix JJT into a nonsingular matrix JJT 1 eI. Never-squares solution at no additional cost since it is the simplest
theless, when a small perturbation e is used, the non-as well as the most efficient solution among many others
singularity is not always guaranteed in general. Thein the solution space.
use of a sufficiently large magnitude of e results in theIn this paper, for computational efficiency, we directly
correspondingly large approximation error. The rightsolve the least squares solution of Eq. (3) within O(m)
amount of perturbation is quite difficult to determinetime. Moreover, to fully utilize the least squares solution
automatically.at no additional cost, we may incorporate the optimization

criteria of Eq. (2) into the Jacobian matrix equation of Eq.
2.3. Rank Deficiency of the Jacobian Matrix(3). That is, instead of solving Eq. (3), we can solve the

least-squares solution for ẍ in the following matrix In the camera model, the unit quaternions (qw , qx , qy ,
equation: qz) have a constraint for the unit length; i.e., q2

w 1 q2
x 1

q2
y 1 q2

z 5 1. Gleicher and Witkin [12] eliminated this con-
J(ẍ 1 ẋ0) 5 ḣ0 straint by using any nonzero quaternion q to represent the

rotation Rq implied by the unit quaternion q/iqi. That is,Jẍ 5 ḣ0 2 Jẋ0 .
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for a unit quaternion q 5 (qw , qx , qy , qz) [ S3, the rotation p̂i(t) 5 Ui(q(t)) 5 Rq(t)(pi).
matrix Rq is given by Shoemake [23]:

When the quaternion curve q(t) is given by a radial line
q(t) 5 tq, t [ R, we have

p̂i(t) 5 Ui(tq) 5 Rtq(pi) 5 Rq(pi).

Rq 5 2 1
As 2 q2

y 2 q2
z qxqy 1 qwqz qxqz 2 qwqy 0

qxqy 2 qwqz As 2 q2
x 2 q2

z qwqx 1 qyqz 0

qwqy 1 qxqz qyqz 2 qwqx As 2 q2
x 2 q2

y 0

0 0 0 As

2. That is, the curve p̂i(t) is a constant curve. The derivative
(dp̂i/dt)(t) at t 5 1 is given as a zero vector:

(12)
d
dtU

t51

p̂i(t) 5
d
dtU

t51

Ui(tq) 5 d(Ui)q
d
dtU

t51

(tq)

For a general quaternion q 5 (qw , qx , qy , qz) [ R4, by 5 d(Ui)q(q) 5 0.
inserting q/iqi into the above rotation matrix, Gleicher

This means that the three rows (which are 4D vectors) ofand Witkin [12] obtained the following rotation matrix:
the Jacobian matrix of d(Ui)q are all orthogonal to the
4D vector q. Thus, d(Ui)q has rank 3, for i 5 1, . . . ,

Rq 5
2

uqu2 m. Furthermore, for the transformation U: R4\h0j R R3m

defined by

U(q) 5 (Rq(p1), . . . , Rq(pm)),

the differential dUq is represented by a 3m 3 4 Jacobian
matrix and all the 3m rows of dUq are orthogonal to the
4D vector q. Thus, dUq has rank 3. In the formulation

uqu2

2
2 q2

y 2 q2
z qxqy 1 qwqz qxqz 2 qwqy 0

qxqy 2 qwqz
uqu2

2
2 q2

x 2 q2
z qwqx 1 qyqz 0

qwqy 1 qxqz qyqz 2 qwqx
uqu2

2
2 q2

x 2 q2
y 0

0 0 0
uqu2

2

. of the Jacobian matrix J of Ref. [12], its rank deficiency
essentially results from that of the Jacobian matrix dUq

for the rotational degrees of freedom.
The Jacobian matrix J derived by Gleicher and Witkin

[12] is as follows (denoted by using our notations of Sec-

1 2
tion 3):(13)

J(x) 5 SVp

f
Vp

ux

Vp

uy

Vp

uz

Vp

qw

Vp

qx

Vp

qy

Vp

qz
DThis method derives a rotation matrix for any non-zero

quaternion and eliminates the constraint for a unit quater-
nion. However, the Jacobian matrix of the rotation is rank-
deficient, that is, the column vectors are not linearly inde-
pendent, which makes the computation of x numerically
unstable.

For a given nonzero quaternion q, the quaternions tq
represent the same rotation matrix as Eq. (13) for all non-
zero t [ R, i.e.,

Rtq 5 Rq , for t(? 0) [ R.

5

Pf

f

Pf

p̂
Rq

Tu

ux
(p)

Pf

p̂
Rq

Tu

uy
(p)

Pf

p̂
Rq

Tu

uz
(p)

Pf

p̂
Rq

qw
Tu(p)

Pf

p̂
Rq

qx
Tu(p)

Pf

p̂
Rq

qy
Tu(p)

Pf

p̂
Rq

qz
Tu(p)

T

.
For given m points p1 , . . . , pm [ R3 and a nonzero quater-
nion q, consider the transformation Ui: R4\h0j R R3, i.e.,

Ui(q) 5 Rq(pi), for i 5 1, . . . , m.

The differential of Ui is given by a linear transformation:
d(Ui)q: R4 R R3, which can be represented by a 3 3 4
matrix [8]. Consider the rotation Rq(t) implied by a quater-
nion curve q(t) [ R4, for t [ R, and let p̂i(t) [ R3 be the
curve generated by the rotated points of pi:

1 2
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The matrices Pf /f and Pf /p̂ are given in Eq. (20). a simple Jacobian matrix J for the perspective viewing
transformation VP .(When we use the homogeneous coordinate, we have to

add a zero column vector to the fourth column of
3.1. Quaternion and RotationPf /p̂.) The vectors Rq(Tu/ux)(p), Rq(Tu/uy)(p), and

Rq(Tu/uz)(p), are the first, second, and third columns of Given two 4D vectors qi 5 (qi,w , qi,x , qi,y , qi,z) [ R4,
Rq , respectively. Therefore, the computation of the first for i 5 1, 2, we may interpret qi as qi 5 [qi,w , (qi,x ,
four components of J(x) is relatively simple and efficient. qi,y , qi,z)] 5 (qi,w , qi,(x,y,z)) [ R 3 R3. The quaternion
However, the last four components have complex formula- multiplication q1 ? q2 5 q12 5 (q12,w , q12,x , q12,y , q12,z) 5
tion because of the four partial derivatives of Rq given (q12,w , q12,(x,y,z)) [ R 3 R3 ; R4 is defined as follows:
as follows:

q12,w 5 q1,wq2,w 2 kq1,(x,y,z) , q2,(x,y,z)l

q12,(x,y,z) 5 q2,wq1,(x,y,z) 1 q1,wq2,(x,y,z) 1 q1,(x,y,z) 3 q2,(x,y,z) .
Rq

qw
5

2qw

uqu2
Rq 1

2
uqu2 1

qw qz 2qy 0

2qz qw qx 0

qy 2qx qw 0

0 0 0 qw

2 Throughout this paper, k,l denotes the inner product and
? denotes the quaternion multiplication. The above quater-
nion multiplication is closed on unit quaternions: for any
q1 , q2 [ S3, we have q1 ? q2 [ S3. Moreover, (1, 0, 0, 0) 5
[1, (0, 0, 0)] [ S3 is the multiplication identity, and the
inverse of qi is given by: q21

i 5 (qi,w , 2qi,x , 2qi,y ,Rq

qx
5

2qx

uqu2
Rq 1

2
uqu2 1

qx qy qz 0

qy 2qx qw 0

qz qw 2qx 0

0 0 0 qx

2 2qi,z) 5 (qi,w , 2qi,(x,y,z)) 5 qi [ S3, where qi denotes the
conjugate of qi . Note that the relation q1 ? q2 5 q2 ? q1 holds
for quaternion multiplication.

Given a unit quaternion q [ S3, a 3D rotation Rq [
SO(3) is defined as

Rq(p) 5 q ? p ? q, for p [ R3, (14)Rq

qy
5

2qy

uqu2
Rq 1

2
uqu2 1

2qy qx 2qw 0

qx qy qz 0

qw qz 2qy 0

0 0 0 qy

2
where p 5 (x, y, z) is interpreted as a quaternion (0, x, y,
z). (In this paper, any 3D vector used in the quaternion
multiplication is assumed to be a quaternion with zero as
the first component.) Let q 5 (cos u, sin u(a, b, c)) [ S3,
for some angle u and unit vector (a, b, c) [ S2, then Rq [Rq

qz
5

2qz

uqu2
Rq 1

2
uqu2 1

2qz qw qx 0

2qw 2qz qy 0

qx qy qz 0

0 0 0 qz

2. SO(3) is the rotation by angle 2u about the axis (a, b, c).
The multiplicative constant, 2, in the angle of rotation, 2u,
is due to the fact that q appears twice in Eq. (14). Also
note that Rq ; R2q; that is, two antipodal points, q and

Substituting these expressions into the last four compo- 2q in S3, represent the same rotation in SO(3). Therefore,
nents of the above Jacobian matrix J(x) is more complex the two spaces S3 and SO(3) have the same local topology
and time consuming than the construction of the last three and geometry.
columns of our Jacobian matrix given in Eq. (22). (Our The derivative of a unit quaternion curve q(t) [ S3 is
Jacobian matrix also has one less column for the rotational always given in the following form:
component.) All these complications are due to the dis-
crepancy between the rectangular coordinate structure of q9(t) 5 v(t) ? q(t), for some v(t) [ R3. (15)
R4 and the spherical coordinate structure of S3. In this
paper, we use the Lie group structure of S3 to provide a This is due to the Lie group structure of S3. For any differ-
canonical coordinate system of R3 ; T1(S3) to every tan- entiable curve q(t) [ S3, we may consider a curve
gent space Tq(S3), for q [ S3. This Lie group structure q(t 1 s) which is parameterized by s [ (2«, «), for a small
enables us to derive a simple Jacobian matrix in Section 3. constant « . 0:

3. DERIVATION OF A SIMPLE JACOBIAN MATRIX
q(t 1 s) 5 q(t 1 s) ? q(t)21 ? q(t), for 2« , s , «.

In this section, we review some mathematical preliminar-
ies on quaternion calculus [15, 16] and use them to derive Then, we have
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Ui(q) 5 Rq(pi) 5 p̂i ,
q9(t) 5

d
dsU

s50

q(t 1 s)

the differential d(Ui)q is given by d(Ui)q: Tq(S3) R R3, i.e.,

5
d
dsU

s50

(q(t 1 s) ? q(t)21) ? q(t) d(Ui)q(q9) 5 g 3 p̂i .

Since the isomorphism5 (q9(t) ? q(t)21) ? q(t).

E: Tq(S3) R R3Since the curve q1(s) 5 q(t 1 s) ? q(t)21 passes through the
identity element 1 [ S3 when s 5 0, we have q91(0) 5 q9 5 Asg ? q ° g
q9(t) ? q(t)21 [ T1(S3) ; R3. Therefore, we have q9(t) 5
v(t) ? q(t) for some v(t) [ R3. identifies the tangent space Tq(S3) with the 3D Euclidean

space R3, we may interpret the differential d(Ui)q as d(Ui)q:
3.2. Quanternion Calculus

R3 R R3; i.e.,
Let q(t) 5 (qw(t), q(x,y,z)(t)) [ S3, for t [ R, be a unit

quaternion curve. When the fixed point p [ R3 is rotated d(Ui)q(g) 5 g 3 p̂i 5 2p̂i 3 g.
by Rq(t) [ SO(3), it generates a path p̂(t) [ R3:

Thus, the Jacobian matrix of Ui can be represented by a
3 3 3 square matrix,p̂(t) 5 Rq(t)(p) 5 q(t) ? p ? q(t).

The derivative p̂9(t) is given by

1
0 ẑi 2ŷi

2ẑi 0 x̂i

ŷi 2x̂i 0
2,p̂9(t) 5 q9(t) ? p ? q(t) 1 q(t) ? p ? q9(t)

5 v(t) ? q(t) ? p ? q(t) 1 q(t) ? p ? v(t) ? q(t)

5 v(t) ? q(t) ? p ? q(t) 1 q(t) ? p ? q(t) ? v(t) where p̂i 5 (x̂i , ŷi , ẑi) [ R3. When an angular velocity
g is computed, the quaternion q(t) is updated to a new5 v(t) ? q(t) ? p ? q(t) 2 q(t) ? p ? q(t) ? v(t)
quaternion q(t 1 Dt) by

5 v(t) ? q(t) ? p ? q(t) 2 v(t) ? q(t) ? (2p) ? q(t)

5 v(t) ? q(t) ? p ? q(t) 1 v(t) ? q(t) ? p ? q(t)
q(t 1 Dt) 5 exp SDt

2
gD ? q(t),

5 2v(t) ? q(t) ? p ? q(t)

5 2v(t) ? p̂(t) where Dt is the time interval for the integration, and the
transformation, exp: R3 R S3, is the exponential map. (See5 2v(t) 3 p̂(t).
[7, 15, 16] for more details on the exponential map.) Figure
3 shows how the exponential map, exp, projects the tangentWhen we interpret g(t) 5 2v(t) [ R3 as the angular veloc-
vector Dt q9 [ Tq(t)(S3) at q(t) into a unit quaternionity, the above is exactly the same as the formula given in
q(t 1 Dt) [ S3 which is at the distance iDt q9i from q(t)classical dynamics [19, 28]:
in the direction of Dt q9.

p̂9(t) 5 g(t) 3 p̂(t). (16) 3.4. The Jacobian Matrix for a Viewing Transformation

Let the position and orientation of the virtual camera3.3. The Jacobian Matrix of the Transformation U
at time t be given by u(t) [ R3 and q(t) [ S3. For a given

Given fixed 3D points pi [ R3 (for i 5 1, . . . , m), let fixed 3D point p 5 (x, y, z) in the world coordinate system,
p̂i(t) be the rotated point of pi by the 3D rotation Rq(t) of the projected 2D image point h(t) [ R2 can be repre-
the unit quaternion q(t). Then, we have sented by

p̂9i (t) 5 g(t) 3 p̂i(t), h(t) 5 Pf(t) n Rq(t)21 n T2u(t)(p).

(See Foley et al. [10] for a detailed explanation of thewhere p̂i(t) 5 Rq(t)(pi). Thus, for the transformation Ui:
S3 R R3, i.e., above.) Pf(t) is the perspective projection with a focal length
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To derive the Jacobian matrix J of the viewing transfor-
mation Vp , we differentiate Eq. (17),

dh
dt

5
dVp

dt
5

d
dt

Pf(t) n Rq(t) n Tu(t)(p)

(19)

5
Pf

f
df
dt

1
Pf

p̂
d
dt

(Rq(t) n Tu(t)(p)),

where Pf ( p̂) is considered to be a map with two arguments:
f and p̂ (see Eq. (18)). It is easy to show that

Pf

f
5 1

x̂(t)
ẑ(t)

ŷ(t)
ẑ(t)
2 and

(20)

Pf

p̂
5 1

f(t)
ẑ(t)

0 2
f(t)x̂(t)

ẑ2(t)

0
f(t)
ẑ(t)

2
f(t)ŷ(t)

ẑ2(t)
2.

FIG. 3. Construction of q(t 1 Dt).

Using the formula: p̂9(t) 5 g(t) 3 p̂(t) 5 2p̂(t) 3 g(t)
derived in Section 3.2, we havef(t), Rq(t) is the rotation for a unit quaternion q(t), and

Tu(t) is the translation by u(t) [ R3. Note that the order
of translation and rotation is different from that of Gleicher d

dt
(Rq(t) n Tu(t)(p))and Witkin [12]. Our experiments show that, for the 3D

point p, it is more efficient and numerically stable to do
translation first and rotation later, rather than the other 5

d
dt

(q(t) ? (p 1 u(t)) ? q(t))
way around. Let u(t) 5 (ux(t), uy(t), uz(t)) 5 2u(t) and
q(t) 5 (qw(t), qx(t), qy(t), qz(t)) 5 q(t)21. Thus, h(t) is 5 g(t) 3 p̂(t) 1 q(t) ? u9(t) ? q(t)
rewritten as

5 2p̂(t) 3 g(t) 1 Rq(t)(u9(t))
h(t) 5 Pf(t) n Rq(t) n Tu(t)(p)

(17)
5 Vp(x(t)),

5 1
0 ẑ 2ŷ

2ẑ 0 x̂

ŷ 2x̂ 0
21

gx

gy

gz
21 Rq(t) 1

ux9

uy9

uz9
2 (21)where x(t) 5 ( f(t), ux(t), uy(t), uz(t), qw(t), qx(t), qy(t),

qz(t)).
The 3D rigid transformation: p̂ 5 (x̂, ŷ, ẑ) 5 Rq n Tu(p)

is given by

p̂(t) 5 Rq(t) n Tu(t)(p)

5 q(t) ? (p 1 u(t)) ? q(t), 5 1
R11 R12 R13 0 ẑ 2ŷ

R21 R22 R23 2ẑ 0 x̂

R31 R32 R33 ŷ 2x̂ 0
2

u9x

u9y

u9z

gx

gy

gz

,

where q(t) 5 q(t). The perspective transformation Pf(t) is
then applied to p̂(t) as follows: 1 2

h(t) 5 Pf(t)( p̂(t)) 5 Pf(t)(x̂(t), ŷ(t), ẑ(t))

(18)
where Rij is the ijth component of the matrix Rq(t) . By5 Sf(t)x̂(t)

ẑ(t)
,
f(t)ŷ(t)

ẑ(t) D.
applying Eqs. (20) and (21) to Eq. (19), we obtain
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dh
dt

5 1
x̂
ẑ

ŷ
ẑ
2 f 9 1 1

f
ẑ

0 2
fx̂
ẑ2

0
f
ẑ

2
fŷ
ẑ2
2 1

R11 R12 R13 0 ẑ 2ŷ

R21 R22 R23 2ẑ 0 x̂

R31 R32 R33 ŷ 2x̂ 0
2

u9x

u9y

u9z

gx

gy

gz

5 J

f 9

u9x

u9y

u9z

gx

gy

gz

,1 2 1 2
where

J 5 1
x̂
ẑ

fR11

ẑ
2

fx̂R31

ẑ2

fR12

ẑ
2

fx̂R32

ẑ2

fR13

ẑ
2

fx̂R33

ẑ2 2
fx̂ŷ
ẑ2 f 1

fx̂2

ẑ2 2
fŷ
ẑ

ŷ
ẑ

fR21

ẑ
2

fŷR31

ẑ2

fR22

ẑ
2

fŷR32

ẑ2

fR23

ẑ
2

fŷR33

ẑ2 2f 2
fŷ2

ẑ2

fŷx̂
ẑ2

fx̂
ẑ
2. (22)

This 2 3 7 Jacobian matrix J is much simpler than the one F(x(i11)) 5 F(x(i)) 1 dFx(i)(ẋ(i)) 1 O(iẋ(i)i2),
described in Section 2.3.

where dFx(i): R4 3 Tq(S3) R R2 is the differential of F at
4. CAMERA CONTROL BY MOVING IMAGE x(i) (see [8]). The value of ẋ(i) is approximated to

CONTROL POINTS

Dx(i) 5 (Df (i), Du(i), g(i)) [ R7 ; R4 3 Tq(i)(S3).4.1. Moving a Single Image Control Point

For the camera control, we need to compute the parame- Ignoring the last term O(iDx(i)i2), we have
ter x satisfying the equation

F(x(i11)) 5 F(x(i)) 1 dFx(i)(Dx(i)) 5 0.
Vp(x) 5 h0 (23)

Since the matrix representation of the differential dFx(i) iswhere p [ R3 is the given 3D point, and h0 is the 2D point
the Jacobian matrix J(x(i)), the following linear systemonto which the point p is required to be projected. We
is obtained:approximate the solution x of Eq. (23) by using the Newton

method [4, 6]. The Newton approximation is carried out
J(x(i))(Dx(i)) 5 2F(x(i)). (25)by solving a sequence of linear equations, which are ob-

tained by differentiating the given nonlinear equation. In
each linear equation, the unknowns are the velocities of The next camera parameter vector x(i11) is obtained by
the camera parameters, that is, ẋ 5 ( f 9, u9x , u9y , u9x , g) [
R7 ; R4 3 Tq(S3). By integrating the velocities, we can
obtain the solution x for the given nonlinear system of Eq. x(i11) 5 Sf (i) 1 Df (i), u(i) 1 Du(i),
(23). Let F: R4 3 S3 R R2, be defined by

exp Sg(i)

2 D ? q(i)D[ R4 3 S3.
F(x) 5 Vp(x) 2 h0 5 Sfx̂

ẑ
2 (h0)x ,

fŷ
ẑ

2 (h0)yD. (24)

It should be noted that J(x(i)) is not a square matrix and
therefore not invertible. By using the singular value decom-The solution x for F(x) 5 0 satisfies Vp(x) 5 h0 .

When x(i) 5 ( f (i), u(i), q(i)) [ R4 3 S3, the value of F at position of J(x(i)), we will approximate the inverse matrix.
This is discussed in more detail in Section 5.x(i11) is given as
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4.2. Moving Multiple Image Control Points Thus, for the perspective viewing transformation h(t) 5
Vp(t)(x(t)), we have

The linear system for a single control point has been
derived as a 2 3 7 matrix equation in Section 4.1. When
a single control point is not enough to fully control the
virtual camera, the user gains more control through the
use of multiple control points.

For m image control points, Eq. (24) can be generalized
as follows: dh

dt
5 J(x(i))

f 9

u9x 1 p9x

u9y 1 p9y

u9z 1 p9z

gx

gy

gz

. (27)1 2
where J(x(i)) is the Jacobian matrix derived in Section 3.4.
Thus, Eq. (25) is replaced by

F( f, ux , uy , uz , qw , qx , qy , qz) 5

f( p̂1)x

( p̂1)z
2 (h1)x

f( p̂1)y

( p̂1)z
2 (h1)y

:

f( p̂i)x

( p̂i)z
2 (hi)x

f( p̂i)y

( p̂i)z
2 (hi)y

:

f( p̂m)x

( p̂m)z
2 (hm)x

f( p̂m)y

( p̂m)z
2 (hm)y

. (26) J(x(i))(Dx(i)) 5 2F(x(i)) 2 J(x(i))(0, p9x , p9y , p9z , 0, 0, 0)T.

5. COMPUTATION OF Dx

5.1. Computation of Pseudo Inverse

When there are m control points in the image space, the
system to be solved for Dx is a 2m 3 7 linear system,

1 2
J(x) Dx 5 2F(x), (28)

For this function F, the Jacobian matrix J(x(i)) now be- where Dx 5 ( f 9, u9x , u9y , u9z , gx , gy , gz). Since the matrix
comes a 2m 3 7 matrix. The linear equation J(x(i)) J 5 J(x) is not a square matrix, it is always singular. There-
Dx(i) 5 2 F(x(i)) may have many solutions or no solution fore, we need to compute the least squares solution Dx
at all, depending on the rank of J(x(i)) and the value of of Eq. (28). (In Section 2.2, we discussed the geometric
F(x(i)). Thus, we need proper criteria for determining the constructions associated with the least-squares solution.)
solution x for each case; such criteria are given in Section 5. To compute the least squares solution, we use the singu-

lar value decomposition (SVD) of the Jacobian matrix J
4.3. Tracking 3D Moving Data Points and construct its pseudo inverse J1 [13, 22, 26]. For the

case of m $ 4, the pseudo inverse construction requiresWe have derived the Jacobian matrix J under the as-
the SVD of a 2m 3 7 matrix, which takes O(m) time only.sumption that all the picked 3D points pi’s are stationary
For a large m $ 4, it is more efficient to compute thepoints. However, when the 3D points pi’s are allowed to
pseudo inverse J1 by using the projection method [26]:move, we need to consider this fact when controlling the

virtual camera parameters. For the moving 3D point p(t),
J1 5 (JTJ)21JT.Eq. (21) is rederived as follows:

The projection method also produces the least squaresd
dt

(Rq(t) n Tu(t)(p(t))) solution Dx which at the same time minimizes the magni-
tude: iJ Dx 1 F(x)i.

The geometric constructions associated with the projec-5
d
dt

(q(t) ? (p(t) 1 u(t)) ? q(t))
tion method can be explained as follows. Assume J Dx is

5 q9(t) ? (p(t) 1 u(t)) ? q(t) 1 q(t) ? (p(t) 1 u(t)) ? q9(t) the orthogonal projection of 2F(x) into the column space
1 q(t) ? (p9(t) 1 u9(t)) ? q(t) of J. Then the difference vector J Dx 1 F(x) is orthogonal

5 g(t) 3 p̂(t) 1 q(t) ? (p9(t) 1 u9(t)) ? q(t) to the column space of J (i.e., orthogonal to each column
5 2p̂(t) 3 g(t) 1 Rq(t)(u9(t) 1 p9(t)). of J). Therefore, we have
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JT(J Dx 1 F(x)) 5 0,
(29)

Witkin [12] which always produces a singular square ma-
trix JTJ.

JTJ Dx 5 JT(2F(x)).

5.2. Weight of Camera Parameters and
Since the two matrices JTJ and JT have the same column Image Control Points
space, it is clear that the vector JT(2F(x)) is in the column

The pseudo inverse J1 provides the least squares solutionspace of JTJ. Therefore, Eq. (29) has a (7 2 r)-dimensional
Dx for Eq. (28). However, in some situations, other solu-solution space, where r is the common rank of JTJ and J.
tions Dx may be required. For example, when the animatorThis solution space is exactly the same as the solution space
wants to move the camera with little change of focus and/of the equation
or camera rotation to facilitate more comfortable viewing
of the scene, a different solution Dx should be chosen. That

J Dx 5 2F̂(x), (30) is, higher weights should be given to the parameters for
fewer changes. Furthermore, the camera parameters (i.e.,

where 2F̂(x) is the projection of the vector 2F(x) into the focus, translation, and rotation) have different units of
column space of J. This is because Eq. (29) is a necessary measure; thus, it is irrational to treat them with equal
condition of Eq. (30) and the two solution spaces have weight.
the same dimension (7 2 r). Therefore, the least-squares A simple way to enforce this change is to scale the
solution Dx of Eq. (29) provides the least squares solution camera parameter space in different ratios. To give differ-
for the given linear system of Eq. (28). The corresponding ent weights to the camera parameters, we change J Dx 5
pseudo inverse is given as follows: 2F(x) into JDcD21

c Dx 5 2F(x) and solve for Dy 5 D21
c

Dx in the following equation:
J1 5 (JTJ)1JT.

(JDc) Dy 5 2F(x). (31)

The construction of the 7 3 7 square matrix JTJ takes
O(m) time and the pseudo inverse operation for JTJ takes The solution Dx is then obtained by Dx 5 Dc Dy. The

column weighting matrix Dc is a 7 3 7 diagonal matrixconstant time only. Therefore, the formulation of the
square matrix JTJ is the dominating factor in the overall such that (Dc)ii is a weight value for the ith parameter of

Dx. The solution Dy obtained from Eq. (31) is a skewedcomputation of the least squares solution of Eq. (28). In
the underconstrained case of m # 3, it is quite difficult to version of the solution Dx. The solution Dx 5 Dc Dy be-

comes a weighted solution.specify (even intentionally) conflicting inputs on different
image control points; that is, our Jacobian matrix J usually As we assign different weights to the image control

points, the space R2m is scaled with different ratios alonghas its full rank 2m. In the overconstrained case of m $
4, however, it is inevitable to have some conflicts because different axes. Therefore, the column space of J also

changes into a different vector subspace in R2m. Conse-of the upper limit 7 for the rank of the matrix JTJ. Unfortu-
nately, in most of the test examples (for the case of m $ quently, the orthogonal projection vector 2F̂(x) and the

least-squares solution Dx also change. This means that the4), we have experienced that our Jacobian matrix has rank
6 only, not its full rank 7. This is because the effect of a selection of the least squares solution Dx can be controlled

by assigning different weights to the image control points.focal length control can be achieved by translating the
camera forward/backward to the camera viewing direction. However, this change does not take effect when there is

at least one solution Dx, that is, when the vector 2F(x) isConsequently, the first column of J (corresponding to the
focal length control) is nearly redundant. In keyframe ani- already in the column space of J. In this case, 2F(x) pro-

jects onto itself no matter how the column space of J ismation, the virtual camera is usually controlled with a fixed
focal length, except in a few scenes which require special transformed, and we always have iJ Dx 1 F(x)i 5 0.

The row weighting scheme is useful in camera control.camera effects. Therefore, we use a fixed focal length in
the overconstrained case. The resulting Jacobian matrix J For example, the animator may wish to design the main

camera motion with two or three control points and addis a 2m 3 6 matrix which is obtained by removing the first
column of our Jacobian matrix J. a few more additional fine controls. To determine the con-

tribution of each control point to the selection of the leastWhen the square matrix JTJ is nonsingular, we can apply
a more efficient matrix inversion algorithm (e.g., the LU squares solution Dx, we give different weight to each row

of the matrix J. The given linear system J Dx 5 2F(x) isdecomposition of Gauss Elimination) to compute (JTJ)21

instead of using the SVD method (which takes about five then changed into the form Dr J Dx 5 2Dr F(x), where the
row weighting matrix Dr is a 2m 3 2m diagonal matrix.times more computation). This is also an important advan-

tage of our Jacobian matrix over that of Gleicher and The diagonal element (Dr)ii is a weight value for the
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i/2th control point. This row weighting can be com- Output: x(i11) : the approximate solution of VP(x) 5 H0;
beginbined with the column weighting of Eq. (31) as follows:

/* H(i) 5 (h(i)
1 , . . . , h(i)

m ): the image control points
at the ith iteration step */(Dr JDc) Dy 5 2Dr F(x)
for i 5 0 to MAX-ITERATION 2 1 do

beginThe row weighting scheme can be used quite effectively
F(x(i)) :5 H(i) 2 H0;in computer animation as follows. For an animation movie
Construct the Jacobian matrix: J(x(i));with dramatic scene changes, it is not sufficient to have
Compute Dx(i) in the matrix equation:only a few control points. The control points suitable for
J(x(i)) Dx(i) 5 2F(x(i));the start of the scene may not work well at the end of the
/* x(i) 5 ( f (i), u(i), q(i)) ,scene. It is desirable to limit the effect of each control point

Dx(i) 5 (Df (i), Du(i), g(i)) ,to a certain time interval while keeping the smoothness of
Dt is the time step for the Newton Approxi-the camera motion. To do this, each control point pi is
mation */assigned with an active time interval [si , ei] during which

x(i11) 5 ( f (i) 1 Dt Df (i), u(i) 1 Dt Du(i),the control point is valid. Furthermore, the active set A(t)
at time t is defined to be the set of image control points

exp SDt g(i)

2 D ? q(i));which is active at time t,
H(i11) 5 VP(x(i11));

A(t) 5 hpi u t [ [si , ei], 1 # i # nj, if u iH(i11) 2 H0i 2 iH(i) 2 H0i u , « then
return (x(i11));

endwhere pi is the ith control point. The Jacobian matrix J at
endtime t is constructed from the active control points in A(t).

To keep the smoothness of the camera motion at t 5 si The procedure Camera-Control produces a sequence of
and t 5 ei , for each pi [ A(t), we need to use a non- camera parameters from the start time fs to the end time
negative smooth function wi(t) 5 (Dr)ii which is 0 for t # fe . The control of the camera motion is given by Hfe

, and
si or t $ ei . the path of the image control points P is generated as the

straight line (which can be replaced with other curves)
6. IMPLEMENTATION AND EXPERIMENTAL from the initial position Hfs

to the final position Hfe
:

RESULTS

The camera control process is briefly summarized in the H(t) 5 Hfs
1

t 2 fs

fe 2 fs
(Hfe

2 Hfs
), for fs # t # fe .

following pseudo code:

Camera-Control ( fs , fe , xfs
, Hfe

) At each time step fj , the camera parameter xfj
is obtained

Input: fs , fe : the start and end frames; from the procedure Newton, where the solution xfj
is nu-

xfs
: the start camera parameters; merically computed by the Newton approximation method

Hfe
: the end positions of the image control points; described in Section 4, starting from the initial value

Output: xfs
, . . . , xfe

: a sequence of camera parameters; xfj21 . The procedure Newton is designed for the applica-
begin tions in keyframe animation, which require high precision

Hfs
5 VP(xfs

); numerical approximation. For the real-time applications in
for fj :5 fs 1 1 to fe do 3D user interface, the computation time is more important

begin than the numerical precision. In that case, we can set the
iteration number MAX-ITERATION to 1 and simply re-

DH :5
1

fe 2 fj 1 1
(Hfe

2 H( fj21));
turn the first value x(1) evaluated in the procedure.

Three experimental results are demonstrated in Fig. 4Hfj
:5 H( fj21) 1 DH;

xfj
:5 Newton(x( fj21) , H( fj21) , Hfj

); and Table 1. The cases of controlling three and four image
points are shown in Figs. 4a and 4b, respectively. In theseend

end two cases, the 3D points are stationary points. Figure 4c
shows the camera control for three moving 3D points. TheNewton (x(0), H(0), H0)

Input: x(0) : the initial camera parameters; numerical approximations up to three control points are
accurate as shown in Figs. 4a and 4c. However, in theH(0) 5 (h(0)

1 , . . . , h(0)
m ): the start positions of the

image control points; overconstrained case of controlling more than three points,
we have experienced large approximation errors as shownH0 : the destination positions of the image con-

trol points; in Fig. 4b.
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FIG. 4. Experimental results.

7. KEYFRAME ANIMATION OF VIRTUAL tion 6. However, there is a serious problem that should be
resolved before we apply the method. In the procedureCAMERA PARAMETERS
Camera-Control, the camera parameter xi at the ith frame

Most computer animation systems control the camera is used as the initial value for the procedure Newton to
motion using keyframe animation technique, i.e., by inter- compute the camera parameter xi11 at the (i 1 1)th frame.
polating the camera parameters specified at each keyframe. There is no consideration of the end frame parameter
Each parameter is interpolated without regard to other xfe

. Therefore, the last frame parameter generated by New-
camera parameters. Therefore, the interpolation does not ton is not guaranteed to be identical to the given end frame
facilitate the synchronization of different camera parame- parameter xfe

. For example, consider the case of manipulat-
ters to generate natural camera motion. In this section, ing three image control points. In this case, even if all three
we consider how to use through-the-lens camera control image control points are interpolated exactly, there is still
technique to resolve this problem. one extra degree of freedom left for the final camera pa-

rameter. The sequence hxij may converge to any of them,
7.1. Blending Two Sequences of Camera Parameters

not necessarily to the end frame parameter xfe
. Moreover,

in the overconstrained case, due to the error in the least-Consider the interpolation of two consecutive key-
frames. First of all, the user specifies a few control points squares approximation, the sequence may not converge

to xfe
exactly.(e.g., three points), and specifies a trace curve for each

control point on the camera view plane. Then, the interpo- To resolve this problem, we blend two camera parameter
sequences: one generated from xfs

toward xfe
(forward con-lation is done, using the procedure Camera-Control of Sec-
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TABLE 1
Camera Parameters for Fig. 4

Frame no. f ux uy uz qw qx qy qz

(a) Camera parameters for Fig. 4a
1 1.00000 22.00000 0.00000 5.00000 1.00000 0.00000 0.00000 0.00000

11 1.18103 22.67962 0.10983 4.69282 0.99002 20.00507 20.14025 0.00016
21 1.29468 23.05391 0.20476 4.24188 0.96961 20.01120 20.24344 0.00046
31 1.35404 23.20815 0.27546 3.77187 0.94516 20.01694 20.32501 0.00076
41 1.39954 23.29613 0.29848 3.41337 0.91884 20.01901 20.39294 0.00098
50 1.45408 23.40317 0.27863 3.20593 0.89473 20.01692 20.44505 .001109

(b) Camera parameters for Fig. 4b
1 1.00000 22.00000 0.00000 5.00000 1.00000 0.00000 0.00000 0.00000

11 1.26354 22.55113 0.03187 5.03110 0.99264 0.00175 20.12052 0.00013
21 1.48100 22.91775 0.05547 4.92033 0.97910 0.00315 20.20249 0.00035
31 1.67344 23.16255 0.08010 4.77705 0.96457 0.00384 20.26279 0.00054
41 1.84954 23.32806 0.10688 4.64016 0.95079 0.00387 20.30871 0.00068
50 2.00000 23.43635 0.13446 4.53059 0.93921 0.00332 20.34222 0.00077

(c) Camera parameters for Fig. 4c
1 1.00000 22.00000 0.00000 5.00000 1.00000 0.00000 0.00000 0.00000

11 1.17363 22.01659 0.01329 4.88576 0.99987 0.00022 20.01327 0.00009
21 1.29678 22.03892 0.03225 4.50468 0.99951 20.00015 20.02458 0.00037
31 1.39584 22.06444 0.05539 3.99351 0.99900 20.00092 20.03464 0.00080
41 1.52755 22.09683 0.08607 3.63481 0.99838 20.00218 20.04282 0.00139
50 1.69409 22.13590 0.12422 3.53793 0.99779 20.00374 20.04840 0.00205

trol), and the other generated from xfe
toward xfs

(backward In the above, B(t) is a smooth blending function such
that: B( fs) 5 0, B( fe) 5 1, 0 # B(t) # 1, for fs # t # fe .control). The blended sequence interpolates xfs

and xfe
at

the frames t 5 fs and fe , respectively. (See [16, 18] for The spherical linear interpolation [23] is defined by
similar techniques to generate rotational and dynamic mo-
tion curves while interpolating given boundary conditions.)

Slerp(q1 , q2 , t) 5 exp(t log(q2 ? q21)) ? q1 ,The pseudo code is given as follows:

Blend-Camera-Control ( fs , fe , xfs
, xfe

, Hfs
, Hfe

)
Input: fs , fe : the start and end keyframes; which is the internal division of the geodesic arc from q1

xfs
, xfe

: the start and end keyframe camera param- to q2 in the ratio of t : (1 2 t). (See [7, 15, 16] for the
eters; definition of the exponential and logarithmic maps: exp
Hfs

, Hfe
: the start and end positions of the image and log.) The first Camera-Control in the above pseudo

control points; code is a backward control process which starts from xfe
Output: xfs11 , . . . , xfe21 : a sequence of camera parameters; and has Hfs

as the end positions of the image control points.
begin The end value of the backward control may be different

Camera-Control( fe , fs , xfe
, Hfs

) from the start camera control parameter xfs
. The second

for i 5 fs 1 1 to fe 2 1 do Camera-Control generates a forward control sequence of
yi 5 xfs1fe2i ; camera parameters. By blending the two sequences (one

Camera-Control( fs , fe , xfs
, Hfe

); forward and the other backward), we get a sequence of
t 5 0; camera parameters which is continuously changing from

xfs
to xfe

. (See Fig. 8.)
Dt 5

1
fe 2 fs

;
When the result of the forward control is quite different

from that of the backward control, the blended sequencefor i 5 fs 1 1 to fe 2 1 do
begin of camera parameters generates the trace curves of image

control points which are much deviated from the givent 5 t 1 Dt;
(xi)f 5 (1 2 B(t)) (xi)f 1 B(t) (yi)f; curves Hi’s. In this case, we can further postprocess

the blended sequence of camera parameters so that it(xi)u 5 (1 2 B(t)) (xi)u 1 B(t) (yi)u;
(xi)q 5 Slerp((xi)q , (yi)q , B(t)); generates trace curves which fit tightly to the given Hi’s

by using the correction technique to be discussed inend
end Section 7.2.
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are designed by the user. Then, using the gradient method,
the trace curves are automatically modified to the correc-
tion curve shapes. For example, the simplest correction
curve may be given as the straight line which connects the
two end points of the trace curve.

Given a sequence of camera parameters, X 5 hxfs
,

xfs11 , . . . , xfe
j, and an m-tuple of correction curves, Hc(t),

the energy function E(X) is defined by

E(X) 5 Ofe21

i5fs11
(Ei(xi) 1 kcCi(xi)),

where Ei(xi) 5 AsiFi(xi)i2, with Fi(xi) 5 VP(xi) 2 Hc(ti),
and Ci(xi) is the acceleration penalty function which gives
penalty in proportion to the magnitude of the acceleration
of the camera parameter, and kc is the penalty weight.
Figure 6 shows two sequences of the camera parameters.
Curve (a) is obtained by minimizing the energy function
ofe21

i5fs11(Ei(xi)), while Curve (b) is obtained by minimizing
the energy function ofe21

i5fs11(Ei(xi) 1 kcCi(xi)). In Curve (a),
there is a stiff interval where the camera parameter changes
rapidly; whereas in Curve (b), the change is much slower.
Stiff camera parameter change generates discontinuous
scene change which may look awkward. The stiffness oc-
curs when a point xi on an energy hill is about to go down
the hill far from the nearby points xi21 and xi11 , which
should be prohibited. Thus, the penalty function Ci(xi) is
required to reduce the stiffness. The resulting algorithm
is given as follows:

for i 5 fs 1 1 to fe 2 1 step 2 do
xi r xi 2 a(=Ei(xi) 1 kc=Ci(xi));

for i 5 fs 1 2 to fe 2 1 step 2 do
FIG. 5. Graphs of camera parameters. xi r xi 2 a(=Ei(xi) 1 kc=Ci(xi));

where =Ei and =Ci are the gradients of Ei and Ci , respec-
7.2. Correction to Frame Sequence of tively (see Fig. 7), and a is a nonnegative scalar constant.

Camera Parameters The separation of the iteration into two loops increases
the convergence rate of the trace curves. For each correc-Through-the-lens control technique can also be applied

to modify the sequence of camera parameters which is
generated by other virtual camera control methods. When
the trace curves of image control points have complex
shapes, the generated scene whirls or shakes dizzily. The
awkwardness of the scene is related to the shape complex-
ity of the trace curves. For example, in the case of shaking
scenes, the trace curves have many wiggles and/or cusps.
Therefore, by modifying the trace curves to those with
simple shapes, we can facilitate a much smoother scene
change. However, it is not easy to quantify the shape com-
plexity of the trace curves and to search for the optimal
curves which have the lowest shape complexity. To simplify
the trace curve shape, we use correction curves to which

FIG. 6. Corrected sequences of camera parameters.the trace curves are to be modified. The correction curves
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FIG. 7. Gradient of Ci(xi) defined geometrically.

tion, we repeat the above two loops. The gradient =Ei is
given by

=Ei(xi) 5 = S1
2

kFi(xi), Fi(xi)lD5 J(xi)TFi(xi),

and the gradient =C(xi) is defined geometrically as

(=Ci(xi))f 5 2
( fi21 2 fi) 1 ( fi11 2 fi)

2

(=Ci(xi))u 5 2
(ui21 2 ui) 1 (ui11 2 ui)

2

(=Ci(xi))q 5 2
log(qi21 ? q21

i ) 1 log(qi11 ? q21
i )

2
,

where log is the logarithmic map defined on unit quaterni-
ons [7, 15, 16].

Figure 8 shows blending of forward and backward con-
trols.

7.3. Degenerate Cases

A serious problem in the integration of a tangent vector
field is how to deal with the singularities of the vector
field. Although virtual camera control is a relatively simple
nonlinear inversion problem, we have observed some cha-

FIG. 8. Blending forward and backward controls.otic behaviors of the camera motion when the input speci-
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8.1. Extensions to Other Camera Models

There are three common representations for camera ro-
tation:

1. the Euler angles modeled by R3 or S1 3 S1 3 S1,

2. the unit quaternions modeled by S3, and

3. the Fibre bundle structure locally modeled by S2 3
S1 (see Shoemake [24]).

In general, each representation of camera rotation is mod-
eled by a certain 3-dimensional manifold M and a parame-
terization map, F: M R SO(3), where SO(3) is the 3D
rotation group. Some basic requirements for the map F are:

• F(M) covers the whole space SO(3) (i.e., F is a surjec-
tive map),

• F is differentiable,
• F is locally invertible, and
• F preserves the metric properties of M to SO(3), and

vice versa (i.e., F is a local isometry).

Unfortunately, only the unit quaternion space S3 satisfies
all these criteria. The other two models R3 and S2 3 S1

satisfy:

• only the first and second conditions perfectly,
• the third condition almost everywhere except some

singularities, and
• the last condition only near the identify of M.

The singularities in the two representations, R3 and S2 3
S1, have two different origins. The Euler angle representa-
tion has singularity called gimbal lock at which the mapping
F is many-to-one, whereas the fiber bundle structure S2 3

FIG. 9. Degenerate case with nonsmooth vector field.
S1 has singularity resulting from a certain limitation in the
differential structure of S2.

We discuss more details on the gimbal lock of Eulerfications are not given in proper way (see Fig. 9). In these
angles. Let c, u, f denote the pan, tilt, and roll angles,degenerate cases, even the techniques discussed in Sections
respectively, defined as follows (see Drucker [9]):7.1 and 7.2 do not produce smooth camera motions. The

characterization of these phenomena may require more
1. pan: Rotation of the camera about the vertical axis,advanced mathematical tools from dynamical systems [14].
2. tilt: Rotation of the camera about the lateral axis, andIn Fig. 9, the gray curves show the actual trace curves of

the image control points. There is an abrupt change of 3. roll: Rotation of the camera about the viewing di-
camera parameter in the middle of the control. We experi- rection.
mented with a fixed focal length. This is because the focal

(These are cinematic terms [9]; in engineering, the pan,length easily diverges at singularity, which makes the visu-
tilt, and roll angles are usually called yaw, pitch, and rollalization of the scene itself very difficult.
angles, respectively.) Then, F(c, u, f) represents the re-
sulting camera rotation which is obtained by applying the8. POSSIBLE EXTENSIONS
three component rotations: pan, tilt, and roll, in that order.
The gimbal lock occurs when we have the tilt angle u 5The basic result of this paper can be extended to other

camera models and to other camera and motion control 6f/2, that is, when the camera viewing direction is parallel/
opposite to the global view-up vector. In this case, for atechniques. In this section, we briefly outline some possible

extensions to these general camera models and motion fixed value of a, the different Euler angles (c, 6f/2, a 2
c), 2f , c # f, represent the same camera rotation. Thesecontrol problems.
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Euler angles define a curve embedded in R3 (equivalently, are much more complex than the case of S3, they are
computable and locally invertible. Therefore, by switchinga great circle embedded in S1 3 S1 3 S1):
between the two maps F1 and F2 if necessary, it is possible
to extend our approach to the through-lens-camera controlCa(c) 5 (c, 6f/2, a 2 c), for 2f , c # f.
represented by other camera models such as the Euler
angle and the fiber bundle structure.Then the reparameterization map, F: R3 R SO(3), trans-

forms the whole 1-dimensional curve Ca into a single point
8.2. Extensions to Other Camera and Motionin SO(3) (i.e., into an identical 3D rotation). Consequently,

Control Techniquesthe linear differential

The camera control technique of Drucker [9] is formu-
dF(c,6f/2,a2c): R3 R TF(p)(SO(3)), lated as a constrained nonlinear optimization problem,

which is then solved by the Sequential Quadratic program-
has rank deficiency, which implies that the map F itself is ming (SQP) technique (see [5]). In this section, we review
locally non-invertible. Near such a singularity, the behavior the SQP formulation as an (m 1 7) 3 (m 1 7) square
of F becomes irregular. matrix equation, where m is the number of constraints. At

The singularity in the fibre bundle structure S2 3 S1
the same time, we discuss some limitations of the SQP

results from the limitation in the differential structure of approach in the camera control problem and suggest a
S2. As we have discussed in Section 3.1, the Lie group reformulation of the nonlinear optimization as a target
structure of S3 provides a canonical coordinate system on tracking problem.
each tangent space Tq(S3) so that any tangent vector vq [ There is an important distinction between the two usages
Tq(S3) can be identified with a tangent vector v1 [ T1(S3) of the SQP formulation in Cohen [5] and Drucker [9].
such that vq 5 v1 ? q or v1 5 vq ? q21. The spherical Lie In the space–time control of animation [5], the optimal
groups S1 and S7 also have this property. However, in the solution obtained from the SQP formulation is a natural-
case of S2, it is quite well-known that there is no possible looking animation which satisfies all the dynamic as well as
way to define a nowhere-vanishing smooth tangent vector kinematic constraints specified for the moving mechanism.
field on S2 [25]. This implies that it is impossible to define That is, the final solution is a motion curve, not simply
a coordinate system on each tangent plane of Tp(S2), where the final end point of the motion curve. The intermediate
p [ S2, so that the coordinate system changes smoothly values of the state variable x in the optimization process
on S2. There is at least one singular point on S2 at which the are not directly related with the resulting motion; only the
neighboring coordinate systems change quite dramatically. final optimal solution produces the motion. Therefore, in

The local fibre bundle structure S2 3 S1 represents the the middle of the optimization, the deviation from some
camera viewing direction by the spherical component S2, constraints is acceptable as long as the final solution satis-
and the rolling angle (i.e., the rotation about the camera fies all the constraints specified. Cohen [5] approximates
viewing direction) by the circular component S1. Unfortu- the motion curve by a piecewise cubic B-spline curve with
nately, the fibre bundle representation, when interpreted a finite number (say, k) of B-spline control points. There-
globally, has a singularity at (21, 0, 0) [ S2; that is, when fore, the corresponding SQP formulation is given by an
the camera viewing direction is the opposite to that of (m 1 7k) 3 (m 1 7k) square matrix equation.
the standard camera orientation, there is no well-defined In the camera control of Drucker [9], the objective func-
representation for the camera orientation. For example, tions are specified mainly for the desired final state of the
when the camera has an orientation corresponding to the optimization process, whereas the constraint equations are
Euler angle (c, u, f) 5 (f, 0, f), for some angle f, its required to be satisfied all the time. The resulting camera
fiber bundle representation has (21, 0, 0) as the spherical motion is obtained as the sequence of intermediate values
component; however, no matter what angle we specify for of the state variable x in the optimization process. There-
the circular component, there is no continuity with the fore, it is quite natural to interpret this solution process as
fiber bundle representations of its neighboring points. This a constrained target tracking procedure for the final goal.
phenomenon is also closely related with the fact that there The constraint equations are required to be satisfied (or
are infinitely many great circles which connect the two approximated in the least squares sense) all the time. In
antipodal points (1, 0, 0) and (21, 0, 0) [ S2. this respect, the SQP formulation of Cohen [5] is not quite

A simple technique to deal with the singularities in the appropriate for the solution process outlined in Drucker
map, F: M R SO(3), is to use two maps, Fi: Mi R SO(3), [9]. We discuss more details below.
for i 5 1, 2, so that each singularity of F1 is covered by a
nonsingularity of the other map F2 , and vice versa. Except Sequential Quadratic Programming. Given an objec-

tive function f(x) and m constraints Ci(x), the Lagrangethe regions near the singularities, each map Fi (i 5 1, 2)
performs reasonably well. Although the Jacobian matrices equation is formulated as
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tion =L(x, l) 5 0, for the optimal solution of f(x). For
=f(x) 1 Om

i51
li=Ci(x) 5 0, (32) an optimal camera control, we want to move the current

camera parameter x into the next one x 1 ẋ so that the
value of =L vanishes at x 1 ẋ:for some Lagrange multipliers li , for i 5 1, . . . , m. When

we use the following (column) vector notations,
=L(x 1 ẋ, l 1 l̇) P =L(x, l) 1 =2L(x, l)(ẋ, l̇)T 5 0.

(38)l 5 (l1 , . . . , lm)T, and

=C(x) 5 (=C1(x), . . . , =Cm(x))T, In case the hard constraint C(x) 5 0 is slightly deviated,
we want to make the value of C also vanish at x 1 ẋ as well:

the summation term in Eq. (32) is simplified to
(39)C(x 1 ẋ) P C(x) 1 =C(x)T ? ẋ 5 0.

Om
i51

li=Ci(x) 5 lT ? =C(x). (33) Note that, when the constraint C(x) 5 0 is satisfied per-
fectly, this equation reduces to that of Equation (37). By
combining Eqs. (38)–(39), we can formulate the follow-The constrained Lagrange equation is then formulated in
ing (m 1 7) 3 (m 1 7) square matrix equation (see [5]):the following compact vector equation:

=L(x, l) 5 =f(x) 1 lT ? =C(x) 5 0, (34) F=2f(x) 1 lT ? =2C(x) =C(x)T

=C(x)T 0
G Fẋ

l̇
G

subject to C(x) 5 0. (35)

5 F2=f(x) 2 lT ? =C(x)

2C(x)
G. (40)While considering x and l as independent variables, we can

take the first derivative of Eq. (34) and obtain the equation

Equivalently,
=2L(x, l) ? (ẋ, l̇)T

5 =2f(x) ? ẋ 1 lT ? =2C(x) ? ẋ 1 =C(x)T ? l̇ (36) F=2f(x) 1 lT ? =2C(x) =C(x)T

=C(x)T 0
G F ẋ

l 1 l̇
G5 F2=f(x)

2C(x)
G.

5 [=2f(x) 1 lT ? =2C(x) =C(x)T] Fẋ

l̇
G5 0, (41)

When we apply the space–time control technique of
where =2L(x, l) and =2f(x) are the Jacobian matrices of

Cohen [5] to the camera control problem, the camera mo-
the vector valued nonlinear maps =L(x, l) and =f(x), re-

tion curve is approximated by a piecewise cubic B-spline
spectively. Moreover, from Eq. (33), the term lT ? =2C(x)

curve with k control points. The state variable x is thus a
is given by the summation

k-tuple x 5 (x1 , . . . , xk), where each xi is the camera
configuration at time ti , for i 5 1, . . . , k, and t1 , ? ? ? ,
tk . Therefore, Eq. (41) becomes an (m 1 7k) 3 (m 1 7k)lT ? =2C(x) 5 Om

i51
li=

2Ci(x),
square matrix equation. Since the camera motion curve
x(t) is represented by a cubic B-spline curve with control

where =2Ci(x) is the Jacobian matrix of =Ci(x). The first points hxij, its velocity curve ẋ(t) is given by a quadra-
derivative of Eq. (35) produces the following constraint tic B-spline curve with the control points of the form
equation for the first derivative vector ẋ: h3(xi11 2 xi)j, for i 5 1, . . . , k 2 1. Therefore, we can

specify dynamic as well as kinematic constraints using
(37)=C(x)T ? ẋ 5 0. algebraic constraint equations: Ci(x) 5 0, for i 5

1, . . . , m.
This is equivalent to The optimal solution of the SQP formulation would pro-

duce a natural-looking camera motion which satisfies all
=Ci(x)T ? ẋ 5 0, for i 5 1, . . . , m. the dynamic as well as kinematic constraints specified.

When there is no camera motion which satisfies all the
constraints, the constraint deviation is formulated as a pen-That is, the derivative vector ẋ is orthogonal to each gradi-

ent vector =Ci(x), for i 5 1, . . . , m. alty to the objective function. The penalty function has a
physical meaning as the external energy exerted to theAssume that the current camera parameter x satisfies

the hard constraint C(x) 5 0, but not the necessary condi- camera system so that it could follow the given constraints
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as closely as possible. Therefore, the resulting optimal solu- is in the column space of the 7 3 m matrix =C(x)T. There-
fore, the column space projection of the vector in the right-tion provides a pseudo physical solution which is doing

its best to follow the physical laws and other keyframe hand side of Eq. (40) corresponds to that of Eq. (41), and
vice versa. The solution spaces of Eq. (40)–(41) produceconditions as closely as possible.
the same space for (ẋ, l̇). However, due to the translationLimitations of the SQP Formulation in Target
by (0, l)T in Eq. (41), the least-squares solutions in Eq.Tracking. The SQP formulation and its solution process
(40)–(41) may produce different solutions for ẋ and l̇.in Drucker [9] do not use the high-dimensional space-time
When the magnitude of l is large, this difference mayapproach of Cohen [5]. For efficiency reasons, Drucker
influence the selection of ẋ quite significantly.[9] uses a 7-dimensional state variable x to represent the

The Lagrangian in classical mechanics is given as a func-camera configuration at a variable time t. The camera mo-
tional L(x, ẋ) of the state variable x and its time derivativetion is controlled by following the trace curve of x which
ẋ (see [1]). There are two components which comprise theis generated in the nonlinear optimization process, i.e., the
Lagrangian L(x, ẋ); one is the conservative energy termsequence of approximate solutions of x in the Newton
U(x) (which is a function of x) and the other is the kineticapproximation of the Lagrange equation: =L(x, l) 5 0.
energy term T(ẋ) 5 Asiẋi2 (which is a function of ẋ). InThe SQP formulation has some shortcomings when it is
contrast to this generic formulation of the total energyused in the solution process of a constrained target tracking
in a physical system, the Lagrangian L(x, l) of the SQPproblem. First of all, the intermediate solutions of x may
formulation is given bybe allowed to have some deviations from the constraint

equations: Ci(x) 5 0, for i 5 1, . . . , m. This is unacceptable
L(x, l) 5 f(x) 1 lT ? C(x),for hard constraints. Therefore, at each step of the optimi-

zation, we first need to solve Eq. (39) and then proceed
to solve Eq. (41) under the condition: C(x) 5 0. However, for which the physical meaning is not clear, especially due
even this approach does not facilitate an efficient algo- to the extra variable l.
rithm. We illustrate some more details below. In the SQP formulation of Cohen [5], the physical mean-

The matrix equation has second order partial derivatives ing is specified as constraint equations. Therefore, as long
of the objective function f(x) and the constraint equations as all the physical constraints are satisfied, the resulting
Ci(x) 5 0, for i 5 1, . . . , m. Since the overall computation motion (as the solution of the optimization process) follows
is intended to solve the first derivative vector ẋ, the second the physical law, while minimizing the external energy
order derivative information is quite redundant. When the specified as the objective function. In the space-time con-
gradient vectors =Ci(x) and the Hessian matrices =2Ci(x) trol of animation in Cohen [5], the intermediate approxi-
are available, for i 5 1, . . . , m, one should be able to mate solutions in the nonlinear optimization are not di-
locally approximate the constraint space C(x) 5 0 by a rectly related to the final animation. Therefore, the
(7 2 m)-dimensional parametric hypersurface in R7. (For deviation from the constraint equations does not cause any
example, when two implicit surfaces are given in R3, their problem as long as the deviation converges to 0 as the
intersection curve can be locally approximated by a cubic approximation approaches the final solution. However, in
parametric curve. The curvature and torsion of the inter- the constrained target tracking procedure such as the ap-
section curve can be evaluated based on the two surface proach outlined in Drucker [9], the intermediate approxi-
gradient vectors and their Hessian matrices [2].) Subse- mate solutions in the nonlinear optimization produce the
quently, in the local neighborhood, the nonlinear optimiza- resulting camera motion under consideration. Therefore,
tion problem in R7 with m constraints can be reduced to a the hard constraints must be satisfied at each step of the
nonlinear optimization problem in R72m with no constraint. optimization. This requirement also restricts the solution

When we restrict the problem to the computation of ẋ, space of ẋ to a (7 2 m)-dimensional subspace.
we have to search the vector ẋ in the orthogonal space of

Target Tracking. The SQP formulation allows a singlethe m vectors =Ci(x) in R7, i 5 1, . . . , m. Therefore, the
objective function, whereas Drucker [9] specifies multiplesolution space of ẋ is constrained to R72m defined by the
objective functions. Therefore, the optimization is solvedm constraints Ci(x)T ? ẋ 5 0, for i 5 1, . . . , m. However,
as a minimax problem in which the maximum of the multi-the SQP formulation has an (m 1 7) 3 (m 1 7) square
ple objective functions is minimized. Under such a minimaxmatrix equation, which becomes the larger as the more
strategy, a specific objective function comes into effect onlyconstraints are used. This is quite counter-intuitive to our
when it has the largest value among many others; therefore,interpretation of the constraint space as a (7 2 m)-dimen-
it is somewhat difficult to synchronize the interactionssional manifold.
among different objective criteria. For this purpose of syn-In Equation (40), the vector
chronization, we may formulate a single total objective
function by a weighted summation of the multiple objectivelT ? =C(x) 5 =C(x)T ? l
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functions. Different weighting factors have control over the zation, the target vectors for the hard constraints are more
important than other constraints. The row weightingrelative contribution of each individual objective function.

However, by combining different objective functions into scheme for the Jacobian matrix can be used to control
the relative importance of each component of the targetone scalar valued objective function, it is quite difficult to

resolve the conflicts among different objectives. To mea- direction vF(x) .
sure the influence of each individual objective function
more precisely, we can map each objective function into 9. CONCLUSION
a separate component axis in the range of the nonlinear
map, F: M R Rn. The corresponding Jacobian matrix repre- Through-the-lens camera control is a constrained non-

linear inversion problem. Given a nonlinear transforma-sents the relationship between the camera motion velocity
and the instantaneous changes of the objective functions. tion, F : M R N, where M and N are constraint spaces, the

question is how to generate a tangent vector field on M.The question is how to specify the target vector. Differently
from the through-the-lens control, the explicit target value The integral curve of the vector field provides the required

control. We used the pseudo inverse (dFp)1 to generatemay not be given as an explicit input in this approach.
In the core of every nonlinear optimization procedure the vector field. The Lie group structure of S 3 greatly

simplifies the Jacobian matrix representation of the linearis a target tracking algorithm which moves the current
status into the next one so that the corresponding objective differential, dFp: Tp(M) R TF(p)(N). The nonlinear inver-

sion scheme presented here provides a general frameworkfunction changes to the negative direction. Therefore, in
principle, it is possible to reformulate the nonlinear optimi- which is applicable to a wide variety of problems in com-

puter animation and motion control in general. Therefore,zation problem of Drucker [9] into a target tracking prob-
lem by taking the negative objective direction as the target the major contribution of this paper is in analyzing the

mathematical structure of through-the-lens camera con-direction. It is also possible to generate other target direc-
tions corresponding to various constraints. We suggest a trol. The current analysis, however, is quite elementary.

To interpolate a given sequence of discrete points onsimple approach. More sophisticated formulations may be
possible; however, the results would be highly tailored M, the integral curve approach using the tangent vector

field provides only a C 0-continuous curve on M even if wenonlinear optimization procedures, the developments of
which are beyond the scope of this paper. use the curve blending technique on M. This is due to

the singularities of the tangent vector field. Therefore, theGiven a camera model represented by a manifold M, the
camera control problem can be represented by a nonlinear problem essentially reduces to that of dynamical systems

[14]. There are still many important open problems thatmap, F: M R Rm11m21m3, where we assume m1 objective
functions, m2 interval constraints, and m3 hard constraint must be solved in order to further develop the theory.
equations. We can solve the optimization problem by in-
tegrating a sequence of least-squares solutions, ẋ 5 ACKNOWLEDGMENTS
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(vF(x)) [ Tx(M). In the environment of constrained optimi- 7. M. Curtis, Matrix Groups, Springer-Verlag, New York, 1979.



NEW APPROACH TO THROUGH-THE-LENS CAMERA CONTROL 285

8. M. do Carmo, Differential Geometry of Curves and Surfaces, Pren- 18. J. H. Lee and M.-S. Kim, Pseudo dynamic keyframe animation with
motion blending on the configuration space of a moving mechanism,tice–Hall, Englewood Cliffs, NJ, 1976.
in Computer Graphics and Applications (S. Y. Shin and T. L. Kunii,9. S. Drucker, Intelligent Camera Control for Graphical Environments,
Eds.), pp. 118–132, World Scientific, Singapore, 1995. [Proc. of PacificPh.D thesis, Program in Media Arts and Sciences, MIT, 1994.
Graphics ’95, Seoul, Korea, Aug. 21–24, 1995]

10. J. Foley, A. van Dam, S. Feiner, and J. Hughes, Computer Graphics:
19. J. Marion and S. Thornton, Classical Dynamics of Particles and Sys-Principles and Practice, 2nd ed., Addison–Wesley, Reading, MA,

tems, 3rd ed., Harcourt Brace Jovanovich, Orlando, FL, 1988.1990.
20. J. Milnor, Morse Theory, Princeton Univ. Press, Princeton, NJ, 1963.

11. M. Gleicher, A Differential Approach to Graphical Interaction, Ph.D
21. N. Papanikolopoulos, B. Nelson, and P. Khosla, Six degree-of-free-thesis, School of Computer Science, Carnegie Mellon Univ., 1994.

dom hand/eye visual tracking with uncertain parameters, IEEE
12. M. Gleicher and A. Witkin, Through-the-lens camera control, Com- Trans. Robotics and Automat. 11(5), 1995, 725–732.

put. Graphics (Proc. of SIGGRAPH ’92) 26(2), 1992, 331–340.
22. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical

13. G. Golub and C. Van Loan, Matrix Computations, Johns Hopkins Recipes, Cambridge Univ. Press, Cambridge, UK, 1986.
Univ. Press, Baltimore, 1983. 23. K. Shoemake, Animating rotation with quaternion curves, Comput.

14. M. Hirsh and S. Smale, Differential Equations, Dynamical Systems, Graphics (Proc. of SIGGRAPH ’85) 19(3), 1985, 245–254.
and Linear Algebra, Academic Press, New York, 1974. 24. K. Shoemake, Fibre bundle twist reduction, in Graphics Gems IV

(P. Heckbert, Ed.), pp. 230–236, Academic Press, Boston, 1994.15. M.-J. Kim, M.-S. Kim, and S. Shin, A compact differential formula
for the first derivative of a unit quaternion curve, J. Visualization 25. G. Spivak, A Comprehensive Introduction to Differential Geometry,
and Computer Animation, 7(1), 1996, 43–57. Vol. I, Publish or Perish, Berkeley, 1970.

16. M.-S. Kim and K.-W. Nam, Interpolating solid orientations with circu- 26. G. Strang, Linear Algebra and its Applications, 3rd ed., Harcourt
Brace Jovanovich, Orlando, FL, 1988.lar blending quaternion curves, Comput. Aided Design 27(5), 1995,

385–398. 27. S. Upstill, The RenderMan Companion, Addison–Wesley, Reading,
MA, 1990.17. A. Lamouret, M. Gascuel, and J. Gascuel, Combining physically-

based simulation of colliding objects with trajectory control,’’ J. Visu- 28. J. Wittenburg, Dynamics of Systems of Rigid Bodies, Teubner, Stutt-
gart, 1977.alization and Computer Animation 6(2), 1995, 71–90.


