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Abstract We present an efficient and
robust algorithm for computing the
perspective silhouette of the boundary
of a general swept volume. We also
construct the topology of connected
components of the silhouette. At each
instant t, a three-dimensional object
moving along a trajectory touches
the envelope surface of its swept
volume along a characteristic curve
Kt . The same instance of the moving
object has a silhouette curve Lt on
its own boundary. The intersection
Kt ∩ Lt contributes to the silhouette
of the general swept volume. We
reformulate this problem as a system
of two polynomial equations in three
variables. The connected components
of the resulting silhouette curves are
constructed by detecting the instances

where the two curves Kt and Lt

intersect each other tangentially on
the surface of the moving object.
We also consider a general case
where the eye position changes while
moving along a predefined path. The
problem is reformulated as a system
of two polynomial equations in
four variables, where the zero-set
is a two-manifold. By analyzing
the topology of the zero-set, we
achieve an efficient algorithm for
generating a continuous animation of
perspective silhouettes of a general
swept volume.

Keywords Perspective silhouette ·
Sweep surface · Topology · Zero-
set computation · Time varying
silhouette

1 Introduction

Silhouettes are among the most important lines in describ-
ing the shape of a three-dimensional object. For example,
they play a significant role in non-photorealistic render-
ing [9].

Silhouette curves are dependent on the viewpoint and,
in an animation, usually need to be reconstructed for each
frame. It is not easy to render silhouettes effectively, as
they need to be connected into long smooth strokes if they
are to look convincing, and this process has to accommo-
date complicated topological changes. In this paper, we
address this issue by analyzing the topology of the zero-set
of a system of polynomial equations.

1 Current address: School of Computing, University of Utah.

The topological structure of silhouette curves is im-
portant not only for correct rendering, but also for analysis
of the shape. Elber et al. [6] recently analyzed the topo-
logical structure of silhouette curves, and used their analy-
sis to solve the two-piece mold separability problem that
occurs in manufacturing processes such as injection mold-
ing or die casting. In computer vision, the topology of
silhouettes has been utilized in the construction of aspect
graphs [4], structures that provide all topologically distinct
silhouette configurations.

There has been a lot of research on developing effi-
cient algorithms for computing the silhouettes of polyhe-
dral models (see Isenberg et al. [11] for a recent survey).
However, we are concerned with techniques that start with
exact models of the shapes involved, and that are of ne-
cessity specialized to a particular class of geometries. One
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such class is that of sweeps, which are widely accepted
as an effective design tool for creating highly complex
three-dimensional shapes [1]. Sweeps, whose generating
volume changes in size, shape, or orientation as it is swept
along a curved trajectory, are called general sweeps [7].
We present an efficient algorithm for computing the sil-
houette curves of the boundary of a general swept volume.

Joy and Duchaineau [13] have shown how to compute
the boundary of a swept volume using a marching cubes
algorithm in xyz-space. Kim and Elber [16] reformulated
this problem as a polynomial equation in three variables,
which is considerably easier to solve. Although they start
with exact geometry, these techniques generate a polyhe-
dral approximation of the surface of the swept volume.
One may extract the silhouettes from this surface, but the
curves need to be approximated by line segments.

Kim and Lee [15] have shown how to compute silhou-
ettes directly without using a polyhedral approximation,
but their algorithm is restricted to canal surfaces.

Given a three-dimensional object O, moving under
a continuous affine transformation A(t), a swept volume is
defined as ∪t A(t)[O]. At a fixed time t, the transformed
object A(t)[O] touches the boundary of its swept volume
along a characteristic curve Kt . Let Lt denote the silhou-
ette curve of this object A(t)[O] as seen from a viewpoint
P (see Fig. 1). The union of the points on the intersection
Kt ∩ Lt forms the silhouette curves on the boundary of the
swept volume.

Tangential intersections between Kt and Lt are crit-
ical events in silhouette construction. A new loop of the
silhouette curve may start, or an ongoing loop may end,
where the two curves Kt and Lt intersect tangentially.
We compute all these tangential intersections using three
polynomial equations in three variables. The connected
components of the silhouette curves are constructed by de-
tecting these critical events and numerically tracing along
the common zero-set of the defining equations of the sil-
houette curves.

Fig. 1. a When an object O moves under
a continuous affine transformation A(t),
the characteristic curve Kt (in bold lines)
touches the boundary envelope surface;
b the silhouette curve Lt , as seen from the
viewpoint P, is shown in bold lines and
Kt is shown in gray

Silhouettes change smoothly during an animation, but
since they may not have obvious correspondences between
frames, it is non-trivial to exploit temporal coherence in
the silhouettes when the object is animated [14]. It is also
difficult to draw silhouettes smoothly at critical events
where the topology of the silhouettes changes. We extend
our algorithm to the case of an animation in which the eye
position P(r) moves along a predefined path. The prob-
lem of computing the critical events then reduces to the
solution of four polynomial equations in four variables.
Based on the topology information, we extract the silhou-
ette curves at a given eye position P(r) by numerically
tracing along the common zero-set of two equations in
three variables (r is fixed). To demonstrate the effective-
ness of our approach, we present a system that can gen-
erate a continuous animation of correctly drawn silhouette
curves for a general swept volume.

The rest of this paper is organized as follows. In
Sect. 2, we discuss the extraction of silhouette curves; and
Sect. 3 deals with their topological structure. In Sect. 4, we
consider the topology of time-varying silhouette curves.
Experimental results are presented in Sect. 5. Finally, in
Sect. 6, we conclude the paper.

2 Extraction of the silhouette curves

We begin by showing how to reduce the problem of com-
puting the perspective silhouette curves of the boundary of
a general swept volume to one of solving two polynomial
equations in three variables.

Let O denote a three-dimensional object bounded by
a rational parametric freeform surface S(u, v), and let A(t)
denote a continuous affine transformation. The swept vol-
ume of the object O under the affine transformation A(t)
is given as ∪t A(t)[O]. Assuming a ≤ t ≤ b, the bound-
ary surface of the swept volume consists of some patches
of A(a)[S(u, v)] and some of A(b)[S(u, v)], together with
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the boundary envelope surface. The set of points on the
envelope surface is characterized by the following equa-
tion [16, 17]:

F(u, v, t)

=
∣
∣
∣
∣
A′(t)[S(u, v)] A(t)

[
∂S

∂u
(u, v)

]

A(t)

[
∂S

∂v
(u, v)

]∣
∣
∣
∣

= 0. (1)

That is, the Jacobian of the trivariate volume A(t)[S(u, v)]
vanishes on the envelope surface. Since there is only one
equation in three variables, the zero-set is a two-manifold
in a three-dimensional space.

The silhouette points on the boundary of the swept vol-
ume ∪A(t)[S(u, v)], seen from a viewpoint P, satisfy the
following implicit equation:

G(u, v, t) = 〈A(t)[S(u, v)]− P, A(t)[N(u, v)]〉 = 0, (2)

where N(u, v) is the normal to S(u, v). Since N(u, v) =
∂S
du × ∂S

dv
is rational, the function G(u, v, t) is also rational.

The common zero-set of Eqs. 1 and 2 produces 1-manifold
curves in uvt-space, which correspond to the silhouette
curves of the boundary of the swept volume.

Since F(u, v, t) = 0 and G(u, v, t) = 0 are rational
equations, their common zero-set can be computed with
considerable robustness and reasonable efficiency using
the convex hull and subdivision properties of rational
spline functions. Solving two equations in three variables,
the result is a univariate curve in the uvt-space, which can
be parameterized by a variable s:

(u(s), v(s), t(s)).

See Elber and Kim [5] or Patrikalakis and Maekawa [18]
for more details of how to solve a system of m polynomial
equations in n variables.

3 Topology of the silhouette curves

We will now consider how to determine the topological
structure of the silhouette curves. For this purpose, we
present an algorithm that constructs all the connected
components of the silhouette curve.

Consider a point (u, v, t) in the common zero-set of
Eqs. 1 and 2. The physical meaning of F(u, v, t) = 0 is
that the boundary surface A(t)[S(u, v)] of a moving ob-
ject A(t)[O] touches the boundary envelope surface of its
swept volume ∪t A(t)[O] along a characteristic curve Kt .
Further, the condition G(u, v, t) = 0 implies that a surface
point A(t)[S(u, v)] is on the silhouette curve Lt , which is
itself on the boundary of the moving object A(t)[O]. Fig-
ure 1 shows the characteristic curve Kt and the silhouette
curve Lt of a moving object A(t)[O]. Under a continu-
ous affine transformation A(t), the intersection points in

Fig. 2. Kt is shown in light gray and Lt is shown in dark gray for
ti−1 ≤ t ≤ ti . The bold black silhouette curve is the union of Kt ∩
Lt,∀t ∈ [ti−1, ti]

the set Kt ∩ Lt trace out the whole silhouette curve on the
boundary of the swept volume.

Now we consider a connected component (u(s), v(s),
t(s)), (s0 ≤ s ≤ s1), in the common zero-set of F(u, v, t)
= G(u, v, t) = 0. Either it forms a closed loop or it has an
endpoint at t = 0 and another at t = 1 (Fig. 3). In the case
of a closed loop, there are at least two t-extreme points
(u, v, t) on the loop, which can be computed by solving
the following system of three equations in three variables:

F(u, v, t) = 0,

G(u, v, t) = 0,

H(u, v, t) = Fu Gv − FvGu = 0, (3)

where Fu, Fv, Gu and Gv are partial derivatives of F and
G. Note that H(u, v, t) is the t-component of ∇F ×∇G,
which is the tangent vector of the zero-set curve. The con-
dition H(u, v, t) = 0 implies that this tangent vector is par-
allel to the uv-plane and thus that the point on the zero-set
is a t-extreme point. The physical meaning of a t-extreme
point is that the two curves Kt and Lt touch each other
tangentially on the boundary surface of A(t)[O]. (See the
two curves at t = ti−1, ti in Fig. 2.) The other case, in
which the endpoints of the curve are at t = 0, 1 can be
handled by solving Eqs. 1 and 2 for u and v.

The simultaneous solutions of Eqs. 1–3 correspond to
all t-extreme points in the common zero-set of F(u, v, t) =
G(u, v, t) = 0, including points that are locally t-extreme.
Figure 3 shows the three types of connected components
encountered in the common zero-set. We characterize
three different types of connected components:

– A component of type 1 is a closed loop (Fig. 3(a)).
– A component of type 2 has some local t-extreme points

(Fig. 3(b)).
– A component of type 3 has no local t-extreme point. It

is t-monotone and its ends are at t = 0, 1 (Fig. 3(c)).
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Fig. 3a–c. Classification into three types identifies the topology
of a silhouette curve: a a loop; b a curve with local extrema; and
c a curve that is t-monotone. The outlined box represents the do-
main of the parameter space

Connected components are constructed by numerically
tracing the intersection curve F(u, v, t) = G(u, v, t) = 0,
starting from the t-extreme points or from the endpoints at
which t = 0, 1. Algorithm 1 summarizes the whole pro-
cedure of constructing the silhouette curve.
Algorithm 1
Input:

S(u, v), a rational freeform surface;
A(t), an affine transformation matrix;
P, the eye position;

Output:
A set of perspective silhouette curves of the boundary

of ∪A(t)[S(u, v)], as seen from P;
Begin

F(u, v, t) ⇐ ∣
∣A′(t)[S(u, v)] A(t)

[
∂S
∂u (u, v)

]

A(t)
[

∂S
∂v

(u, v)
]∣
∣;

G(u, v, t) ⇐ 〈A(t)[S(u, v)]− P, A(t)[N(u, v)]〉;
H(u, v, t) ⇐ Fu Gv − FvGu ;
Z0 ⇐ the common zero-set of F, G, and H;
Z1 ⇐ the common zero-set of F and G;
for each solution point p ∈ Z0 do

Numerically trace a connected component of Z1 and
classify its type;

Parameterize the component according to its type;
end
The other solution points of Z1 are of type 3;
Numerically trace each component starting from the

solutions of F(u, v, t) = G(u, v, t) = 0 where t = 0, 1;
return a set of silhouette curves;

End.

4 Topology of a time-varying silhouette

Our algorithm can easily be extended to a more general
case where the eye position P(r) moves along a predefined
path. In this case, Eqs. 1 and 2 are extended to four vari-
ables:

F(u, v, t)

=
∣
∣
∣
∣
A′(t)[S(u, v)] A(t)

[
∂S

∂u
(u, v)

]

A(t)

[
∂S

∂v
(u, v)

]∣
∣
∣
∣

= 0, (4)
G(u, v, t, r) = 〈A(t)[S(u, v)]− P(r), A(t)[N(u, v)]〉 = 0.

(5)

The simultaneous solution to these equations produces
a two-manifold zero-set in a four-dimensional space. We
now consider how to analyze the topological structure of
the time-varying silhouettes. Based on the topology infor-
mation, we will produce smoothly drawn silhouettes of the
swept volume using a non-photorealistic shading model.

4.1 Topology analysis

The r-extreme points on the two-manifold surface char-
acterize critical events where a silhouette component may
appear or disappear depending on the new eye position
P(r). The r-extreme point occurs where the gradient vec-
tor ∇G(u, v, r, t) is parallel to the r-direction in uvtr-
space. (The partial derivatives Gu , Gv and Gt must vanish
at these critical points.) The equation F(u, v, t) = 0 is in-
dependent of the time-varying eye position P(r). Thus, the
zero-set of F(u, v, t) = 0 forms a cylindrical hyper-surface
in uvtr-space. We compute the r-extreme points on the
two-manifold by solving

G(u, v, r, t) = 0, (6)
Gu(u, v, r, t) = 0, (7)
Gv(u, v, r, t) = 0, (8)
Gt(u, v, r, t) = 0. (9)

Since we have four equations in four variables, their sim-
ultaneous solution is a set of discrete points. In the next
step, we check whether each discrete solution point also
satisfies Eq. 4.

A silhouette component may appear or disappear at the
boundary point where u = 0, 1, v = 0, 1, or t = 0, 1. Sil-
houette components of these types may not have extreme
points in the r-direction. The end points of these silhou-
ette components are computed by solving Eqs. 6–9. For
example, for u = 0, we solve

G(0, v, r, t) = 0,

Gv(0, v, r, t) = 0,

Gt(0, v, r, t) = 0.

4.2 The silhouette drawing system

To find the silhouettes at a specific eye position P(r) and
to render the silhouette strokes during an animation, we
trace the two-manifold zero-set surface numerically using
the topology information.

– Extraction. A numerical tracing technique extracts an
iso-curve of the two-manifold for a fixed value of r =
r0, which corresponds to a given eye position P(r0).
Since the two-manifold is defined by two implicit
equations, F(u, v, t) = G(u, v, r0, t) = 0, where r = r0
is fixed, we can apply a general SSI technique [2, 3] to
the tracing algorithm.
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Fig. 4. a The envelope of a scaled ellipsoid moving along a linear trajectory, and b its perspective silhouette curves. In c, the silhouette
curves are shown in vt-space; two curve components of type 2 were detected

– Drawing. A silhouette curve may be rendered with
multiple strokes, for example to produce a dashed line.
We construct a single stroke as a smooth curve, and
apply it to a periodic texture map suggesting one or
more marks. The texture coordinate along the strip is
given by the parameterization of the silhouette curve.
To illustrate non-photorealistic effects in the animation
we use an illumination model similar to Gooch’s tone
shading [10].

5 Experimental results

We now present examples of silhouette curves computed
on the boundary of a general swept volume. Figure 4

Fig. 5. a The envelope surface and its silhouette curves (shown in bold lines) for the swept volume of an ellipsoid moving along
a trajectory with a scale change. b A tuba is modeled by sweeping a sphere and a torus

shows the swept volume of an ellipsoid moving along
a linear trajectory under a scale change. Its perspective sil-
houette curves, which are both of type 2, are shown in bold
lines in Fig. 4(b). Figure 4(c) shows the projection of the
zero-set onto the vt-plane. Two more examples are shown
in Fig. 5. These silhouette curves are used in the non-
photorealistic rendering of the boundary envelope surfaces
of swept volumes.

Figure 6 shows snapshots from an animation of silhou-
ettes in which their topological arrangements change as
the eye position moves along a predefined path. At each
frame of the animation, we extract a set of connected sil-
houette components and draw them in bold lines. In a pre-
processing step, we detect critical events, in which con-
nected components of the silhouette curves may appear or
disappear, by solving a system of polynomial equations.
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Fig. 6a–h. Snapshots of time-varying silhouettes. a A swept volume and its perspective silhouettes from an initial eye position;
b–c transition in which two connected components cross each other; d one component disappears in the middle of the object; e a new
component appears in the middle of the object; f–g transition in which two connected components cross each other

Fig. 7. a Stylized perspective silhouettes produced using a thorn-like pattern, and b anothor example of stylized silhouette curves with
a wave-like pattern

In between two consecutive critical events, the silhouette
tracing is stable and efficient.

Two connected components of the silhouette curves
cross each other in the transition from Fig. 6(b) to
Fig. 6(c), and similarly between Fig. 6(f) and Fig. 6(g).
One component disappears while moving from Fig. 6(c)
to Fig. 6(d). However, a new component appears in the
middle of the transition from Fig. 6(d) to Fig. 6(e). In
a preprocessing step, we computed the critical events,
which took about a second on a P4-2GHz Windows OS

with a 1GB main memory. Our system generates an
animation of silhouettes at about 70 frames per sec-
ond.

Figure 7(a) shows the result of drawing the silhouette
curves of a torus-shaped swept volume in a stylized, non-
photorealistic way. A thorn-like pattern was used for tex-
turing the silhouette curves in this example. Figure 7(b)
shows the result for a more complicated swept volume.
A wave-like pattern was used for texturing the silhouette
curves.
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6 Conclusion

We have presented a new algorithm for computing the per-
spective silhouette curves on the boundary envelope sur-
face of a general swept volume without using a polygonal
approximation. The silhouette computation was reduced
to finding the zero-set of a system of two polynomial equa-
tions in three variables. The connected components of
the silhouette curves are then detected and constructed
using the t-extreme points of the zero-set, which we obtain
by solving three polynomial equations in three variables.
Then the silhouette curves are generated by numerically
tracing the zero-set of two polynomial equations. We have
further shown that a similar computational paradigm can
be applied to a more general case in which the eye pos-

ition moves along a predefined path. Using this result, we
have generated a smooth animation of the perspective sil-
houettes of a swept volume while the eye position moves
around the object.

Acknowledgement The authors would like to thank anonymous re-
viewers for their invaluable comments. The algorithms and figures
presented in this paper were implemented and generated using the
IRIT solid modeling system [12] developed at the Technion, Israel.
The animation system presented in Sect. 4 was implemented using
FLTK [8] and VTK [19]. This research was supported in part by the
Korean Ministry of Information and Communication (MIC) under
the Program of IT Research Center on CGVR, in part by grants
No. R01-2002-000-00512-0 from the Basic Research Program of
the Korea Science and Engineering Foundation (KOSEF), and in
part by the Israeli Ministry of Science Grant No. 01-01-01509.

References
1. Alias-Wavefront Technology. Maya 5.0

Users Manual . http://www.alias.com
(2003)

2. Bajaj, C., Hoffmann, C., Lynch, R.,
Hopcroft, J.: Tracing surface intersections.
Comput. Aid. Geomet. Des. 5(4), 309–321
(1988)

3. Bajaj, C., Xu, G.: NURBS approximation
of surface-surface intersection curves. Adv.
Comput. Math. 2(1), 1–21 (1994)

4. Cipolla, R., Giblin, P.: Visual Motion of
Curves and Surfaces. Cambridge University
Press (2000)

5. Elber, G., Kim, M.-S.: Geometric constraint
solver using multivariate rational spline
functions. Proc. ACM Symposium on Solid
Modeling and Applications, Ann Arbor,
MI, June 4-8 (2001)

6. Elber, G., Chen, X., Cohen, E.: Mold
accessibility via Gauss map analysis.
Proc. Shape Modeling International ’04,
Genova, Italy, pp. 263–272, June (2004)

7. Foley, J., van Dam, A., Feiner, S.,
Hughes, J.: Computer Graphics: Principles

and Practice. 2nd ed, Addison Wesley,
Reading, MA (1990)

8. FLTK, Fast Light Tool Kit.
http://www.fltk.org/. Version 1.1, 2002

9. Gooch, B., Gooch, A.: Non-Photorealistic
Rendering. A.K. Peters. ISBN:
1-56881-133-0 (2001)

10. Gooch, A., Gooch, B., Shirley, P., Cohen,
E.: A non-photorealistic lighting model for
automatic technical illustration.
SIGGRAPH’98, pp. 447–452 (1998)

11. Isenberg, T., Freudenberg, B., Halper, N.,
Schlechtweg, S., Strothotte, T.:
A developer’s guide to silhouette
algorithms for polygonal models. IEEE
Comput. Graph. Appl. 23(4), 28–37 (2003)

12. IRIT 9.0 User’s Manual, Technion, October
(2002) http://www.cs.technion.ac.il/∼irit

13. Joy, K., Duchaineau, M.: Boundary
determination for trivariate solid. Proc. of
Pacific Graphics 99, Seoul, Korea,
pp. 82–91, October 5–7 (1999)

14. Kalnins, R.D., Davidson, P.L., Markosian,
L., Finkelstein, A.: Coherent stylized

silhouette. ACM Trans. Graph. 22(3),
856–861 (2003)

15. Kim, K.-J., Lee, I.-K.: The perspective
silhouette of a canal surface. Comput.
Graph. Forum 22(1), 15–22 (2003)

16. Kim, M.-S., Elber, G.: Problem reduction
to parameter space. In: Cipolla, R., Martin,
R. (eds) The Mathematics of Surfaces IX
(Proc. of the 9th IMA Conference),
pp. 82–98. Springer, London (2000)

17. Martin, R., Stephenson, P.: Sweeping of
three-dimensional objects. Comput. Aid.
Des. 22(4), 223–234 (1990)

18. Patrikalakis, N., Maekawa, T.: Shape
Interrogation for Computer Aided Design
and Manufacturing. Springer, Berlin
Heidelberg New York (2002)

19. VTK, The Visualization Tool Kit.
http://www.vtk.org/. Version 4.2 (2003)



J.-K. Seong et al.

JOON-KYUNG SEONG is a Postdoctoral Fellow
in the School of Computing, University of Utah.
His research interests lie in computer graph-
ics and geometric modeling and processing.
Dr. Seong received BS, MS and PhD degrees
from Seoul National University in 2000, 2002
and 2005, respectively.

KU-JIN KIM is an Assistant Professor in
the Department of Computer Engineering at
Kyungpook National University, Korea. Her
research interests include computer graphics,
non-photorealistic rendering, and geometric and
surface modeling. Prof. Kim received a BS de-
gree from Ewha Womans University in 1990,
an MS degree from KAIST in 1992, and a PhD
degree from POSTECH in 1998, all in Com-
puter Science. She was a Postdoctoral fellow at
Purdue University in 1998–2000. Prof. Kim has
also held faculty positions at Ajou University,
Korea, and at the University of Missouri, St.
Louis, USA.

MYUNG-SOO KIM is a Professor and the Head
of the School of Computer Science and Engin-

eering, Seoul National University. His research
interests are in computer graphics and geomet-
ric modeling. Prof. Kim received BS and MS
degrees from Seoul National University in 1980
and 1982, respectively. He continued his grad-
uate study at Purdue University, where he re-
ceived an MS degree in applied mathematics
in 1985 and MS and PhD degrees in computer
science in 1987 and 1988, respectively. From
then until 1998, he was with the Department
of Computer Science, POSTECH, Korea. Prof.
Kim serves on the editorial boards of Computer-
Aided Design, Computer Aided Geometric De-
sign, Computer Graphics Forum, and the Inter-
national Journal of Shape Modeling. He also
edited several special issues of journals such as
Computer-Aided Design, Graphical Models, the
Journal of Visualization and Computer Anima-
tion, The Visual Computer, and the International
Journal of Shape Modeling. Recently, together
with Gerald Farin and Josef Hoschek, he edited
the Handbook of Computer Aided Geometric
Design, North-Holland, 2002.

GERSHON ELBER is a Professor in the Com-
puter Science Department, Technion, Israel. His
research interests span computer aided geomet-
ric design and computer graphics. Prof. Elber
received a BS degree in Computer Engineer-
ing and an MS degree in Computer Science
from the Technion, Israel in 1986 and 1987 re-
spectively, and a PhD in computer science from
the University of Utah, in 1992. He is a mem-
ber of ACM and IEEE. Prof. Elber serves on
the editorial boards of Computer-Aided Design,
Computer Graphics Forum, and the International
Journal of Computational Geometry & Appli-
cations, and has served on many conference
program committees, including Solid Modeling,
Pacific Graphics, Computer Graphics Interna-
tional, and Siggraph. Prof. Elber was one of
the paper chairs of Solid Modeling 2003 and
Solid Modeling 2004. Elber can be reached at
the Technion, Israel Institute of Technology, De-
partment of Computer Science, Haifa 32000,
ISRAEL. Email: gershon@cs.technion.ac.il, Fax:
972-4-829-5538.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


