
Precise Voronoi Cell Extraction of
Free-form Rational Planar Closed Curves

Iddo Hanniel†, Ramanathan Muthuganapathy∗,†, Gershon Elber†, Myung-Soo Kim‡

†Department of Computer Science ‡School of Computer Science and Engineering
Technion, Israel Institute of Technology Seoul National University

Haifa 32000, Israel Seoul 151-742, Korea

ABSTRACT
We present an algorithm for generating the Voronoi cells for
a set of rational C1-continuous planar closed curves, which is
precise up to machine precision. Initially, bisectors for pairs
of curves, (C(t), Ci(r)), are generated symbolically and rep-
resented as implicit forms in the tr-parameter space. Then,
the bisectors are properly trimmed after being split into
monotone pieces. The trimming procedure uses the orienta-
tion of the original curves as well as their curvature fields,
resulting in a set of trimmed-bisector segments represented
as implicit curves in a parameter space. A lower-envelope
algorithm is then used in the parameter space of the curve
whose Voronoi cell is sought. The lower envelope represents
the exact boundary of the Voronoi cell.

Keywords: Voronoi cells, Skeleton, Free-form boundaries,
Rationals, MAT

1. INTRODUCTION
Voronoi diagrams are one of the most extensively studied
objects in computational geometry. Algorithms for gener-
ating Voronoi diagrams for rational entities typically pre-
process the input curved boundaries into linear and circular
segments. This preprocessing generates a Voronoi diagram
that is approximate both in topology and geometry.

Given a number of disjoint planar regions bounded by free-
form curve segments C0(t), C1(r1), ... , Cn(rn), their Voronoi
diagram [1] is defined as a set of points that are equidistant
but minimal from two different regions. The term ‘minimal’
ensures that for a point on the boundary curve, the cor-
responding point on the Voronoi diagram is the minimum
in distance. This definition excludes self-Voronoi edges [2].
The Voronoi cell of a curve C0(t) is the set of all points
closer to C0(t) than to Cj(rj), ∀ j > 0. The Voronoi dia-
gram is then the union of the Voronoi cells of all the free-

∗Corresponding author. Email: raman@cs.technion.ac.il

form curves. In this paper, the term Voronoi cell normally
refers to the ‘boundary of the Voronoi cell’. A related entity
to the Voronoi diagram, the Medial Axis Transform (MAT)
or Skeleton, was introduced by Blum [3, 4] to describe bi-
ological shapes. The MAT can be viewed as the locus of
the center and radius of a maximal ball as it rolls inside
an object. Since their introduction, both Voronoi diagrams
and MATs have been used in a wide variety of applications
that primarily involve reasoning about geometry or shapes.
Skeletons have been used in pattern and image analysis [5,
6], finite element mesh generation [7, 8], and path planning
[9], to name a few.

Algorithms for generating Voronoi cells/diagrams have pre-
dominantly used linear or circular arc inputs [10, 11, 12].
Moreover, algorithms for generating Voronoi diagrams for
rational entities typically preprocess the input curved bound-
aries into linear and circular segments [13], due to the dif-
ficulty in processing rationals directly. This preprocessing
not only leads to the generation of artifacts and branches
not present in the original Voronoi diagram, which requires
a post-processing stage to remove them, but also it produces
an approximated Voronoi diagram [14, 15].

A Voronoi diagram of C1 planar curves consists of portions
of bisector curves for some pairs of curves. In particular, the
Voronoi cell of a curve C0(t) will involve portions of bisec-
tors between a pair of curves in the set, one of which will
be C0(t). However, generating the bisector for a pair of pla-
nar curves is trivial only if they are simple, such as straight
lines or circular arcs. When the curve is a rational free-form
curve, the bisector is rational only for a few special cases –
a point and a rational curve in the plane [16] and two ratio-
nal space curves for which the bisector is a rational surface
[17]. However, for the case of coplanar curves (polynomial
or rational), the bisector has been shown to be, in general,
algebraic but not rational [16]. This has resulted in the
need for numerical tracing of the bisector curves [18], which
is computationally expensive. Alternatively, Elber and Kim
[19] showed that the bisector for a pair of rational curves
can be implicitly represented symbolically in the paramet-
ric space. The bisector so generated can be represented in
an implicit form that can be used for further processing.
Moreover, the bisectors can be accurately represented up to
machine precision.

Voronoi diagram generation algorithms that do not prepro-
cess curved boundaries are relatively harder to find. Laven-

der et al. [20] suggested a subdivision technique (based on
interval arithmetic) to construct the global structure of the
Voronoi diagram. This method is general in the sense that
it can handle arbitrary set-theoretic objects in any dimen-
sions. Chou [21] suggested an algorithm that is based on the
tree structure, whereas Alt and Schwarzkopf [2] presented a
randomized incremental algorithm. Nevertheless, both algo-
rithms [21, 2] appear to have only theoretical implications.
Ramamurthy and Farouki [14], and Ramanathan and Guru-
moorthy [15] have used numerical tracing methods. [14] first
generates the bisectors and then trims them, whereas [15]
generates the trimmed segments of the medial axis directly.

In this paper, the problem of generating a Voronoi cell of
a planar free-form closed curve is addressed. The proposed
algorithm directly uses the free-form rational curves that
are not preprocessed into line segments or circular arcs. It
is shown here that the symbolically generated bisector that
is represented as an implicit form in the parametric space
between a pair of planar rational curves can be processed to
extract the Voronoi cell of a closed curve. A lower envelope
algorithm [22], a well-known divide-and-conquer technique,
is been used for generating the Voronoi cell [23] (to be pre-
cise, [23] generates medial axis). Though [23] has described
an algorithm that uses lower envelope for generating medial
axis transform of general curved objects, he approximates
the input curves using bi-arc splines in his implementation.
It is shown here that the lower envelope algorithm can be
used for processing rational curves directly. All the algo-
rithms and examples presented in this paper were imple-
mented and created with the aid of tools available in the
IRIT [24] solid modeling system, developed at the Technion,
Israel.

The rest of this paper is structured as follows: Section 2
outlines the basic idea of this paper. The bivariate implicit
representation of the bisector is described in Section 3. Split-
ting the function into monotone pieces is then described in
Section 4, followed by the description of several bisector con-
straints in Section 5. Section 6 presents the algorithm for
Voronoi cell extraction for a closed curve using a lower en-
velope algorithm. Results from our implementation and a
discussion on the algorithm appear in Section 7. Finally,
Section 8 concludes the paper.

2. BASIC IDEA
Let C0(t), C1(r1), ..., Cn(rn) be the n + 1 C1-continous ra-
tional parametric planar closed curves. Without loss of gen-
erality, we may assume that the Voronoi cell is extracted
for C0(t). The algorithm starts with the symbolic computa-
tion of a bivariate polynomial function, F3(t, ri), following
[19], between two planar curves C0(t) and Ci(ri) so that the
zero-set of F3(t, ri), F3(t, ri) = 0, which is an implicit alge-
braic curve in the tri-plane, corresponds to the untrimmed
bisector curve between C0(t) and Ci(ri). The formulation
of F3(t, ri), which is described in Section 3, is based on a
symbolic substitution of polynomial/rational functions of t
and ri into a simple polynomial expression in the tri-plane.
Figure 1(a) shows the bisector between two planar rational
curves. The zero-set of its F3(t, ri) is shown in Figure 1(b).

A topology analysis algorithm [27], described in Section 4,
is then used to decompose the bivariate function into tri-

(a) The bisector (in
gray) between two
rational C1 planar
curves.

(b) The zero-set
in the domain of
F3(t, ri), defines the
bisector.

tC0(t)

riCi(ri)

Figure 1: The bisector and the zero-set between two
open C1 rational curves C1(t) and Ci(ri).

monotone pieces. This decomposition facilitates the effec-
tive manipulation of the bivariate function when processed
further. Each monotone piece is subsequently subjected to
several constraint checks described in Section 5. The con-
straints are applied based on the orientation of the two ratio-
nal curves as well as their curvature fields. The orientation
constraint determines the bisector’s side with respect to the
curves. The object side is assumed to lie on the right hand
side when the curve is traversed in the increasing direction of
the regular parameterization. Application of the orientation
constraint purges away portions of the untrimmed bisector
that do not belong to the desired side. This constraint can
also be flipped to obtain bisector portions that lie on the
other side of the curve.

Following this, the resulting bisector portions are subjected
to a curvature constraint. This constraint determines whether
the radius of curvature of the input rational curve at a foot-
point of the bisector is greater than the radius of curvature
of the disk determined by the distance from the footpoint
to the bisector. Note that the application of this constraint
purges away some (but not all) points on the bisector that
are not minimal in distance to the corresponding boundary
curves.

The above process is repeated for all pairs of curves
(C0(t), Ci(ri)). One feature of the algorithm described in
this paper is the application of the lower envelope algorithm
[22] to generate the Voronoi cell of C0(t) with respect to
Ci(ri), ∀ i > 0. The lower envelope algorithm here takes
advantage of the correspondence between the bivariate func-
tion and the distance function that measures the distance
from the footpoint to the corresponding point on the bisec-
tor. The lower envelope algorithm for the generation of the
Voronoi cell at C0(t) is described in Section 6.

3. BIVARIATE FUNCTION
In the coming sections, r will replace ri for the purpose
of clarity of representation. Let C0(t) = (x0(t), y0(t)) and
C1(r) = (x1(r), y1(r)) be two planar C1-continuous regular
rational curves. Though the functions F1(t, r) or F2(t, r) in

[19] can be used, the bivariate function F3(t, r) in [19] has
been selected for the generation of the untrimmed bisector
because it does not generate redundant branches, making it
ideal for use in further processing. For completeness, the
following formulation is taken, though not fully, from Elber
and Kim [19]. [19] showed that a bisector point P must
satisfy:

〈

P − C0(t), C
′
0(t)

〉

= 0, (1)
〈

P − C1(r), C
′
1(r)

〉

= 0, (2)
〈

P −
(C0(t) + C1(r)

2
, C0(t) − C1(r)

〉

= 0. (3)

When the two tangents C′
0(t) and C′

1(r) are neither parallel
nor opposite, the point P = (x, y) on the intersection of the
two normal lines of the two curves has a unique symbolic
solution for the following matrix equation; from Equations
(1) and (2):

[

C′
0(t)

C′
1(r)

] [

x
y

]

=

[〈

C0(t), C
′
0(t)

〉

〈

C1(r), C
′
1(r)

〉

]

. (4)

Using Cramer’s rule, we can generate a planar bivariate ra-
tional surface: P (t, r) = (x(t, r), y(t, r)), which is embedded
in the xy-plane:

x(t, r) =

∣

∣

∣

∣

x0(t)x
′
0(t) + y0(t)y

′
0(t) y′

0(t)
x1(r)x

′
1(r) + y1(r)y

′
1(r) y′

1(r)

∣

∣

∣

∣

∣

∣

∣

∣

x′
0(t) y′

0(t)
x′

1(r) y′
1(r)

∣

∣

∣

∣

,

y(t, r) =

∣

∣

∣

∣

x′
0(t) x0(t)x

′
0(t) + y0(t)y

′
0(t)

x′
1(r) x1(r)x

′
1(r) + y1(r)y

′
1(r)

∣

∣

∣

∣

∣

∣

∣

∣

x′
0(t) y′

0(t)
x′

1(r) y′
1(r)

∣

∣

∣

∣

. (5)

Substituting the expressions for x(t, r) and y(t, r) into Equa-
tion (3), we get

0 = F̂3(t, r)

=
〈

P (t, r) −
(C0(t) + C1(r)

2
, C0(t) − C1(r)

〉

.

(6)

Equation (6) is then multiplied by the denominator of P (t, r)
to yield F3(t, r),

0 = F3(t, r) = (x′
0(t)y

′
1(r) − x′

1(r)y
′
0(t))F̂3(t, r). (7)

Once Equation (7) is solved, points on the bisector can be
computed from Equations (5). The bisector curve has a
considerably lower degree when represented in a parameter
space (see [19] for further details), compared to the conven-
tional representation of the bisector curve in the xy-plane
[25].

Figure 2(a) shows the untrimmed bisector of two closed
curves and Figure 2(b) shows the surface (t, r,F3(t, r)) gen-
erated by the bivariate function and its corresponding zero-
set. It should be noted that F3(t, r) represents the bisector
with an accuracy that is bounded only by the machine’s
precision.

(a) The untrimmed bisector (in gray) of two

C1 closed planar curves (in black). The bi-
sectors extend to ∞ on both sides.

(b) The bivariate function F3(t, r) and its
zero-set, the bisectors.

C0(t)

C1(r)

r

F3(t, r)

t

Figure 2: The untrimmed bisector (a) and the zero-
set of F3(t, r) (b) between two C1 closed planar
curves C0(t) and C1(r).

4. SPLITTING INTO MONOTONE PIECES
In order to manipulate and effectively use (i.e., compute
lower envelopes) the zero-set of the bivariate function,
F3(t, r) = 0, it is necessary to break it into monotone pieces,
in the tr-space. Given the polynomial F3(t, r) in the tr-
domain, the problem is to decompose the zeros of the func-
tion into monotone pieces within the domain, while obtain-
ing the connectivity between the monotone pieces. This
process results in branches of the function delimited by ap-
propriate tr-domain points, such that when one traverses
the branch from one endpoint to the other, the branch is in-
creasing/decreasing in both t and r. The topology analysis
algorithm presented in [27] has been implemented to split
F3(t, r) = 0 into monotone branches in both t and r.

The topology analysis algorithm in [27] uses the turning
points (local maxima and minima) and edge points as the
input. The turning points are isolated by finding the com-

Figure 3: The monotone pieces of the zero-set of
F3(t, r) shown in Figure 1(b).

mon simultaneous solutions between F3(t, r) = 0 and either
∂F3
∂t

(t, r) = 0 or ∂F3
∂r

(t, r) = 0. The multivariate solver of
[26] is used to find these local extrema. Edge points are
identified by computing all the intersections of F3(t, r) = 0
with the boundaries of the domain of interest. Recursive
subdivision in the tr-space is used to find the connectiv-
ity between all turning and edge points. Each subdivision
involves taking a vertical or horizontal line and finding all
intersections of the curve with that line. The edge points
are further classified depending on which border they hit.

The algorithm proceeds by analyzing the pattern of turning
points and edges points in the region, and either finding the
connections between them, or subdividing the region. For
further details, please refer to [27].

Figure 3 shows the monotone pieces (bounded by a box) ob-
tained by the application of the topology analysis algorithm
for the zero-set of of F3(t, r) shown in Figure 1(b). The al-
gorithm splits the given input function at the middle when-
ever two or more turning points are detected. Hence, the
two monotone regions that are visible in the middle region
of Figure 3. This, however, does not affect our algorithm in
any way.

5. APPLYING CONSTRAINTS
In this section, two constraints are described to trim the in-
dividual bisectors represented as the zeros of the bivariate
function F3(t, r). The constraints are based on the orien-
tation of the input curves (Section 5.1) and their curvature
fields (Section 5.2).

5.1 Orientation Constraint
The orientation constraint uses the direction of the param-
eterization of the input rational curves. The right hand
side is assumed to belong to the interior of the object while
traversing the curve along the increasing direction of param-
eterization. The orientation constraint purges away points
on the untrimmed bisector that do not lie on the desired
side – that is, a left-left constraint generates tr-points cor-
responding to bisector points that lie to the left of both
curves. Hence it can also be termed as LL-constraint where
LL implies Left-Left. In a similar manner, we can construct
the other orientation constraints as LR/RL/RR constraints.

C0(t)

C1(r)

Figure 4: The bisector (in gray) between two closed
C1 planar curves after applying the LL-constraint
(see also Figure 2(a)). The bisector extends to ∞
on both sides

Figure 2(a), in fact, shows the LL, LR, RL, and RR com-
ponents of the bisector between the two C1 planar closed
curves.

The LL-constraint for two regular C1 rational curves is re-
duced to the following two equations:

〈

P (t, r) − C0(t), N
L
0 (t)

〉

> 0, (8)
〈

P (t, r) − C1(r), N
L
1 (r)

〉

> 0, (9)

where NL
0 (t) is the normal field defined by (−y′

0(t), x
′
0(t)).

NL
1 (r) has a similar expression and P (t, r) is as defined in

Equation (5). Note that NL
0 (t) and NL

1 (r) do not flip direc-
tions at their inflection points.

The LL-constraint can also be formulated in the follow-
ing way. Since a point on the bisector is obtained by the
intersection of normal lines at the footpoints of the ratio-
nal curves [19], the intersection point satisfies the following
equation:

C0(t) + NL
0 (t)α = C1(r) + NL

1 (r)β, (10)

where α and β represent the parameter on the normals
of C0(t) and C1(r), respectively, whose values determine
whether the intersection point is to the left of the curves.
Positive values for both α and β imply that the intersection
point is to the left of both curves. Thus, the LL-constraint
can also be written as follows:

α(t, r) > 0, (11)

β(t, r) > 0, (12)

where α and β are given by (refer to [19]):

α = α(t, r) =

∣

∣

∣

∣

x1(r) − x0(t) y′
1(r)

y1(r) − y0(t) −x′
1(r)

∣

∣

∣

∣

∣

∣

∣

∣

−y′
0(t) y′

1(r)
x′

0(t) −x′
1(r)

∣

∣

∣

∣

,

β = β(t, r) =

∣

∣

∣

∣

−y′
0(t) x1(r) − x0(t)

x′
0(t) y1(r) − y0(t)

∣

∣

∣

∣

∣

∣

∣

∣

−y′
0(t) y′

1(r)
x′

0(t) −x′
1(r)

∣

∣

∣

∣

. (13)

Figure 4 shows the portions of the bisector of Figure 2(a)
after applying the LL-constraint.

(a) (b)

C0(t)

C1(r)

a

C0(t)

C1(r)

b

Figure 5: (a) The radius of the disk is smaller than
the radius of curvatures at the footpoints of the
curves. (b) The radius of the disk is greater than
the radius of curvature of C1(r) at the footpoint im-
plying the violation of the constraint.

5.2 Curvature constraint
The curvature constraint is based on the computation of
the curvature fields of the input rational curves and disk
at a point on the bisector. This constraint eliminates some
(though not all) points on the bisector that do not satisfy
the minimal distance requirement of the Voronoi diagram.
This constraint, in the form of a lemma, is as follows:

Lemma 1. The radius of curvature of the disk at any
point on the Voronoi diagram/cell should be less than or
equal to the minimum of the local radius of curvature of the
boundary segments.

For the proof of the lemma, please refer to [21].

Figure 5 illustrates the curvature constraint. Figure 5(a)
shows that the radius of the disk is smaller than the radius
of curvature of the curves at the footpoints, implying that
the curvature constraint is fully satisfied and the center of
the disk (marked a in the figure) becomes a possible valid
point on the Voronoi diagram. Violation of this constraint
implies that the radius of the disk at that bisector point is
greater than the radius of curvature of a curve at the foot-
point. Figure 5(b) shows a disk that violates the curvature
constraint. Consequently, the center of such a disk (marked
b in the figure), though it is a point on the bisector, is not a
point on the Voronoi diagram, as it violates the minimality
of the distance. Hence, points such as b have to be purged
away.

To formulate the constraint, a distance function D(t, r) is
introduced that corresponds to the distance between the bi-
sector point and the footpoint (actually to both footpoints
as they are equidistant from the bisector point) and is de-
fined as follows:

D0(t, r) = ||P (t, r) − C0(t)||, (14)

D1(t, r) = ||P (t, r) − C1(r)||. (15)

The distance functions correspond to the radius of the disk
that is tangent to the footpoints, and either D0(t, r) or
D1(t, r) can be used. Since the curvature of the disk of
a bisector point is smaller than the (positive) curvature of
one of the curves at the footpoint, we have:

1/D0(t, r) >
(

sign
〈

C′′
0 (t), NL

0 (t)
〉)

κ0(t), (16)

1/D1(t, r) >
(

sign
〈

C′′
1 (r), NL

1 (r)
〉)

κ1(r), (17)

where the sign function denotes the sign of the expression
within the brackets and κ0(t) and κ1(r) are the curvature
functions of the respective curves.

Constraints (16) and (17) appeared to be too slow in our
preliminary implementation since they are applied over all
the points on the bisector. Moreover, they are not rational
expressions as they contain square roots and hence must be
squared. In contrast, vector functions N̂0(t)/κ0(t),

N̂1(r)/κ1(r), κ0(t)N̂0(t), and κ1(r)N̂1(r) are rational, pro-

vided C0(t) and C1(r) are rational curves, where N̂0(t) and

N̂1(r) denote the unit normal vectors. Then, the curvature
constraints can be reformulated in the following alternate
way:
〈

P (t, r) − C0(t), N̂0(t)/κ0(t)
〉

<
〈

N̂0(t)/κ0(t), N̂0(t)/κ0(t)
〉

,

(18)
〈

P (t, r) − C1(r), N̂1(r)/κ1(r)
〉

<
〈

N̂1(r)/κ1(r), N̂1(r)/κ1(r)
〉

.

(19)

NL
0 (t) (resp. NL

1 (r)) can either be in the same or the oppo-

site direction with respect to N̂0(t) (resp. N̂1(r)). If they are
in the opposite directions, the left hand side of inequalities
(18) and (19) will be negative and, therefore, always hold.

If NL
0 (t) (resp. NL

1 (r)) is in the same direction as N̂0(t)

(resp. N̂1(r)), then these inequalities will hold only when
the radius of the disk is smaller than the radius of curvature
1/κ0(t) (resp. 1/κ1(r)) of the boundary curve (see Figure
5).

The curvature constraint also implies that a point on the
Voronoi cell cannot be closer to its footpoint than the evo-
lute point corresponding to that footpoint, since C0(t) +

N̂0(t)/κ0(t) (resp. C1(r) + N̂1(r)/κ1(r)) traces the evolute
of a curve C0(t) (resp. C1(r)) and is rational, provided C0(t)
(resp. C1(r)) is rational.

The curvature constraints (18) and (19) can be reduced to
〈

P (t, r) − C0(t), N̂0(t)/κ0(t)
〉

1/κ0(t)2
〈

N̂0(t), N̂0(t)
〉 < 1, (20)

〈

P (t, r) − C1(r), N̂1(r)/κ1(r)
〉

1/κ1(r)2
〈

N̂1(r), N̂1(r)
〉 < 1; (21)

or
〈

P (t, r) − C0(t), κ0(t)N̂0(t)
〉

< 1, (22)
〈

P (t, r) − C1(r), κ1(r)N̂1(r)
〉

< 1, (23)

since
〈

N̂0(t), N̂0(t)
〉

=
〈

N̂1(r), N̂1(r)
〉

= 1.

Figure 6 shows the portions of the bisector obtained after
applying the curvature constraint (and after subjecting it to

Figure 6: The bisector (in gray) after applying the
curvature constraint, for the two curves shown in
Figure 1(a).

C0(t)

C1(r)

the LL-constraint) for the untrimmed bisector shown in Fig-
ure 1(a). Note that some points on the bisector that do not
correspond to the minimality of the distance condition of
the Voronoi diagram have been removed. However, further
processing to remove all remaining points that do not cor-
respond to the minimality of the distance is required. This
is achieved by applying the lower envelope algorithm that is
described in the following section.

6. VORONOI CELL EXTRACTION
In this section, the extraction of the Voronoi cell for a C1-
continuous closed curve C0(t), with respect to the other C1-
continuous closed curves Ci(ri), ∀ i > 0 is described. The
extraction starts with the computation of the untrimmed
bisectors using the bivariate function F3(t, r1) described in
Section 3 and is followed by splitting F3(t, r1) = 0 into
monotone pieces described in Section 4. The process of
trimming the zero-set of F3(t, r1) using the LL-constraint
described in Section 5.1 is then carried out. Subsequently,
the curvature constraints described in Section 5.2 trim the
zero-set of F3(t, r1) further. The above process is repeated
for all pairs of curves C0(t) and Ci(ri), ∀ i > 1. The lower
envelope algorithm (described in this section) is used at the
end to compute the Voronoi cell of C0(t).

The problem of constructing the Voronoi cell is reduced to
the computation of the lower envelopes in the following way:
Given a curve C0(t) and the set of curves Ci(ri), let Di(t)
denote the distance function Di(t, ri), described in Section
5.2. Then, the lower envelope of the set {Di(t)}, i = 1, . . . , n
identifies the Voronoi cell of C0(t). In other words, the prob-
lem of computing the Voronoi region of C0(t) is reduced to
the problem of computing the lower envelope of a set of dis-
tance functions, Di(t), over the t-domain of C0(t). Points on
the Voronoi cell are then computed by mapping the points
on the lower envelope onto the tri-domain.

The concept of computing the lower envelopes has been ex-
tensively used for arrangements of line segments [22, 28]. For
the benefit of readers, the basic lower envelope algorithm is

introduced in Section 6.1, following [22]. The description of
the basic predicates needed to implement the algorithm over
rational curves is then presented in Section 6.2, followed by
the details of using the predicates to generate the Voronoi
cell, in Section 6.3.

6.1 General Lower Envelope Algorithm
Given a set of t-monotone curves, they are initially divided
into two subsets of size at most ⌈n/2⌉, recursively comput-
ing the lower envelope for each of the subsets. Then, these
subenvelopes are merged back to obtain the overall lower
envelope. The termination condition of the recursion is a
single t-monotone curve that is the lower envelope of itself.

The main part of the algorithm is the merging step, which
is performed in a sweep-like manner. Let us assume that
we have two lists of curves, which are themselves lower
envelopes that are to be merged. The merging process of
the two lists starts from the leftmost t parameter value. A
sweep-like algorithm, along the t-domain, identifies the set
of intervals [a, b] where the two lists overlap. Therefore, we
end up with merges of the intervals [ai, bi] in the t-domain
where both curves are defined. All the intersection points of
the curves from the two lists lying on the interval [ai, bi] are
identified. The t parameter values, where intersections oc-
cur, are identified. Between a pair of intersection points, the
portions that belong to the merged lower envelope have to be
identified. This can be done by comparing the Di(t)-values
of the two curves at the middle t-parameter between the in-
tersection points. Because of continuity, the curve with the
smaller Di(t)-value at the mid-parameter has smaller Di(t)-
values over the interval [a, b] and, therefore, belongs to the
merged lower envelope.

The lower envelope algorithm is illustrated for line segments
in Figure 7(a). Consider the two segments 1-1 and 2-2, as
is shown in the figure. The first step involves the identifica-
tion of overlapping t-parametric regions and the splitting of
the two segments at these parametric values. For example,
for the two curves 1-1 and 2-2 shown in Figure 7(a), the
overlapping parameter region is ab and hence they are split
at parameters a and b. Further processing is required only
for the portions where the overlapping of parameters occur.
The portion of overlapping parametric regions is tested for
intersections. If intersection points exist, they are again split
at those parameter values (e.g., c in Figure 7(b)). The split
portions between intersection points are then tested to iden-
tify the ones with minimal distance and to eliminate other
portions. The Di(t) comparison check is performed only at
the mid-parameter value between the intersections (marked
as dots in Figure 7(b)). The result of the merging process
in the example is shown in Figure 7(c).

6.2 Lower envelopes of rationals
Analyzing the algorithm, it is easy to see that it requires only
a few basic geometric operations. However, when rational
curves are involved, the possible computation each of these
functions may differ. Then, the main functions needed are

• A function that identifies all t-parameters where inter-
sections occur. Formulation of the intersection param-
eters can vary from one problem to another and also

(a) (b)

(c)

Figure 7: Illustration of the lower envelope algo-
rithm.

12

1 2
a b t

D

1 2

2 1

a c b t

D

1 2

I

t

D

depends on the tools that are available for that par-
ticular problem. For example, in the case of a Voronoi
cell, equating two distance functions, computed sym-
bolically, will determine the t parameter of the inter-
sections.

• A function that compares the Di(t)-values of two curves
at a given t-parameter. In the Voronoi cell determi-
nation, this function amounts to a comparison of the
distance function values at the corresponding middle
t-parameter values.

• A function for splitting a t-monotone curve into two
subcurves at a new t-parameter.

For line segments or for univariate functions, these basic
functions can easily be implemented. In the following sec-
tion, the details of generating the Voronoi cell via lower en-
velopes is described.

6.3 Voronoi Cell via Lower Envelope
Given a t-monotone F3(t, ri) = 0 function, for every t value
there is a single corresponding ri value. Furthermore, there
is a correspondence between F3(t, ri) = 0 and Di(t). If
F3(t, ri) = 0 is monotone over an interval t ∈ [a, b], then
Di(t) is well defined over [a, b] since for every t value there
is a single ri value and hence a single corresponding distance
value. Therefore, we can apply the lower envelope algorithm

(a) (b)

C0(t)

C1(r1)C2(r2)
D2

2
(t, r2)D2

1
(t, r1)

t

D2

Figure 8: (a) The bisectors (in gray) between the
pairs (C0(t), C1(r1)) and (C0(t), C2(r2)) of C1 planar
curves. (b) The squared distance functions D2

1(t, r1)
and D2

2(t, r2) of the bisector of the respective pairs
of curves.

on the distance functions defined over monotone bisectors of
the form F3(t, ri) = 0, provided we can compute the needed
basic predicates for Di(t) as described in Section 6.2.

Unfortunately, a rational representation of Di(t) is not avail-
able. The square of the distance function Di(t, ri) may be
used instead. Figure 8(b) shows the squared distance func-
tions D2

1(t, r1) and D2

2(t, r2) for the bisector between pairs of
planar C1 rational curves (C0(t), C1(r1)) and (C0(t), C2(r2))
shown in Figure 8(a). Then, the required basic predicates
can be computed symbolically using F3(t, ri) and D2

i (t, ri)
functions.

The intersection points can be identified using the following
set of equations (i 6= j):

||Di(t, ri)||
2 = ||Dj(t, rj)||

2, (24)

F3(t, ri) = 0, (25)

F3(t, rj) = 0. (26)

Comparison of two squared distance functions, D2

i (t) and
D2

j (t), at a given t parameter is performed by initially ob-
taining the corresponding ri and rj parameter values (a sin-
gle solution for t-monotone F3(t, ri) = 0 segments) and then
comparing the function values of D2

i (t, ri) and D2

j (t, rj) at
the respective parameter values.

To split a D2

i (t) function into two subcurves at a given t-
parameter, all that is needed is to split its corresponding t-
monotone F3(t, ri) = 0 implicit function at that parameter.

The result of the lower envelope algorithm is then a list of
tri-monotone F3(t, ri) = 0 implicit curves that are split at
t-parameters of equidistant bisector points. The union of
these F3(t, ri) = 0 functions represents the Voronoi cell of
C0(t).

7. RESULTS AND DISCUSSION
We have implemented the proposed algorithm for extract-
ing the Voronoi cell of a closed curve using the IRIT [24]

C2(r2)

C1(r1)
C0(t)

Figure 9: Voronoi cell (in gray) of C0(t). Degmax = 5,
CPmax = 5 and DegF3max = 18.

modeling environment. In this section, results from some
test cases are presented. In what follows, the closed curve
for which the Voronoi cell is to be generated is denoted as
C0(t) and the other closed curves are denoted appropriately
as Ci(ri), ∀ i > 0. The degree of the input curves (denoted
as Deg), number of control points used (denoted as CP) and
the degree of F3(t, r) (denoted as DegF3) computed as given
in [19] are also provided for each of the figures. They can
sometimes denote the maximum value of the input curves
which can be identified by the tag max. Figure 9 shows the
Voronoi cell of a closed curve C0(t). Figure 10 shows the
Voronoi cell of C0(t), where the input geometry consists of
four closed curves. Figures 11 and 12 show two more test
cases where all objects have convex profiles. The algorithm
works well for non-convex curves as well (see Figures 13 and
14).

C1(r1)

C3(r3)

C0(t)

C2(r2)

Figure 10: Voronoi cell (in gray) of C0(t). Deg = 5,
CP = 5 and DegF3 = 18.

C1(r1)

C0(t)

C3(r3)

C2(r2)

C4(r4)

Figure 11: Voronoi cell (in gray) of C0(t). All
curves are identical, resulting in degenerated bisec-
tor curves as lines. Deg = 3, CP = 7 and DegF3 = 10.

C0(t)

C3(r3)

C4(r4)

C1(r1)

C2(r2)

Figure 12: Voronoi cell (in gray) of C0(t). Deg = 3,
CP = 7 and DegF3 = 10.

7.1 Discussion
The following are the major steps of our algorithm:

1. formulate the bivariate function F3(t, r);

2. split the zero-sets of F3(t, r)’s into monotone pieces;

3. apply the trimming constraints; and

4. compute the lower envelope.

Our experimental results indicate that all the above steps
are reasonably efficient. Computation of the symbolic func-
tion F3(t, r) took from a fraction of a second to a few sec-
onds. Computation of the monotone pieces and application
of the constraints took from several seconds to a minute.
The lower envelope algorithm took from a few seconds to
a few minutes. All the experiments were carried out on an

C0(t)C1(r1) C2(r2)

Figure 13: Voronoi cell (in gray) of C0(t). Degmax =
3, CPmax = 8 and DegF3max = 10.

C0(t)

C3(r3)

C1(r1)
C4(r4)

C2(r2)

Figure 14: Voronoi cell (in gray) of C0(t). Deg = 3,
CP = 7 and DegF3 = 10.

Intel Pentium 4 1.8GHz computer with 256MB RAM using
the IRIT [24] environment.

Even though the algorithm has been implemented using
floating point arithmetic, it has been found to be reason-
ably robust. Splitting the zero-set of a bivariate function
F3(t, r) into monotone pieces involves the computation of
turning points, which can be computed to arbitrary preci-
sion. Though the splitting procedure described in [27] uses
exact arithmetic, our experiments indicate that the splitting
worked well with floating point arithmetic in all cases that
have been tested so far. Exact arithmetic tends to slow down
the algorithm considerably. It is also possible that alternate
algorithms that split a curve into monotone pieces could be
used. The lower envelope algorithm uses symbolic compu-
tation of distance functions and hence it is fast, reliable and
robust.

The input rational free-form curves are used directly without
approximating them by linear or circular arcs. As a result,
the data that are generated on the Voronoi cell can be con-
sidered precise to within the machine precision. Moreover,
the algorithm does not require a post-processing stage to
remove the artifacts that would have been created by an ap-
proximation of the rational curves. The algorithm generates

Voronoi cells that are topologically correct and geometrically
accurate to whatever precision desired.

Not all bisectors, generated between pairs of closed curves,
are going to play a role in generating the Voronoi cell of
some closed curve. For example, for the closed curve C0(t)
in Figure 10, the Voronoi cell of C0(t) does not contain parts
of the bisector generated for the pair C0(t) and C3(r3), even
though the untrimmed bisector is generated for them and
processed by the algorithm.

Since the bivariate function F3(t, r) can be used to gener-
ate self-bisectors (bisectors of a curve with itself), the pre-
sented algorithm can also be used to generate self-Voronoi
edges. Since the definition of a Voronoi diagram precludes
self-Voronoi edges (traditionally, Voronoi diagram is defined
only for distinct entities), it is not shown in the current
work. However, the self-Voronoi edges will be useful when
constructing the MAT of free-form curves. Since the bisector
between a point and a rational curve is shown to be ratio-
nal [16] and the bisector between two rational curves can be
represented implicitly as shown in [19], this work can also
be used to generate Voronoi diagrams or MATs for domains
bounded by piecewise C1 rational curves and vertices that
are concave or reflex. This is currently under investigation.

8. CONCLUSIONS
This paper presented an algorithm for generating the Voronoi
cells of a set of C1-continous rational planar closed curves.
It is shown that the symbolically computed bisectors in suit-
able parameter space for pairs of rational curves can be used
to generate the Voronoi cells of planar curves by employing
a lower envelope algorithm. The approach in this paper
also shows that the input rational curves do not need to
be preprocessed and approximated with linear or circular
segments, thereby eliminating the post-processing stage re-
quired to trim the artifacts generated by this preprocessing.
Another promising important advantage of this approach is
the option of applying the same basic strategy to generate
Voronoi diagram and medial axis of an object bounded by
piecewise rational curves. This is currently under investiga-
tion.

In conclusion, it should be noted that the proposed algo-
rithm does not approximate the bisector segments and the
output is the boundary of a Voronoi cell that is represented
as piecewise implicit forms in a tr-parameter space that is
arbitrarily precise. The presented approach can also be im-
plemented using exact arithmetic [29], using packages such
as bignums [30], and using long floats [31].

Acknowledgments
This research was supported in part by the Israel Science
Foundation (grant No. 857/04) and in part by an European
FP6 NoE grant 506766 (AIM@SHAPE), and in part by the
Korean Ministry of Science and Technology (MOST) under
the Korean-Israeli Binational Research Grant.

9. REFERENCES
[1] F. Aurenhammer, “A survey of fundamental

geometric data structure”, ACM Computing Surveys,
Volume 23, Number 3, September 1991, pp 345–405.

[2] H. Alt and O. Schwarzkopf, “The Voronoi
diagram of curved objects”, 11th Symposium on
Compuational Geometry, 1995, pp 89–97.

[3] H. Blum, “A transformation for extracting new
descriptors of shape”, in Models for the Perception of
Speech and Visual Form, ed. Walthen Dunn, MIT
Press, 1967, pp 362–381.

[4] H. Blum, “Biological shape and visual science (Part
I)”, Journal of Theoretical Biology, Volume 38, 1973,
pp 205–287.

[5] G. S. Baja and E. Thiel, “(3-4)-Weighted skeleton
decomposition for pattern representation and
description”, Pattern Recognition, Volume 27, Number
8, 1994, pp 1039–1049.

[6] U. Montanari, “Continuous skeletons from digitized
images”, Journal of the Association for Computing
Machinery, Volume 16, Number 4, October 1969, pp
534–549.

[7] H. N. Gursoy and N. M. Patrikalakis “An
automatic coarse and finite surface mesh generation
scheme based on medial axis transform: Part 1
Algorithms”, Engineering with Computers, Volume 8,
1992, pp 121–137.

[8] C. G. Armstrong, “Modeling requirements for finite
element analysis”, Computer Aided Design, Volume
26, Number 7, July 1994, pp 573–578.

[9] J. O’Rourke, Computational Geometry in C,
Cambridge University Press, 1993.

[10] D. Kim, I. Hwang and B. Park “Representing the
Voronoi diagram of a simple polygon using rational
quadratic Bèzier curves”, Computer-Aided Design,
Volume 27, Number 8, 1995, pp 605–614.

[11] C. K. Yap, “An O(n log n) algorithm for the Voronoi
diagram of a set of simple curve segments”, Discrete
Computational Geometry, Number 2, 1987, pp
365–393.

[12] V. Srinivasan and L. R. Nackman, “Voronoi
diagram for multiply-connected polygonal domains I:
Algorithm”, IBM Journal of Research and
Development, Volume 31, Number 3, May 1987, pp
361–372.

[13] M. Held, “Voronoi diagram and offset curves of
curvilinear polygons”, Computer-Aided Design,
Volume 30, Number 4, 1998, pp 287–300.

[14] R. Ramamurthy and R. Farouki, “Voronoi
diagram and medial axis algorithm for planar domains
with curved boundaries I: Theoretical foundations”,
Journal of Computational and Applied Mathematics,
Volume 102, 1999, pp 119–141.

[15] M. Ramanathan and B. Gurumoorthy,
“Constructing medial axis transform of planar
domains with curved boundaries”, Computer-Aided
Design, Volume 35, Number 7, June 2003, pp 619–632.

[16] R. Farouki and J. Johnstone, “The bisector of a
point and a plane parametric curve”, Computer Aided
Geometric Design, Volume 11, Number 2, 1994, pp
117–151.

[17] G. Elber and M. Kim, “The Bisector surface of
rational space curves”, ACM Transaction on Graphics,
Volume 17, Number 1, January 1998, pp 32–39.

[18] R. Farouki and R. Ramamurthy,
“Specified-precision computation of curve/curve
bisectors”, International Journal of Computational
Geometry and Applications, Volume 8, Number 5 and
6, 1998, pp 599–617.

[19] G. Elber and M. Kim, “Bisector curves for planar
rational curves”, Computer-Aided Design, Volume 30,
Number 14, 1998, pp 1089–1096.

[20] D. Lavender, A. Bowyer, J. Davenport, A.
Wallis and J. Woodwark, “Voronoi diagrams of set
theoretic solid sodels”, IEEE Computer Graphics and
Applications, September 1992, pp 69–77.

[21] J. J. Chou, “Voronoi diagrams for planar shapes” ,
IEEE Computer Graphics and Applications, March
1995, pp 52–59.

[22] M. Sharir and P. K. Agarwal, Davenport-Schinzel
sequences and their geometric applications, Cambridge
University Press, 1995.

[23] Ju-Hsein Kao,“Process planning for
additive/subtractive solid free-form fabrication using
medial axis transform”, Ph.D. Thesis, Department of
Mechanical Engineering, Stanford University, CA,
June 1999.

[24] G. Elber, IRIT 9.0 Users’s Manual, Technion, 2002,
http://www.cs.technion.ac.il/∼irit.

[25] C. Hoffmann and P. Vermeer, “Eliminating
extraneous solutions in curve and surface operation”,
International Journal of Computational Geometry and
Applications, Volume 1, Number 1, 1991, pp 47–66.

[26] G. Elber and M-S Kim, “Geometric constraint
solver using multivariate rational spline functions”,
Proceedings of the Symposium on Solid Modeling and
Applications, Ann Arbor, Michigan, 2001, pp 1–10.

[27] J. Keyser, T. Culver, D. Manocha and S.
Krishnan, “Efficient and exact manipulation of
algebraic points and curves”, Computer-Aided Design,
Volume 32, Number 11, 15 September 2000, pp
649–662.

[28] D. Halperin, Handbook of Discrete and
Computational Geometry, In Jacob E. Goodman and
Joseph O’Rourke, editors, CRC Press LLC, Boca
Raton, FL, 1997.

[29] C. Yap, “Towards exact geometric computation”,
Computational Geometry: Theory and Applications,
Volume 7, Number 1, 1997, pp 3–23.

[30] http://www.swox.com/gmp/

[31] http://cs.nyu.edu/exact/core/

