
Intersecting a freeform surface with a general swept surface

Joon-Kyung Seonga, Ku-Jin Kimb, Myung-Soo Kima,c,*, Gershon Elberd,1, Ralph R. Martine

aSchool of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea
bDepartment of Computer Engineering, Kyungpook National University, Kyungpook, South Korea

cInstitute of Computer Technology, Seoul National University, Seoul, South Korea
dDepartment of Computer Science, Technion, Haifa 32000, Israel

eSchool of Computer Science, Cardiff University, South Wales, UK

Accepted 30 October 2004

Abstract

We present efficient and robust algorithms for intersecting a rational parametric freeform surface with a general swept surface. A swept

surface is given as a one-parameter family of cross-sectional curves. By computing the intersection between a freeform surface and each

cross-sectional curve in the family, we can solve the intersection problem. We propose two approaches, which are closely related to each

other. The first approach detects certain critical points on the intersection curve, and then connects them in a correct topology. The second

approach converts the intersection problem to that of finding the zero-set of polynomial equations in the parameter space. We first present

these algorithms for the special case of intersecting a freeform surface with a ruled surface or a ringed surface. We then consider the

intersection with a general swept surface, where each cross-sectional curve may be defined as a rational parametric curve or as an implicit

algebraic curve.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Surface–surface intersection (SSI) is an important

problem in geometric modeling and processing, particularly

for applications in CAD/CAM and solid modeling. Many

different approaches have been proposed. However, it is still

a difficult problem to solve with sufficient accuracy,

efficiency and robustness. The main difficulty lies in

analyzing the topological structure of the intersection

curve: it is not easy to determine the exact number of

connected components and the correct topological arrange-

ment of these components.
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Because of the difficulty in dealing with general freeform

surfaces, considerable research has been devoted to

intersecting surfaces of special types [13]. Martin et al.

[14] and de Pont [3] considered intersection of a cyclide

with a quadric, and with another cyclide. Johnstone [11]

proposed an algorithm to intersect a cyclide with a ringed

surface. (The term ringed surface was coined by Johnstone

[11]; it is a surface generated by sweeping a circle while

changing its size and orientation). Heo et al. [8] presented an

algorithm for intersecting two ruled surfaces. They reduced

the intersection problem to a search for the zero-set of the

function: f(u, v)Z0, where f(u, v) is a bivariate polynomial

of relatively low degree. This approach was later applied to

the case of intersecting two ringed surfaces [7]. In the

present paper, we extend this result to the intersection of a

rational parametric freeform surface with a general swept

surface. A swept surface is a one-parameter family of cross-

sectional curves. In this paper, we focus on the case where

each curve in the family is obtained by applying an affine

transformation to a template curve. By taking an affine

spline motion applied to a template curve [10], we can
Computer-Aided Design 37 (2005) 473–483
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad


Fig. 1. Three different types of intersection between S and the circles of R.
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generate a swept surface. Ruled surfaces and ringed surfaces

are special types of swept surfaces, which are constructed by

sweeping a line or a circle.

We present two methods for intersecting a freeform

surface with a swept surface. The first approach detects

certain critical points on the intersection curve, and connects

them in a correct topology; the curve segments connecting

each pair of adjacent critical points is generated by a

numerical curve tracing technique [1,2,5]. This procedure

gives the entire intersection curve. The second approach

transforms the intersection problem into a simple problem

of solving a system of (nK1) polynomial equations in n

variables. (See Elber and Kim [6] or Patrikalakis and

Maekawa [15] for details of solving a system of m

polynomial equations in n variables).

Kim et al. [12] previously proposed a related topology-

construction approach for intersecting a sphere with a

surface of revolution. A surface of revolution is a special

kind of swept surface which is generated by sweeping a

circle of varying radius along a line. Fig. 1(a) shows the

silhouette CS of a sphere S and the generating curve CC
R for a

surface of revolution R. Each point p1ð2CC
R Þ outside the

silhouette CS generates a circle on the surface R that has no

intersection with the sphere S. Thus we can completely

ignore the curve segments of CC
R that lie outside CS. On the

other hand, each point p2ð2CC
R Þ inside CS generates a circle

that intersects the sphere S transversally in two distinct

points. When we follow the curve CC
R inside the circle CS,

we can trace two branches of the intersection curve ShR,

one on the front hemisphere and the other on the back

hemisphere. The two branches are first created (starting at

the same point) when the curve CC
R enters the circle CS, and

they merge to form a closed loop when the curve CC
R leaves

CS. Finally, each point p3 lying on CC
R and CSð2CC

R hCSÞ

generates a circle that intersects S tangentially. All

tangential intersections between the sphere S and the

cross-sectional circles of R can be detected by computing

CC
R hCS, which can be reduced to solving a univariate

polynomial equation. We will use similar principles in the

first approach presented in this paper.

Here, we consider the intersection between a rational

parametric freeform surface and a general swept surface.

The topology of the intersection curve is in this case
determined by certain critical points where cross-sectional

curves of a swept surface intersects a freeform surface

tangentially. The geometric condition of tangential inter-

section can be formulated as a system of n polynomial

equations in n variables, which in general produces discrete

solutions. The tangential condition is formulated as one of

these equations. By deleting this equation, we obtain a

system of (nK1) equations in n variables, the solution of

which generates a 1-manifold in the parameter space of the

given freeform surface and the swept surface. The

intersection curve is then constructed by projecting

the 1-manifold into the uv-parameter plane of the freeform

surface S(u, v).

We first consider the problem of intersecting a freeform

surface with a ruled surface or a ringed surface. We then

consider the case of intersecting a freeform surface with a

general swept surface. Each cross-sectional curve of the

swept surface may be defined as a rational parametric curve

or as an implicit algebraic curve that moves under a rational

affine spline motion [10].

The rest of this paper is organized as follows. In Section 2,

we discuss how to construct the correct topology of an

intersection curve based on detecting certain critical points

on the curve. In Section 3, we give a simple technique for

reducing the intersection problem to that of computing the

simultaneous zero-set of (nK1) polynomial equations in n

variables. Section 4 presents some experimental results.

Finally, in Section 5, we conclude this paper.
2. Topology construction

We will first present an algorithm that detects critical

points on the intersection curve and constructs the correct

topological structure of the curve. The critical points are

tangential intersection points between the freeform surface

and the cross-sectional curves of the swept surface. The

basic idea of this approach is first explained using an

illustrative example for a simple case where a freeform

surface is intersected with a general cylindrical surface

(i.e. a linear extrusion surface). Then we proceed to the

cases where a freeform surface is intersected with a ruled

surface, or a ringed surface. Finally, we show algorithms for



Fig. 2. Regions on the xy-plane delimited by the silhouette curves and the

boundary curves of S(u,v).
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intersecting a rational freeform surface with a general swept

surface.
2.1. Intersection with a cylindrical surface

For the sake of simplicity, we first consider the case of

intersecting a freeform surface with a cylindrical surface.

We may assume that the cylindrical surface is generated by

extruding a plane curve C(t)Z(x(t), y(t), 0) along the z-

direction. Let L(p) denote a line passing through a point p in

the xy-plane and parallel to the z-axis. The line L(C(t))

intersects a freeform surface S(u,v)Z(x(u,v), y(u,v), z(u,v))

tangentially if and only if the point C(t)Z(x(t), y(t), 0)

is located on the silhouette of S(u,v) when viewed along the

z-direction. The silhouette curves and the boundary curves

of S(u,v) subdivide the xy-plane into several regions. Fig. 2

shows some such surface S(u,v) and its silhouette and

boundary curves projected on to the xy-plane. Also shown

are the corresponding six regions A0,.,A5 on the plane.

The location of a point p (in the xy-plane) leads to the

following relation between a line L(p) and the surface

S(u,v):
(1)
 If p is on the silhouette curve of S(u,v), the line L(p)

intersects S(u,v) tangentially at some location.
(2)
 If p is inside a region Ai, then L(p) intersects S(u, v)

transversally at each intersection point.
Fig. 3. Topological structure of the intersec
(3)
tion
If p and q are in the same region Ai, then L(p) and L(q)

have the same number of intersections with S(u,v).
For points pi, (0%i%5), located in the region Ai (Fig. 2),

the intersection between L(pi) and S(u,v) is classified as

follows:
(1)
 Lðp0ÞhSðu; vÞ consists of one transversal intersection

point.
(2)
 Lðp1ÞhSðu; vÞ consists of two transversal intersection

points.
(3)
 Lðp2ÞhSðu; vÞ consists of three transversal intersection

points.
(4)
 Lðp3ÞhSðu; vÞ consists of one transversal intersection

point.
(5)
 Lðp4ÞhSðu; vÞ consists of two transversal intersection

points.
(6)
 Lðp5ÞhSðu; vÞ has no intersection point.
For points qj, (0%i%2), on the silhouette or boundary

curves, the intersection between L(qj) and S(u,v) is classified

as follows:
(1)
 Lðq0ÞhSðu; vÞ consists of one tangential intersection

point and one transversal intersection point.
(2)
 Lðq1ÞhSðu; vÞ consists of one boundary point of S(u,v).
(3)
 Lðq2ÞhSðu; vÞ consists of one tangential intersection

point and one boundary point of S(u,v).
As one can notice from the above example, the number

of intersections between the line L(p) and the surface S(u,v)

changes when the point p passes across the silhouette or

boundary curves of S(u,v). When the point p traces a

continuous curve C(t) in the xy-plane, this observation leads

to a classification of the topology of the intersection curve

between a surface S(u,v) and a cylindrical surface. Let R(s,t)

denote the cylindrical surface generated by extruding C(t)Z
(x(t), y(t), 0) along the z-direction, where we take sZz. That

is, the curve C(t) in Fig. 3(a) is the projection of the

cylindrical surface R(s,t) on to the xy-plane. For a fixed t0,

each ruling line R(s,t0) is projected on to a curve point C(t0).
curve between R(s,t) and S(u,v).
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The topological structure of the intersection curve between

S(u,v) and R(s,t) is completely determined by the intersec-

tion between C(t) and the silhouette and boundary curves of

S(u,v). By subdividing S(u,v) and C(t) if necessary, we may

assume that the curve C(t) does not pass through any of the

self-intersection points of the silhouette or boundary curves

of S(u,v); that is, it does not pass through points such as q2 in

Fig. 2. Moreover, we assume that the surface S(u,v) and the

curve C(t) have no self-intersection.

Fig. 3(a) shows a sequence of points C(ti), for iZ0,.,10,

where the even-indexed curve points C(t0),C(t2),.,C(t10)

are located on the silhouette or boundary curves of S(u,v).

On the other hand, the odd-indexed curve points

C(t1),C(t3),.,C(t9) lie inside the regions Ai; the ti satisfy

tiK2 ! tiK1! ti. Now, in Fig. 3(b), the curve C(t) is stretched

out along its parameter line, which is the t-axis. Each dotted

line (parallel to the z-axis) corresponds to a ruling line

L(C(ti)) of the cylindrical surface R(s,t). The correct

topology of the intersection curve is completely determined

by the discrete set of intersection points LðCðtiÞÞhSðu; vÞ,

for iZ0,.,10. The intersection points on each line L(C(ti))

are sorted along the z-direction. We connect discrete points

on two adjacent vertical lines according to their z-order.

Each tangential intersection point is connected to two

transversal intersection points on an adjacent vertical line;

or it is an isolated point.

Three cases where the number of points on LðCðtiC1ÞÞ is

larger than on L(C(ti)) are shown in detail in Fig. 4.

In Fig. 4(a) there is a tangential intersection point (marked

with a filled circle) on L(tiC1), whereas in Fig. 4(b) there is

a boundary point (marked by a square) on L(tiC1). In these

cases, a new component starts at the point, and the other

remaining transversal intersection points are connected as

usual. Fig. 4(c) shows the case where L(ti) contains a

tangential intersection point, which may be considered as a

double point and is thus connected to two transversal

intersection points. In the opposite case, where the number

of points on L(ti) is larger than the number on L(tiC1), we

apply a similar rule. In this case, two branches may meet at a

tangential intersection point, where the corresponding loop

is closed.

In the above discussion, we considered the case where

the curve C(t) intersects the silhouette or boundary curves of

S(u,v) transversally. The case of tangential intersection is
Fig. 4. Three cases where there are more points on L(tiC1) than on L(ti).
more involved. When the curve C(t) intersects the silhouette

curve of S(u,v) tangentially at p, we may consider it as

a double intersection. The tangential intersection point at

LðpÞhSðu; vÞ becomes a singular point where two different

loops meet and the intersection curve self-intersects. In the

case where the curve C(t) touches the silhouette curve of

S(u,v) externally, the tangential intersection point may be an

isolated intersection point.

Once the topological structure has been determined, the

intersection curve itself can be constructed by numerically

tracing the intersection curve using a conventional tech-

nique [1,2,5].

In some degenerate cases, the curve C(t) may also

intersect the silhouette curves of S(u,v) along some curve

segments C(t), ðta% t% tbÞ, not just at discrete points. The

surface–surface intersection then includes some tangential

intersection curves, or even some cylindrical surface

patches. Such degenerate singular intersections are extre-

mely difficult to deal with using conventional techniques.

Nevertheless, in our approach, the problem is reduced to a

simpler problem of extracting the silhouette curve segments

or the silhouette surface patches of S(u,v) that project on to

the corresponding curve segments C(t), ðta% t% tbÞ. Let

Nðu; vÞZ ðnxðu; vÞ; nyðu; vÞ; nzðu; vÞÞ denote a normal vector

field of the surface S(u,v). We can construct the silhouette

curve or the silhouette surface patch of S(u,v) along the

z-direction by solving: nzðu; vÞZ0. When the function

nz(u,v) vanishes over certain open regions in the uv-plane,

the surface S(u,v) will intersect the cylindrical surface R(s,t)

in some surface patches, not just in 1-manifold curves.
2.2. Intersection with a ruled surface

Now we consider the more general problem of intersect-

ing a freeform surface S(u,v) with a ruled surface R(s,t). A

ruled surface is defined by connecting two space curves

C1(t) and C2(t) by a line:

Rðs; tÞ Z C1ðtÞCsðC2ðtÞKC1ðtÞÞ:

The ruling direction is no longer fixed, but is a function of t,

namely C2ðtÞKC1ðtÞ. Nevertheless, we can apply a similar

argument to the one used in the previous section to classify

the critical points on an intersection curve. So, we need to

detect the values of t that correspond to the ruling lines (in

R(s,t)) that intersect S(u,v) tangentially or at its boundary

curves S(u0, v) or S(u0, v). Fig. 5 shows a loop in the

intersection curve. The loop is delimited by two tangential

intersections of the moving line with the surface S(u,v).

When a ruling line is tangent to the surface S(u,v), the

surface point S(u,v) is on the line. Moreover, the ruling line

is contained in the tangent plane of S(u,v) and thus it is

orthogonal to the normal vector N(u,v). (See Fig. 6(a) for a

configuration where a ruling line touches the surface S(u,v).)

From these conditions, we obtain the following system of

three constraint equations:



Fig. 5. An intersection curve. Two ruling lines intersect tangentially with a

freeform surface and delimit a loop on the intersection curve.
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f1ðu; v; tÞ Z hSðu; vÞKC1ðtÞ;N1ðtÞi Z 0; (1)

g1ðu; v; tÞ Z hSðu; vÞKC1ðtÞ;N2ðtÞi Z 0; (2)

h1ðu; v; tÞ Z hC2ðtÞKC1ðtÞ;Nðu; vÞi Z 0; (3)

where N1(t) and N2(t) are two non-parallel vectors which are

orthogonal to the ruling direction C2ðtÞKC1ðtÞ: Hughes and

Möller [9] proposed an elegant method for the construction

of such vectors N1(t) and N2(t), which have degree no higher

than that of C2ðtÞKC1ðtÞ. When the ruling direction C2ðtÞK
C1ðtÞZ ðdxðtÞ; dyðtÞ; dzðtÞÞ has its first component as the one

with largest magnitude: jdxðtÞjR jdyðtÞj, jdz(t)j, we can take

N1ðtÞZ ðdyðtÞ;KdxðtÞ; 0Þ and N2ðtÞZ ðdzðtÞ; 0;KdxðtÞÞ. Other

cases can be handled in a similar way.

The intersection between a boundary curve S(u,v0) and a

ruling line can be computed by solving the following system

of two equations:

f2ðu; tÞ Z hSðu; v0ÞKC1ðtÞ;N1ðtÞi Z 0;

g2ðu; tÞ Z hSðu; v0ÞKC1ðtÞ;N2ðtÞi Z 0:

The intersection between S(u0, v) and a ruling line can be

computed in a similar way.

After all critical points have been detected by solving the

above systems of polynomial equations, their t-values are

sorted in ascending order and given even indices:

t0! t2!/! t2m. Now take t2kK1Z ðt2kK2C t2kÞ=2. For

each ti, ð0% i%2mÞ, we intersect the freeform surface
Fig. 6. A line (a) or a circle (b) touches the surface S(u,v).
S(u,v) with a ruling line

Rðs; tiÞ : C1ðtiÞCsðC2ðtiÞKC1ðtiÞÞ:

Let R(sj,ti), ð1% j%niÞ, denote the intersection points sorted

along the ruling’s s-direction. We can now apply the

topology construction scheme previously illustrated in

Fig. 3; in this case the s-axis is used instead of the z-axis.

Once the topology has been determined, each segment of the

intersection curve is again generated by numerical curve

tracing along the intersection between two surfaces [1,2,5].

In some degenerate cases, the ruled surface may intersect

the surface S(u,v) tangentially along curve segments or even

on surface patches. Eqs. (1)–(3) will then produce a set of 1-

manifold curve segments or 2-manifold surface patches in

the uvt-space as their solution set. We can distinguish the

two cases by checking the dimensionality of the solution set.

Whenever S(u,v) and R(s,t) intersect tangentially, the

implicit surfaces f1(u,v,t)Z0 and g1(u,v,t)Z0 also intersect

tangentially on their common solution set since in this case

the equation f1(u,v,t)Kg1(u,v,t)Z0 has multiple roots.

Moreover, the implicit surface h1(u,v,t)Z0 becomes

singular on the common zero-set since the tangential

condition is almost satisfied in the region close to tangential

intersections. When the zero-set includes 2-manifold sur-

face patches, the surfaces S(u,v) and R(s,t) also intersect

tangentially over surface patches. This observation also

applies to other types of surface–surface intersections to be

discussed in later sections.
2.3. Intersection with a ringed surface

A ringed surface is a one-parameter family of circles,

where the generator circle moves in space while continu-

ously changing its position, size and orientation. Given a

freeform surface S(u,v) and a ringed surface Rðs; tÞZgOt,

their intersection curve can be computed by characterizing

the intersection points between each circle Ot and the

surface S(u,v).

Let C(t) denote the center of the circle Ot; and assume

that the circle has radius r(t) and is contained in a plane with

normal D(t). When the circle Ot intersects the surface S(u,v),

the surface point S(u,v) is contained in the circle Ot:

f3ðu; v; tÞ Z hSðu; vÞKCðtÞ;DðtÞi Z 0; (4)

g3ðu; v; tÞ Z kSðu; vÞKCðtÞk2 Kr2ðtÞ Z 0: (5)

Eq. (4) implies that S(u,v) is contained in the plane of the

circle Ot; and Eq. (5) means that the circle Ot has radius

r(t) Moreover, when the circle Ot intersects the surface

S(u,v) tangentially, the three vectors Sðu; vÞKCðtÞ, D(t)

and N(u,v) become coplanar. (See Fig. 6(b) for a

configuration where a circle touches the surface S(u,v).)

Consequently, we have

h3ðu; v; tÞ Z hðSðu; vÞKCðtÞÞ!DðtÞ;Nðu; vÞi Z 0: (6)
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The intersection between a boundary curve S(u,v0) and

a circle Ot can be computed by solving the following

system of two equations:

f4ðu; tÞ Z hSðu; v0ÞKCðtÞ;DðtÞi Z 0;

g4ðu; tÞ Z kSðu; v0ÞKCðtÞk2 Kr2ðtÞ Z 0:

The case of Sðu0; vÞhOt can be computed similarly.

The intersection curve itself is constructed by a

numerical curve tracing. However, in the case of

intersection with a ringed surface, the intersection points

along the s-axis repeat themselves with a period of 2p.

Thus, matching between two adjacent ti-circles becomes

slightly more complicated. Given a set of discrete

intersection points R(sj,ti), ð0% i%2m; 1% j%niÞ, on

the ringed surface, we start a numerical curve tracing

from a point R(sj,ti), with an even index i, and continue

the tracing until we reach an adjacent circle R(s,tiG1),

where we find a mate R(sj,tiG1) from niG1 possible

candidates of transversal intersection points. Once this

connection has been made, the matching becomes

straightforward for other intersection points on the two

adjacent circles R(s,ti) and R(s,tiG1).
2.4. Intersection with a swept surface

Now we consider the intersection of a freeform surface

with a swept surface. A swept surface may be generated

by sweeping a rational parametric curve in space or by

sweeping an implicit algebraic curve. In the previous two

cases of intersection with a ruled surface or a ringed

surface, we represented the moving line or the moving

circle as the intersection of two planes or as the

intersection of a plane and a sphere. The same approach

can be applied to a general cross-sectional curve that is

defined as the intersection of two implicit surfaces. The

curve can move under an affine spline motion [10] by

making the two implicit surfaces move under the same

motion. The cross-sectional curves may also be defined as

the result of a rational affine spline motion applied to a

template rational spline curve K(s). In this case, the curve

parameter s also appears in the characterizing equations

for tangential intersections.
Fig. 7. (a) A cross-sectional curve is represented as an intersection of two

quadrics; and (b) a swept surface is generated by sweeping the intersection

of two quadrics.
2.4.1. Sweeping an implicit algebraic curve

We consider a general swept surface where each cross-

sectional curve is defined as an intersection of two time-

dependent implicit algebraic surfaces: Ft(x,y,z)Z0 and

Gt(x,y,z)Z0. The intersection curve between a rational

freeform surface S(u,v) and the swept surface can be

computed by solving

f5ðu; v; tÞ Z FtðSðu; vÞÞ Z 0; (7)

g5ðu; v; tÞ Z GtðSðu; vÞÞ Z 0: (8)
Moreover, when the cross-sectional curve intersects the

surface S(u,v) tangentially, we have

h5ðu; v; tÞ Z hVFtðSðu; vÞÞ!VGtðSðu; vÞÞ;Nðu; vÞi Z 0; (9)

where VFt is the gradient of Ft and VGt is the gradient of Gt.

When two algebraic surfaces F(x,y,z)Z0 and G(x,y,z)Z0

are under the same affine spline motion, the two time-

dependent algebraic surfaces are given as follows

Ftðx; y; zÞ Z Fð½ðx; y; zÞKTðtÞ�LK1ðtÞÞ Z 0;

Gtðx; y; zÞ Z Gð½ðx; y; zÞKTðtÞ�LK1ðtÞÞ Z 0;

where T(t) represents a rational translational motion and L(t)

is a non-singular 3!3 matrix with rational spline functions

as its entries. Note that the inverse matrix LK1(t) also has

rational spline functions as its entries (as can be seen from

Cramer’s rule). Fig. 7 shows an example of a swept surface,

where each cross-sectional curve is defined as the intersec-

tion of two quadrics.

The intersection between a boundary curve S(u,v0) and

the swept surface can be computed by solving

f6ðu; tÞ Z FtðSðu; v0ÞÞ Z 0; g6ðu; tÞ Z GtðSðu; v0ÞÞ Z 0:

The case of intersecting S(u0, v) and the swept surface can

be handled in a similar way.
2.4.2. Sweeping a rational parametric curve

Let K(s)Z(x(s), y(s), z(s)) denote a rational spline curve.

Now we apply a time-dependent non-singular linear

transformation L(t) to K(s) and then a translation TðtÞZ
ðaðtÞ; bðtÞ;gðtÞÞ to the result K(s)L(t), where L(t) is a 3!3

matrix with each entry as a rational spline function of t, and

a(t), b(t), and g(t) are also rational functions of t. Then

a rational swept surface R(s,t) is defined as

Rðs; tÞZg½KðsÞLðtÞCTðtÞ�. The intersection between

R(s,t) and a freeform surface S(u,v) is characterized by the

following vector equation:

f7ðu; v; s; tÞ Z Sðu; vÞKKðsÞLðtÞKTðtÞ Z 0: (10)

At a tangential intersection point, the tangent vector

K 0(s)L(t) of a cross-sectional curve KðsÞLðtÞCTðtÞ should be

orthogonal to the normal vector N(u,v) of the freeform



Fig. 8. A ruled surface as a one-parameter family of lines, where each line is defined as the intersection of two non-parallel planes.
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surface S(u,v):

h7ðu; v; s; tÞ Z hK 0ðsÞLðtÞ;Nðu; vÞi Z 0: (11)

The intersection between a boundary curve S(u,v0) and the

swept surface R(s,t) can be computed by solving

f8ðu; s; tÞ Z Sðu; v0ÞKKðsÞLðtÞKTðtÞ Z 0:

The case of intersecting S(u0, v) and R(s,t) can be handled in a

similar way.
3. Reduction to parameter space

We now go on to present an alternative approach that

reduces the intersection problem to that of computing the

zero-set of (nK1) polynomial equations in n variables. When

the cross-sectional curves are defined as the intersection of

two implicit surfaces, the problem is formulated with nZ3,

i.e. we need to solve two equations in three variables. On the

other hand, when the cross-sectional curves are rational

parametric curves, the problem is formulated with nZ4. In

either case, the result is a 1-manifold in the parameter space.

(In some degenerate cases, we may also produce some 2-

manifold surface patches in the solution set.) By projecting

the 1-manifold on to the uv-parameter plane of S(u,v), the

intersection curve can be constructed.

In the case of intersection with a ruled surface, we may

represent each ruling line

Rðs; tÞ Z C1ðtÞCsðC2ðtÞKC1ðtÞÞ

as the intersection of two non-parallel planes with normal

vectors N1(t) and N2(t) (Fig. 8). The intersection between
Fig. 9. A ringed surface as a one-parameter family of circles, where e
a freeform surface S(u,v) and a ruling line is characterized as

follows:

f1ðu; v; tÞ Z hSðu; vÞKC1ðtÞ;N1ðtÞi Z 0;

g1ðu; v; tÞ Z hSðu; vÞKC1ðtÞ;N2ðtÞi Z 0;

which are two polynomial equations in three variables u, v, t.

Fig. 9 shows a ringed surface as a one-parameter family

of circles, where each circle is defined as the intersection

between a sphere and a plane. The intersection condition

between a freeform surface S(u,v) and a circle Ot is given as

follows:

f3ðu; v; tÞ Z hSðu; vÞKCðtÞ;DðtÞi Z 0;

g3ðu; v; tÞ Z kðu; vÞKCðtÞk2 Kr2ðtÞ Z 0;

which are two polynomial equations in three variables u, v, t.

We can represent a swept surface as a one-parameter

family of cross-sectional curves. For a swept surface

generated by a one-parameter family of implicit algebraic

curves, each defined by two algebraic surfaces, the

intersection curve is constructed by solving

f5ðu; v; tÞ Z FtðSðu; vÞÞ Z 0; g5ðu; v; tÞ Z GtðSðu; vÞÞ Z 0;

which are two polynomial equations in three variables u, v,

t. When a swept surface is generated by a rational

parametric curve K(s) under a rational affine spline motion,

the intersection curve can be constructed by solving

f7ðu; v; s; tÞ Z Sðu; vÞKKðsÞLðtÞKTðtÞ Z 0;

which is a vector equation and represents three polynomial

equations in four variables u, v, s, t.
ach circle is defined as the intersection of a sphere and a plane.
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Now we have reduced the intersection problem to that of

computing the zero-set of (nK1) polynomial equations in n

variables. The result is a 1-manifold. By projecting this

zero-set on to the uv-plane, the intersection is generated as a

curve embedded in the freeform surface S(u, v).
4. Discussion and experimental results

The polynomial equations for constructing topology

have one more equation (for the tangential condition) than

those for the problem reduction approach. Moreover, we

have to solve n polynomial equations for topology

construction, but one less equation for the reduction

approach. However, the solutions of n equations are discrete
Fig. 10. Intersection between the Utah teapot and
points in general, whereas the zero-sets of (nK1) equations

in the reduction approach are 1-manifolds. It is computa-

tionally more efficient to compute discrete solutions than to

construct 1-manifolds. Therefore, it is worthwhile to solve

the n polynomial equations in n variables needed for

topology construction.

Topology construction requires a second stage of

numerical tracing that generates segments of the intersec-

tion curve. This can be achieved using conventional

techniques for numerical tracing along intersection curves.

Alternatively, we can solve (nK1) polynomial equations in

n variables, which have been formulated for the problem

reduction approach. These equations define (nK1) implicit

surfaces in an n-dimensional space, which is yet another

surface–surface intersection problem when nZ3. The two
(a) a ruled surface or (b) a ringed surface.



Fig. 11. Intersection based on the problem reduction scheme.
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approaches proposed in this paper are thus closely related to

each other. The user may choose either one of them or

combine both depending on applications and tools available.

Fig. 10(a) shows the result of intersecting the Utah teapot

with a ruled surface using the topology construction scheme.

Fig. 10(b) shows the same teapot intersected with a ringed

surface. Results based on the simple reduction scheme are

shown in Fig. 11. A result for intersection with a general

swept surface is shown in Fig. 12, where the intersection

curves are shown in bold lines. The computation time for

these results are about the same, all within one or two seconds

on 2GHz Pentium IV machine.

Fig. 13(a) shows a degenerate case where a cylinder

and a torus intersect tangentially along a circle. The

cylinder is given as a freeform surface S(u, v) and the

torus is represented as a ringed surface. Fig. 13(b) shows

the zero-sets of f3(u,v,t)Z0, g3(u,v,t)Z0, and h3(u,v,t)Z0,

in red, magenta and yellow, respectively. The common

zero-set of these three equations includes two discrete
Fig. 12. Intersection between a freefo
points (in green) and one line (in cyan). Along the cyan

line, the two surfaces, f3(u,v,t)Z0, and g3(u,v,t)Z0, meet

tangentially, and the other surface h3(u,v,t)Z0, is singular.

On the other hand, at two green isolated intersection

points, the three surfaces intersect transvesally. Fig. 14(a)

shows another example of degenerate intersection where

two surfaces intersect tangentially on a surface patch. In

Fig. 14(b), the two surfaces of f3(u,v,t)Z0 and g3(u,v,t)Z
0 also meet tangentially on a surface patch (in cyan).

Since the surface h3(u,v,t)Z0 is singular over this area,

the result of applying a marching cube algorithm

generates a large volumetric solution set for

K3!h3ðu; v; tÞ!3, even for a small value of 3O0.

Since h3(u,v,t)Z0 is singular around this region, it is

numerically unstable to compute its zero-set or to evaluate

its normal direction. Thus we have constructed the

common zero-set of f3ðu; v; tÞZg3ðu; v; tÞZ0 on a tangen-

tial surface patch by checking whether their gradients

Vf3(u,v,t) and Vg3(u,v,t) are also collinear.
rm surface and a swept surface.



Fig. 14. Degenerate tangential intersection on a surface patch.

Fig. 13. Degenerate tangential intersection along a curve.
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5. Conclusion

We have introduced two approaches to the problem of

intersecting a freeform surface with a swept surface. Our

first scheme was based on detecting critical points and

constructing the intersection curve with a correct topology

based on the critical points. Our second scheme reduces the

surface–surface intersection problem to a zero-set finding in

the parameter space. These two schemes are closely related

to each other. Working in the parameter space, the proposed

algorithm can also deal with degenerate singular intersec-

tions such as tangential intersection along a curve or overlap

on a surface patch.
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