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Abstract

The bisector of two rational varieties in Rd is, in general, non-rational. However, there are some cases
in which such bisectors are rational; we review some of them, mostly in R2 and R3. We also describe the
a-sector, a generalization of the bisector, and consider a few interesting cases where a-sectors become
quadratic curves or surfaces. Exact a-sectors are non-rational even in special cases and in con®gura-
tions where the bisectors are rational. This suggests the pseudo a-sector which approximates the
a-sector with a rational variety. Both the exact and the pseudo a-sectors identify with the bisector when
a � 1=2.
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1. Introduction

Given m di�erent objects O1; . . . ;Om; the Voronoi region of an object
Oi �1 � i � m� is de®ned as the set of points that are closer to the object Oi than to
any other object Oj �j 6� i�. The boundary of each Voronoi region is composed of
portions of bisectors, i.e., the set of points that are equidistant from two di�erent
objects Oi and Oj �i 6� j�. The medial axis of an object is de®ned as the set of
interior points for which the minimum distance to the boundary corresponds to
two or more di�erent boundary points; that is, the medial axis is the self-bisector
of the boundary of an object.

The concepts of Voronoi diagram and medial axis greatly simplify the design of
algorithms for various geometric computations, such as shape decomposition [1],
®nite-element mesh generation [19, 20], motion planning with collision avoidance
[13], and NC tool-path generation [14]. When the objects involved in these ap-
plications have freeform shapes, the bisector construction for rational varieties is
indispensable. Unfortunately, the bisector of two rational varieties, in general, is
non-rational. Moreover, even the bisector of two simple geometric primitives
(such as spheres, cylinders, cones, and tori) is not always simple.

In the ®rst part of this paper we review some important special cases where the
bisectors are known to be rational. Farouki and Johnstone [10] showed that the
bisector of a point and a rational curve in the same plane is a rational curve. Elber
and Kim [4] showed that in R3 the bisector of two rational space curves is a
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rational surface, whereas the bisector of a point and a rational space curve is a
rational ruled surface (which is also developable [16]). Moreover, the bisector of a
point and a rational surface is also a rational surface [6]. Although the bisector of
two rational surfaces, in general, is non-rational, there are some special cases in
which the bisector is a rational surface. Dutta and Ho�mann [2] considered the
bisector of simple CSG primitives (planes, spheres, cylinders, cones, and tori).
Note that these CSG primitives are surfaces of revolution. When two CSG
primitives have the same axis of rotation, their bisector is a quadratic surface of
revolution, which is rational. Elber and Kim [6] showed that the bisector of a
sphere and a rational surface with a rational o�set is a rational surface; moreover,
the bisector of two circular cones sharing the same apex is also a rational conic
surface with the same apex. In a recent work, Peternell [16] investigated algebraic
and geometric properties of curve-curve, curve-surface, and surface-surface
bisector surfaces. Based on these properties, Peternell [16] proposed elementary
bisector constructions for various special pairs of rational curves and surfaces,
using dual geometry and representing bisectors as envelopes of symmetry lines or
planes.

This paper outlines the computational procedures that construct the rational
bisector curves and surfaces discussed above (except some material discussed by
Peternell [16]). The basic construction steps are important since a similar tech-
nique will be employed in extending the bisector to a more general concept, the
so-called a-sector. Instead of taking an equal distance from two input varieties,
the a-sector allows di�erent relative distances from the two varieties. Even in the
simple case of a point and a line, the a-sector may assume the form of any type of
conic, depending on the value of a �0 < a < 1�. Exact a-sectors are non-rational
even in the special cases where the bisectors are rational. We also present the
pseudo a-sectors which approximate exact a-sectors with rational varieties. Both
the exact and pseudo a-sectors reduce to bisectors when a � 1=2.

The rest of this paper is organized as follows. In Section 2, we consider special
cases where the bisectors of two varieties are rational curves and surfaces (in R2

and R3, respectively). In Section 3, we consider bisectors in higher dimensions.
In Section 4, we extend the bisector (`1=2-sector') to the more general concept of
a-sector. We conclude this paper with some ®nal remarks in Section 5.

2. Rational Bisectors

There are some special cases in R2 and R3 where the bisector has a simple closed
form or a rational representation. In this section we survey some important results
already known.

2.1. Point-Curve Bisectors in R2

Farouki and Johnstone [10] showed that the bisector of a point and a rational
curve in the plane is a rational curve. Consider a ®xed point Q 2 R2 and a regular
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C1 rational curve C�t� 2 R2. Let B�t� denote the bisector point of Q and C�t�.
Then we have

B�t� ÿ C�t�; dC�t�
dt

� �
� 0; �1�

kB�t� ÿ Qk � kB�t� ÿ C�t�k; �2�

where k � k denotes the length of a vector (in the L2 norm).

Equation (1) means that the bisector point B�t� belongs to the normal line of the
curve C�t�, while Eq. (2) implies that B�t� is at an equal distance from Q and C�t�.
We can square both sides of Eq. (2) and cancel out kB�t�k2, to obtain the
equation

hB�t�;C�t� ÿ Qi � kC�t�k
2 ÿ kQk2
2

: �3�

Equations (1) and (3) are linear in B�t�. Using Cramer's rule, we can solve these
equations for B�t� � �bx�t�; by�t�� and compute a rational representation of B�t�.
Note that the resulting bisector curve B�t� has its supporting foot points at Q and
C�t�. In other words, the bisector curve B�t� has the same parameterization as the
original curve C�t�.

2.2. Point-Curve, Curve-Curve, and Point-Surface Bisectors in R3

Elber and Kim [4] showed that the bisector of two rational space curves is a
rational surface; moreover, the bisector of a point and a rational space curve in R3

is a rational ruled surface. Consider a ®xed point Q 2 R3 and a regular C1 rational
space curve C�t� 2 R3. Let B�t� be the bisector point of Q and C�t�. Then we have

B�t� ÿ C�t�; dC�t�
dt

� �
� 0; �4�

kB�t� ÿ Qk � kB�t� ÿ C�t�k: �5�

Since B�t� is a three-dimensional point, there is one degree of freedom in these
equations.

Consider a ®xed location C�t0� on the space curve C�t�. Clearly B�t0� 2 Pn�t0�,
where Pn�t0� is the normal plane of the curve at the ®xed point C�t0�. Further-
more, B�t0� is at an equal distance from Q and C�t0�. Hence, B�t0� must belong to
the plane Pd�t0� which bisects Q and the point C�t0�. Any point on the line
Lnd�t0� � Pn�t0� \Pd�t0� satis®es both Eqs. (4) and (5). Thus, the bisector sur-
face S�u; t� of the point Q and the curve C�t� must be a ruled surface, where each
ruling line Lnd�t� is parameterized by a linear parameter u. Figure 1a shows an
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example of such a rational ruled bisector surface generated in this case from a
point and a periodic rational space curve in R3. Based on the concept of dual
geometry, Peternell [16] showed that the ruled surface S�u; t� is in fact a devel-
opable surface.

The bisector surface (in R3) of two regular C1 rational space curves C1�u� and
C2�v� is also rational. Let B�u; v� be the bisector point of C1�u� and C2�v�. Then,
the bisector must satisfy the following three equations:

B�u; v� ÿ C1�u�; dC1�u�
du

� �
� 0; �6�

B�u; v� ÿ C2�v�; dC2�v�
dv

� �
� 0; �7�

kB�u; v� ÿ C1�u�k � kB�u; v� ÿ C2�v�k: �8�

Equations (6) and (7) mean that the bisector point B�u; v� is simultaneously
contained in the two normal planes of C1�u� and C2�v�, while Eq. (8) implies that
B�u; v� is at an equal distance from C1�u� and C2�v�.
The constraints in Eqs. (6)±(8) are all linear in B�u; v�. (Note that the quadratic
terms in Eq. (8) cancel out.) Using Cramer's rule, we can solve these equations for
B�u; v� � �bx�u; v�; by�u; v�; bz�u; v�� and compute a rational surface representation
of B�u; v�. The resulting bisector surface follows the parameterization of the two

Figure 1. a The bisector surface of a point and a space curve in R3. b The bisector surface of a line and
a round triangular periodic cubic curve in R3. The original curves are shown in gray
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original curves. In other words, for each point on the ®rst curve, C1�u0�, and each
point on the second curve, C2�v0�;B�u0; v0� is the bisector point. Figure 1b shows
a rational bisector surface of a line and a rounded triangular periodic cubic curve
in R3.

The bisector of a point and a rational surface in R3 is also rational [6]. Consider a
®xed point Q 2 R3 and a regular C1 rational surface S�u; v� 2 R3. Let B�u; v� be
the bisector point of Q and S�u; v�. Then we have,

B�u; v� ÿ S�u; v�; @S�u; v�
@u

� �
� 0; �9�

B�u; v� ÿ S�u; v�; @S�u; v�
@v

� �
� 0; �10�

kB�u; v� ÿ Qk � kB�u; v� ÿ S�u; v�k: �11�

The constraints in Eqs. (9)±(11) are also all linear in B�u; v�. Using Cramer's rule
again, we can solve these equations for B�u; v� � �bx�u; v�; by�u; v�; bz�u; v�� and
compute a rational surface representation of B�u; v�. The resulting bisector sur-
face follows the parameterization of the original surface. Figure 2a shows the
rational bisector surface of a torus and a point located at the center of the torus.

Figure 2. a The bisector of a torus and a point at the center of the torus, in R3. b The bisector of a cone
and a sphere in R3. Original surfaces are shown in gray. Both bisector surfaces are in®nite
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2.3. Special Cases of Surface-Surface Bisectors in R3

In general, the bisector of two rational surfaces is non-rational in R3, as we have
already noted. However, there are some special cases where the bisector surface is
rational. For example, when one of the initial surfaces is a sphere, the problem
reduces to ®nding the bisector of a point and an o�set surface. Thus, the bisector
is rational when the o�set surface is rational. This special case is discussed in
Section 2.3.1. Moreover, when the two surfaces are given as surfaces of revolution
sharing a common axis of rotation, the problem reduces to ®nding the planar
bisector of the generating curves of the two surfaces. The bisector surface is
rational if and only if the bisector of two generating curves is rational. This special
case is discussed in Section 2.3.2. The bisector of two conic surfaces sharing the
same apex is closely related to the bisector of two spherical curves; Section 2.3.3
considers the bisectors of points and curves on the unit sphere. A plane is a special
case of a cone with p

2 as its spanning angle. Moreover, the set of all planes is closed
under the o�set operation. Section 2.3.4 combines the results of Sections 2.3.2 and
2.3.3 to compute the line-plane and cone-plane bisectors.

2.3.1. Sphere-Surface Bisectors in R3

In Section 2.2 we showed that the bisector of a point and a rational surface in R3

is a rational surface; this immediately implies that the bisector of a sphere and a
surface with a rational o�set is also a rational surface. Simultaneously o�setting
both varieties by the same distance does not change the bisector of the two
varieties. Figure 2b shows the bisector surface of a sphere and a cone computed by
o�setting the cone by the radius of the sphere.

Pottmann [17] classi®ed the class of all rational curves and surfaces that admit
rational o�sets. An important subclass of all polynomial curves having rational
o�sets includes the Pythagorean Hodograph (PH) curves [9]. Simple surfaces (that
is, planes, spheres, cylinders, cones, and tori), Dupin cyclides, rational canal
surfaces, and non-developable rational ruled surfaces, all belong to this special
class of rational surfaces with rational o�sets [3, 15, 18]. Thus, our results can be
used to construct a wide range of bisectors in R2, where one curve is a circle and
the other is a rational curve having rational o�sets, and in R3, where one surface is
a sphere and the other is a rational surface having rational o�sets.

Even the simple rational bisector of two spheres, or the bisector of a point and a
sphere, has many important applications in practice. The bisector of two spheres
of di�erent radii can be used for ®nding an optimal path of a moving object (e.g.,
an airplane) which attempts to avoid radar detection. Di�erent radar devices have
di�erent intensities, and thus their regions of in¯uence may be modeled by spheres
of di�erent radii. The optimal path lies on the bisector surface of the spheres.

2.3.2. Special Cases of Simple Surfaces with Rational Bisectors in R3

Dutta and Ho�mann [2] considered the bisectors of simple surfaces (CSG prim-
itives), such as natural quadrics and tori, in particular con®gurations. Note that
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these CSG primitives are surfaces of revolution, which can be generated by ro-
tating lines or circles about an axis of rotation. When two primitives share the
same axis of rotation, their bisector construction essentially reduces to that of the
generating curves of two primitives. The bisectors of lines and circles and conics,
which are rational. Thus, the bisector of two primitives sharing the same axis of
rotation is a rational quadratic surface of revolution.

We can extend this result to a slightly more general case. Consider a rational
surface of revolution generated by a planar curve with a rational o�set. When the
axis of rotation is identical with that of a torus (or a sphere), the bisector of the
surface of revolution and the torus (or the sphere) is a rational surface of revo-
lution. This is because the bisector of a circle and a planar rational curve with a
rational o�set is the same as the bisector of the center of the circle and the rational
o�set curve; therefore the latter curve is also rational. Peternell [16] showed that
the bisector of a line and a rational curve with a rational o�set is also a rational
curve. Similar arguments also apply to the cylinder, cone, and plane, when the
axis of rotation is shared with the surface of revolution.

Dutta and Ho�mann [2] also considered the bisector of two cylinders of the same
radius, and the bisector of two parallel cylinders. The bisector of two cylinders of
the same radius is the same as the bisector of their axes, which is a hyperbolic
paraboloid and therefore rational. Moreover, the bisector of two parallel cylin-
ders is a cylindrical surface which is obtained by linearly extruding the bisector of
two circles. Thus, the bisector of two parallel cylinders is an elliptic or hyperbolic
cylinder, which is also rational.

Again, we can slightly extend this result. Consider two rational canal surfaces
obtained by sweeping a sphere (of a ®xed radius) along two rational space curves.
The bisector of these canal surfaces is the same as that of their skeleton space
curves, which is a rational surface. Moreover, two parallel cylindrical rational
surfaces have a rational bisector surface is their cross-sectional curves have a
rational bisector curve. In particular, when one cross-section is a circle and the
other cross-section is a planar rational curve with a rational o�set, the bisector
must be a rational cylindrical surface.

2.3.3. Bisectors on the Unit Sphere S2

Consider two conic surfaces that share the same apex. Their bisector surface is
another conic surface with the same apex, which we may assume to be located at
the origin. Thus the conic surfaces are ruled surfaces with their directrix curves
®xed at the origin. The intersection of these conic surfaces with the unit sphere S2

generates spherical curves; the curve corresponding to the bisector surface is in-
deed the bisector of the two spherical curves obtained from the original conic
surfaces. Thus, the bisector curve construction on S2 is equivalent to the bisector
surface construction for two conic surfaces sharing the same apex. In the present
section we consider the construction of bisector curves on S2.

Given two points P and Q on S2, let their spherical (geodesic) distance q�P ;Q� on
S2 be the angle between P and Q: q�P ;Q� � arccoshP ;Qi, where P and Q are two
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unit vectors. Consequently, for three points P ;Q;R 2 S2, we have
q�P ;Q� � q�P ;R�, if and only if hP ;Qi � hP ;Ri. Let Q 2 S2 be a point and
C�t� 2 S2 be a regular C1 rational spherical curve. Their spherical bisector curve
B�t� 2 S2 must satisfy the following three constraints:

hB�t�;Qi � hB�t�;C�t�i; �12�

B�t� ÿ C�t�; dC�t�
dt

� �
� 0; �13�

hB�t�;B�t�i � 1: �14�

Equation (12) locates the bisector curve B�t� at an equal spherical geodesic dis-
tance from Q and C�t�. Since the normal planePn�t� of a spherical curve C�t� 2 S2

contains the origin, it intersects S2 in a great circle that is orthogonal to C�t�.
Equation (13) implies that the bisector point is contained in the normal plane
Pn�t�. Finally, Eq. (14) constrains the bisector curve to the unit sphere S2.

Unfortunately, Eq. (14) is quadratic in B�t�; thus the spherical curve is, in gen-
eral, non-rational. Fortunately, the ruling directions of conic surfaces may be
represented by nonunit vectors. Thus, for the construction of rational direction
curves, we replace the unitary condition of Equation (14) by the following linear
equation:

hB�t�; �0; 0; 1�i � 1: �15�

Equation (15) constrains the bisector curve to the plane Z � 1. Equations (12),
(13), and (15) form a system of three linear equations in B�t�, whose solution is a
rational curve on the plane Z � 1, which we denote as �B�t�. Normalizing �B�t�, we
obtain a spherical bisector curve: B�t� � �B�t�=k �B�t�k 2 S2. Because of the square
root in the denominator, the bisector curve B�t� 2 S2 will be, in general, non-
rational.

Given two regular C1 rational curves C1�u� and C2�v� on S2, their bisector curve
B�u�v�� 2 S2 must satisfy the following three conditions:

hB�u�v��;C1�u� ÿ C2�v�i � 0; �16�

hB�u�v�� ÿ C1�u�;C01�u�i � 0; �17�

hB�u�v�� ÿ C2�v�;C02�v�i � 0: �18�

Equation (16) is the constraint of equal distance. Equations (17) and (18) imply
that the bisector is simultaneously on the normal planes of the two curves. All
three planes pass through the origin and they intersect, in general, only at the
origin. However, there is a singular case where the three planes intersect in a line
and their normal vectors are coplanar:
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k�u; v� �
C1�u� ÿ C2�v�

C01�u�
C02�v�

������
������ � 0: �19�

In fact, it is a necessary and su�cient condition for a bisector point B�u�v�� 2 S2

to have its foot points at C1�u� and C2�v� [7]. The bisector point B�u�v�� 2 S2 is
then computed as one of the intersection points between the line and the unit
sphere. Because of this extra constraint k�u; v� � 0, the spherical bisector curve is,
in general, non-rational (see also Elber and Kim [5]). However, the spherical
bisector curve of two circles on S2 is an interesting special case which allows a
rational bisector.

In a slightly more general case, let us assume that one curve C1�u� is a circle and
the other curve C2�v� has a rational spherical o�set (e.g. a circle on the sphere).
Then the curve-curve bisector on the unit sphere is the same as the bisector of a
point and an o�set curve on S2. To obtain this bisector, we ®rst o�set both curves
on S2 until the circular o�set degenerates to a point, and then solve this simpli®ed
system of equations for the spherical point-curve bisector. Using this technique,
we can reduce the spherical circle-circle bisectors to the spherical point-circle
bisectors.

2.3.4. Line-Plane and Cone-Plane Bisectors

A plane is a special case of a circular cone with p
2 as its spanning angle. Moreover,

the set of all planes is closed under o�setting. Based on these two properties, and
by combining results discussed in Sections 2.3.2 and 2.3.3, we can construct the
line-plane bisectors.

Consider the bisector of a line L and a plane P. Without loss of generality, we
may assume that P is the XY -plane and L intersects P at the origin. (We assume
that P and L are not parallel, since the parallel case reduces to the point-line
bisector.) Let Q �L \ S2 and C�t� � P \ S2 be a point and a great circle,
respectively, both on S2. Moreover, let �B�t� be the bisector of Q and C�t� on
the plane Z � 1. Then, the bisector surface of L and P is given by

B�t; r� � r �B�t�; r 2 R:

Next we consider the bisector of a circular cone C and a plane P. Without loss of
generality, we may assume that P is the XY -plane and that the apex of the circular
cone C is located at the origin. Let C1�u� � C \ S2 and C2�t� � P \ S2 be a circle
and a great circle, respectively, both on S2. Moreover, let �B�t� be the bisector of
C1�u� and C2�t� on the plane Z � 1. (Note that the bisector curve is constructed by
the spherical o�set technique discussed at the end of Section 2.3.3.) Then, the
bisector surface of C and P is again given by

B�t; r� � r �B�t�; r 2 R:

Bisectors and a-Sectors of Rational Varieties SW01/S005/9



If the apex of the cone C is not contained in P, we can o�set both the cone and
the plane until the apex is contained in P. A translation moves both varieties so
that the new apex is now located at the origin. All cone-plane bisectors can thus be
reduced to the standard form discussed above. Note that the same technique can
be applied to non-circular cones C as well if their spherical curves C \ S2 have
rational spherical o�sets.

3. Bisectors in Higher Dimensions

We now examine the existence of rational bisectors in higher dimensions. Let V1

and V2 be two varieties of dimensions d1 and d2, respectively, both in Rd . The
bisector B of V1 and V2 must be located in the normal subspaces of the two
varieties. Hence, there are d1 � d2 orthogonality constraints to be considered. The
bisector must, of course, also be at an equal distance from the two varieties, so
there are in total d1 � d2 � 1 linear constraints. When the two varieties V1 and
V2 are in general position, their bisector B has a rational representation if

d1 � d2 � 1 � d:

For example, consider two curves in R3. Each curve contributes one orthogonality
constraint; that is, the bisector must be contained in the normal plane of each
curve. Together with the requirement of equidistance from two input curves, the
total number of constraints is three, which is equal to the dimension of the space.
Thus, the bisector has a rational representation.

In contrast, a bivariate surface imposes two orthogonality constraints; namely
that the bisector of two surfaces must be contained in the normal line of each.
Including equidistance, the total number of constraints is therefore ®ve. Hence the
bisector of two bivariate surfaces has a rational representation in Rd , for d � 5,
but not in R3. Similarly, the bisector of a bivariate surface and a univariate curve
has a rational representation in Rd , for d � 4, but not in R3.

The bisector curve of two curves in R2, the bisector surface of a curve and a
surface in R3, and the bisector of two surfaces in R3 are all, in general, non-
rational; therefore we need to approximate them numerically. Methods for
approximating the bisectors of two curves were presented by Farouki and
Ramamurthy [11] and by Elber and Kim [5]. Additionally, methods for approx-
imating the bisector of two surfaces or that of a curve and a surface in R3 were
recently proposed by the latter authors [8].

4. a-Sectors

By de®nition, the shortest distances from a bisector point to the two varieties
being bisected are always equal. Consider an intermediate surface with weighted
distances from the two varieties,

akBÿV1k � �1ÿ a�kBÿV2k; �20�
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where 0 � a � 1. We denote the locus of points that are at relative distances a and
�1ÿ a� from the two varieties as the a-sector. Unfortunately, the square of
Eq. (20) is linear inB only for a � 1

2. Nevertheless, there is a nice property that the
two special a-sectors are identical with the original varieties when a � 0 or a � 1.
Note that the a-sector reduces to the bisector when a � 1

2.

The ability to change a continuously could be a useful tool in a range of appli-
cations, e.g., to produce metamorphosis between two freeform shapes. In the next
sections we consider a few simple examples of the a-sectors of two varieties. While
Eq. (20) is quadratic, we later `linearize' this constraint and introduce the pseudo
a-sector which is simple to represent as a rational function.

4.1. The Point-Line a-Sector in R2

We may assume without loss of generality that the line is the Y -axis, that is, the
parametric line C�t� � �0; t�, and that the point is Q � �1; 0�. We choose a so that
a � 0 corresponds to the line and a � 1 corresponds to the point.

The a-sector B � �bx; by� between the Y -axis and the point Q satis®es the line-
orthogonality constraint

0 � Bÿ C�t�; dC�t�
dt

� �
� h�bx; by� ÿ �0; t�; �0; 1�i � by ÿ t; �21�

and the distance constraint

a2 �bx ÿ 1�2 � b2
y

� �
� �1ÿ a�2�b2

x � �by ÿ t�2�: �22�

Solving Equations (21) and (22) and replacing �bx; by� with �x; y�, we obtain the
quadratic curve

2aÿ 1

a2

� �
x2 � y2 ÿ 2x� 1 � 0: �23�

Figure 3 shows the a-sectors of the line �0; t� and the point (1, 0) for various
di�erent values of a. When a < 1

2, the coe�cients of x2 and y2 have opposite signs,
and so the a-sector is a hyperbola. When a � 1

2, the coe�cient of x2 vanishes, and
so the bisector is a parabola. When a > 1

2, the coe�cients of x2 and y2 have the
same sign, and so the a-sector is an ellipse.

4.2. The Point-Plane a-Sector in R3

A similar a-sector exists for a point and a plane in three dimensions. We may
assume without loss of generality that the plane is the YZ-plane, that is, the
parametric plane S�u; v� � �0; u; v�, and that the point is Q � �1; 0; 0�. We choose
a such that a � 0 corresponds to the plane and a � 1 corresponds to the point.

Bisectors and a-Sectors of Rational Varieties SW01/S005/11



Let B � �bx; by ; bz� be the a-sector of S�u; v� and Q. As in the two-dimensional
case we have the two plane-orthogonality constraints

0 � Bÿ S�u; v�; @S�u; v�
@u

� �
� h�bx; by ; bz� ÿ �0; u; v�; �0; 1; 0�i � by ÿ u; �24�

0 � Bÿ S�u; v�; @S�u; v�
@v

� �
� h�bx; by ; bz� ÿ �0; u; v�; �0; 0; 1�i � bz ÿ v; �25�

and the distance constraint

a2 �bx ÿ 1�2 � b2
y � b2

z

� �
� �1ÿ a�2�b2

x � �by ÿ u�2 � �bz ÿ v�2�: �26�

Solving Eqs. (24)±(26) and replacing �bx; by ; bz� with �x; y; z�, we obtain the qua-
dratic surface

Figure 3. The a-sectors of the point (1, 0) and the line (0, t) for a � 0:10; 0:25; 0:50; 0:75; 0:90
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2aÿ 1

a2

� �
x2 � y2 � z2 ÿ 2x� 1 � 0: �27�

This is a hyperboloid of two sheets for 0 < a < 1
2, an elliptic (circular) paraboloid

for a � 1
2, and an ellipsoid for 1

2 < a < 1.

4.3. The Line-Line a-Sector in R3

Yet another simple example is the a-sector of two straight lines C1�u� � �1; u; 0�
and C2�v� � �0; 0; v�. We choose a such that a � 0 corresponds to C2�v� and a � 1
corresponds to C1�u�. Now let B � �bx; by ; bz� be the a-sector of C1�u� and C2�v�,
and we have the two line-orthogonality constraints

0 � Bÿ C1�u�; dC1�u�
du

� �
� h�bx; by ; bz� ÿ �1; u; 0�; �0; 1; 0�i � by ÿ u; �28�

0 � Bÿ C2�v�; dC2�v�
dv

� �
� h�bx; by ; bz� ÿ �0; 0; v�; �0; 0; 1�i � bz ÿ v; �29�

and the distance constraint

a2 �bx ÿ 1�2 � �by ÿ u�2 � b2
z

� �
� �1ÿ a�2�b2

x � b2
y � �bz ÿ v�2�: �30�

The solution of Equations (28)±(30) is the quadratic surface

2aÿ 1

a2

� �
x2 ÿ 1ÿ a

a

� �2

y2 � z2 ÿ 2x� 1 � 0: �31�

Thus the 1
2-sector (bisector) of C1�u� and C2�v� is the surface

y2 ÿ z2 � 2xÿ 1 � 0;

whose parametric form is given as 1ÿu2�v2
2 ; u; v

� �
. This con®rms the result of

[4, x2.2].
When a � 1

2, Eq. (31) yields a hyperbolic paraboloid. Otherwise, when 0 < a < 1,
but a 6� 1

2, it yields a hyperboloid of one sheet, which reduces to a line for a � 0 or
1. However, the a-sector of two general rational curves in R3 is usually a non-
rational surface.

4.4. The Pseudo a-Sector

In the case of a spherical bisector, we resorted to the linear constraint Z � 1.
Similarly, we now seek a linear constraint that replaces the quadratic L2-norm of
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Eq. (20) while yielding similar properties to the a-sector in constraining the rel-
ative distances to the two given varieties. We choose the plane that is at relative
distances of a and �1ÿ a� from the closest point on each variety.

For example, for the pseudo a-sector of a curve C�t� and a point Q in R2, we
impose the two linear constraints

B�t� ÿ C�t�; dC�t�
dt

� �
� 0; �32�

hB�t� ÿ �aQ� �1ÿ a�C�t��;C�t� ÿ Qi � 0: �33�

Equation (32) is the regular orthogonality constraint, and Equation (33) ensures
that the bisector is on the plane containing the point aQ� �1ÿ a�C�t� and or-
thogonal to the vector C�t� ÿ Q. If C�t� has a rational representation, we can
easily use Cramer's rule to obtain a rational representation for
B�t� � �bx�t�; by�t��.
Figure 4 shows three examples of planar pseudo a-sectors of: (i) a point and a line
(Fig. 4a), (ii) a point and a cubic curve (Fig. 4b), and (iii) a point and a circle
(Fig. 4c). These examples were all created using the IRIT solid-modeling envi-
ronment [12].

The extension to R3 follows the same guidelines. The pseudo a-sector of two
curves C1�u� and C2�v� in R3 imposes the three linear constraints

B�t� ÿ C1�u�; dC1�u�
du

� �
� 0; �34�

B�t� ÿ C2�v�; dC2�v�
dv

� �
� 0; �35�

Figure 4. a The pseudo a-sectors of a point and a line in R2 for a � 0:10; 0:25; 0:50; 0:75; 0:90 (cf.
Figure 3). b The a-sectors of a point and a cubic curve in R2 for a � 0:2; 0:4; 0:6; 0:8; 1:0. c The a-sectors
of a point and a circle in R2 for a � 0:2; 0:4; 0:6; 0:8; 1:0. The original curves and points are shown in

gray
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hB�t� ÿ �aC1�u� � �1ÿ a�C2�v��;C1�u� ÿ C2�v�i � 0: �36�

Again, if C1�u� and C2�v� have rational representations, we can use Cramer's rule
to obtain a rational representation for B�t�. Figure 5 shows two such pseudo
a-sectors in R3, for (i) two lines (Fig. 5a), and (ii) a line and a circle (Fig. 5b).

The pseudo a-sector is identical with the a-sector only when a � 1
2; in that case,

they are both equivalent to the bisector. Note also that the pseudo 0- and
1-sectors are only approximations to the original varieties. This is because of the
approximate distance constraint: points on the pseudo a-sector do not satisfy the
a:�1ÿ a� distance ratio; instead, this property constrains only their projections on
the lines joining the respective points on the varieties.

5. Conclusions

In this paper we have examined various special cases for which rational bisectors
exist. We showed constructively that the point-curve bisectors in R2, and all point-
curve, point-surface, and curve-curve bisectors in R3, have rational representa-
tions. We have also considered some special cases where the surface-surface
bisectors are rational.

Further, we describe the exact and pseudo a-sectors, extensions of the bisector
that should be useful in various applications, such as metamorphosis between the
pseudo a-sector.
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